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Three-charged-particle systems in the framework of coupled coordinate-space few-body equations
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We study three-charged-particle low-energy elastic collision and particle-exchange reactions with special
attention to the systems with Coulomb interaction and an additional nuclear interaction employing a close-
coupling expansion scheme to a set of coupled two-component few-body equations. First we apply our
formulation to compute low-energy elastic scattering phase shifts for the d + (tμ−)1s collision, which is of
significant interest for the muon-catalyzed-fusion D-T cycle. Next, we study the particle-exchange reaction
d + (pX −) → p + (dX −) with the long-lived elementary heavy lepton stau X − which can play a critical role
in the understanding of the big-bang nucleosynthesis and the nature of dark matter. We also study the total cross
sections and rates for two-particle-exchange reactions involving antiprotons ( p̄), deuterons (d ), and tritons (t ),
e.g., p̄ + (dμ−)1s → ( p̄d )1s + μ− and p̄ + (tμ−)1s → ( p̄t )1s + μ−, where μ− is a muon. The effect of the final
state short-range strong ( p̄d) and ( p̄t) nuclear interactions is significant in these reactions, which increases the
reaction rates by a factor of ≈3.

DOI: 10.1103/PhysRevC.107.064003

I. INTRODUCTION

Quantum-mechanical few-body systems play an important
role in different fields of physics. This is true in the case
of atomic-molecular physics, chemical, nuclear, and particle
physics [1] and also in the case of condensed matter physics
[2]. Therefore, special methods and techniques to handle
quantum-mechanical few-body problems have emerged as an
important area of research [3,4]. The fundamental difference
between a two-body and a few-body process is that in a few-
body process the two-body scattering can occur off the energy
shell (off-shell) and can probe the off-shell part of two-body
interaction which is not accessible in a two-body process.

In this paper we develop a close-coupling expansion
scheme to a set of coupled two-component scattering equa-
tions to study elastic collision and particle-exchange reactions
involving three charged particles. These numerical schemes
are usually tested in atomic systems with only Coulomb in-
teraction, such as electron-hydrogen and positron-hydrogen
systems. We apply this procedure to the study of collisions in
a few three-body atomic systems with Coulomb plus nuclear
interactions, which are of particular importance in physics
from both experimental and theoretical points of view. This
investigation into three-body systems may shed light on our
knowledge about nuclear interactions. The effect of final-state
strong nuclear interaction on the collisions in these three-body
systems is found to be significant.
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As the first application to our approach we study the elastic
collision

d + (tμ−)1s → (tμ−)1s + d, (1)

where d (t ) represents a deuteron (triton) and μ− a muon
below the n = 2 threshold of (tμ−), which is of significant
interest for the muon-catalyzed-fusion cycle in a cold liquid
hydrogen (DT) environment [5–7]. This collision is a quite
challenging three-body process especially at low-energies due
to the long-range d-(tμ) polarization interaction. We compare
our numerical results for phase shifts at different energies with
those of other calculations.

Next we study the following particle-exchange reaction
and elastic collision:

d + (pX −) → (pX −) + d
↘ (dX −) + p, (2)

where p represents a proton, d represents a deuteron and
X − the long-lived heavy negatively charged lepton stau. The
stau particle can play a critical role in the understanding of
the big-bang nucleosynthesis (BBN) [8,9] and the nature of
dark matter. We compare our total cross sections for these
processes with the results of Ref. [10]. The lepton X − is
a supersymmetric (SUSY) partner of the τ lepton with an
estimated mass of about ≈125 GeV [11]. Experimental search
for this particle is still ongoing [11–14]. It is interesting to note
that the quasistable X − can make Coulomb bound states with
nuclei and could severely affect the early BBN era nuclear re-
actions through a so called X −-catalyzed process [15–17]. In
the contemporary literature this phenomenon has been named
the catalyzed big-bang nucleosynthesis (CBBN). In some
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senses CBBN is similar to the processes of muon catalyzed
fusion [5,18], when μ− effectively shields the Coulomb fields
of nuclei and increases the rates of nuclear reactions. The idea
of cold catalysis or fusion of nuclear reactions between hydro-
gen isotopes dates back to early works in particle physics in
the 1940s, and the first works related to the X − catalysis have
their origins in the late 1980s and the early 1990s [10,19–21].
For example, in Ref. [10] paths to observation of X − were
numerically estimated.

The particle-exchange reactions

p̄ + (dμ−)1s → ( p̄d )α + μ−, (3)

p̄ + (tμ−)1s → ( p̄t )α + μ−. (4)

considered next involving antiproton p̄ are specially signif-
icant because these few-body processes with p̄ will provide
information about its interaction with elementary hadrons
such as deuterons, tritons, etc. [22–27]. In Eqs. (3) and (4)
α (≡ nl ) denotes the nl bound state of ( p̄d ) or ( p̄t ), e.g.,
( p̄d )nl or ( p̄t )nl . A slow p̄ can approach muonic atoms at a
very short distance without annihilation followed by a three-
body reaction to form an antiprotonic hydrogen atom. This
situation is quite similar to well-known muon-catalyzed fu-
sion reactions, where a negative muon μ− binds, for example,
d and tritium t nuclei so close and so strongly that the nuclear
reaction d + t occurs with a high probability [18]. Therefore,
low-energy few-body systems can be useful to study nuclear
forces and annihilation processes between a proton and an
antiproton. These reactions were studied before using adia-
batic [28] and nonadiabatic [29] approaches. We would like
to emphasize here that the knowledge of the antimatter-matter
(N̄N ) strong interaction is of significant importance in nuclear
physics [30]. In Refs. [31,32] it was pointed out that muonic
atoms can be especially useful to study nuclear properties.

In recent years research in the field of low-energy an-
tiproton and antihydrogen physics has gained significant
momentum [33–36]. Primarily, this is connected with the cre-
ation and confinement of cold antihydrogen atoms H̄ and with
the detection of 3(4)He+ p̄ few-body systems, i.e., metastable
antiprotonic helium atomcules [37]. Also, currently of a spe-
cial interest are different few-particle systems and collisions
with participation of antiprotons and antihydrogen atoms
[38,39], and muonic atoms [40–44]. Another strong moti-
vation of the antihydrogen and antimatter physics research
is to check and confirm certain fundamental laws, like the
charge conjugation, parity, and time reversal (CPT) symmetry
of quantum electrodynamics [45,46].

To correctly evaluate reactions (2)–(4) and the low-energy
elastic scattering process (1) we adopt a general few-body
approach based on a decomposition of the total three-body
quantum-mechanical wave function |�〉 on two special com-
ponents |�1( �r23, �ρ1)〉 and |�2( �r13, �ρ2)〉. Each component
describes a specific spatial configuration in the three-body
system. The few-body method was developed in the series
of papers; see for example [47–53]. We also would like to
add here that this approach allows us to correctly include
final-state interactions in various atomic and nuclear few-body
reactions [53].

In Sec. II we present the few-body approach together with
the inclusion of the final-state nuclear interaction in the case of
the reactions (3) and (4). All our numerical results, namely for
processes (3) and (4), for the elastic scattering muonic process
(1), and for the p-d exchange collision (2), are given and
discussed in Sec. III. Conclusions are given in Sec. IV. The
corresponding procedure to obtain a set of one-dimensional
integral-differential equations together with the appropriate
boundary conditions is presented in the Appendix. Muonic
atomic units (m.a.u.) are used in this work, i.e., mμ = e− =
h̄ = 1, where mμ is the muon mass, e− is the charge of an
electron, and h̄ is Planck’s constant.

II. COUPLED FEW-BODY EQUATIONS
IN COORDINATE SPACE

In this work we deal with elastic and rearrangement scat-
tering at low energies below the three-body breakup threshold
with Coulomb three-body systems with arbitrary unequal
masses. In all the processes we consider there are only
two bound partitions. Hence below the three-body breakup
threshold only two two-cluster asymptotic configurations are
possible in the three-body system, e.g., (23) − 1 and (13) − 2
being determined by their own Jacobi coordinates {�r j3, �ρk}:

�r j3 = �r3 − �r j, �ρk = m3�r3 + mj�r j

m3 + mj
− �rk ( j �= k = 1, 2).

(5)

Here �r j , mj are the coordinates and the masses of the particles
j = 1, 2, 3 respectively. This suggests a two-cluster formula-
tion which uses only two components.

A general procedure to derive such formulations is de-
scribed in Refs. [48,49,53]. In this approach the three-body
wave function is represented as follows:

|�〉 = �1(�r23, �ρ1) + �2(�r13, �ρ2), (6)

where each wave function component is determined by its
own Jacobi coordinates. Moreover, �1(�r23, �ρ1) is quadrati-
cally integrable over the variable �r23, and �2(�r13, �ρ2) over
the variable �r13. The Schrödinger equation for the three-body
system

(E − Ĥ0 − V12 − V23 − V31)|�〉 = 0, (7)

can be identically rewritten as a set of two coupled equa-
tions for the components |�1〉 and |�2〉:

[E − Ĥ0 − V23(�r23)]�1(�r23, �ρ1) = [V23(�r23)

+ V12(�r12)]�2(�r13, �ρ2),
(8)

[E − Ĥ0 − V13(�r13)]�2(�r13, �ρ2) = [V13(�r13)

+ V12(�r12)]�1(�r23, �ρ1).
(9)

Here, Ĥ0 is the kinetic energy operator of the three-particle
system, Vi j (�ri j ) are Coulomb potentials between particles
i and j (i �= j = 1, 2, 3), and E is the total energy. For
energies below the three-body breakup threshold, Eqs. (8)
and (9) exhibit the same advantages as detailed few-body
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equations because they are formulated for the wave func-
tion components with the correct physical asymptotes. To
solve Eqs. (8) and (9) a close-coupling method is applied,
which leads to an expansion of the wave function com-
ponents |� j〉 into eigenfunctions of the subsystem (target)
Hamiltonians, providing one with a set of one-dimensional
integral-differential equations after partial-wave projection.
A further advantage of the method is the fact that the
wave-function components are smoother functions of the co-
ordinates than the total wave function.

In processes (1) and (2), the mesic atoms (tμ−), (pX −),
and (dX −) are bound solely by atomic interaction, and
Eqs. (8)–(9) are appropriate to study these processes. How-
ever, in the case of the reactions (3) and (4) it would be
necessary to explicitly include the final state nuclear inter-
action between the hadrons p̄ and d in (3) and p̄ and t in
(4). Therefore, for this purpose we rewrite Eqs. (8) and (9)
as follows [53]:

[E − T̂ρ1 − ĥ23(�r23)]�1(�r23, �ρ1) = [V23(�r23)

+ V12(�r12)]�2(�r13, �ρ2),
(10)[

E − T̂ρ2 − ĥN̄N
13 (�r13)

]
�2(�r13, �ρ2) = [Ṽ13(�r13)

+ V12(�r12)]�1(�r23, �ρ1),
(11)

where Ṽ13(�r13) = V13(�r13) + vN̄N
13 (�r13), and ĥ23(�r23) ≡ T̂�r23 +

V23(�r23) and ĥN̄N
13 (�r13) ≡ T̂�r13 + V13(�r13) + vN̄N

13 (�r13) are the

two-particle target Hamiltonians; in ĥN̄N
13 (�r13) and in Ṽ13(�r13)

an additional strong p̄d (or p̄t) final-state nuclear potential,
viz., Eqs. (3) and (4), vN̄N

13 (�r13) has been included, where N
and N̄ represent d and p̄ or t and p̄. In writing Eqs. (10) and
(11) we have used the identities Ĥ0 ≡ T̂ρ1 + T̂�r23 ≡ T̂ρ2 + T̂�r13 ,
where T̂�ri j is the kinetic energy of the pair i j and T̂ρk (i �= j �=
k) is the kinetic energy of the particle k relative to the pair i j.

In order to solve Eqs. (10) and (11) a modified close-
coupling approach is used. We use an expansion of the wave
function components |�1〉 and |�2〉 in discreet bound-state
eigenfunctions ϕ(1)

α (�r23) and ϕ
(2)N̄N
α′ (�r13) of the subsystem

(target) Hamiltonians ĥ23(�r23) and ĥN̄N
13 (�r13), with coefficients

f (1)
α (�ρ1) and f (1)

α′ (�ρ2) respectively:

�1(�r23, �ρ1) ≈
∑

α

f (1)
α (�ρ1)ϕ(1)

α (�r23), (12)

�2(�r13, �ρ2) ≈
∑
α′

f (2)
α′ (�ρ1)ϕ(2)N̄N

α′ (�r13). (13)

In Eqs. (12) and (13) we carry out summation over the dis-
creet atomic bound states ϕ(1)

α (�r23) and ϕ
(2)N̄N
α′ (�r13) included

in the approximation. In reactions (3) and (4), the function
ϕ

(2)N̄N
α′ (�r13) has the contribution of the additional nuclear in-

teraction between p̄ and d or p̄ and t . The coupled few-body
equations (10)–(11) will guarantee that the one-dimensional
unknown coefficients f (1)

α (�ρ1) and f (2)
α′ (�ρ2) will have correct

physical asymptotes. This procedure reduces Eqs. (10) and
(11) to a set of coupled one-dimensional integral-differential
equations for f (1)

α (�ρ1) and f (2)
α′ (�ρ2) after partial-wave projec-

tion [54]:

[(
k(1)

n

)2 + ∂2

∂ρ2
1

− λ(λ + 1)

ρ2
1

]
f (1)
α (ρ1) = g1

∑
α′

√
(2λ + 1)(2λ′ + 1)

2L + 1

∫ ∞

0
dρ2 f (2)

α′ (ρ2)
∫ π

0
dω sin(ω)R(1)

nl (|�r23|)

×
[
− 1

|�r23| + 1

|�r12|
]

R(2)
n′l ′ (|�r13|)ρ1ρ2

×
∑
mm′

DL
mm′ (0, ω, 0)CLm

λ0lmCLm′
λ′0l ′m′Y ∗

lm(ν1, π )Yl ′m′ (ν2, π ), (14)

[(
k(2)

n

)2 + ∂2

∂ρ2
2

− λ′(λ′ + 1)

ρ2
2

]
f (2)
α′ (ρ2) = g2

∑
α

√
(2λ + 1)(2λ′ + 1)

2L + 1

∫ ∞

0
dρ1 f (1)

α (ρ1)
∫ π

0
dω sin(ω)R(2)

n′l ′ (|�r13|)

×
[
− 1

|�r13| + 1

|�r12|
]

R(1)
nl (|�r23|)ρ2ρ1

×
∑
mm′

DL
mm′ (0, ω, 0)CLm

λ0lmCLm′
λ′0l ′m′Y ∗

l ′m′ (ν2, π )Ylm(ν1, π ). (15)

Here α = nl , α′ = n′l ′, gk = 4πMk/γ
3 (k = 1, 2)k(i)

n =√
2Mi(E − E ( j)

n ), with M−1
i = m−1

i + (m3 + mj )−1, E ( j)
n

is the binding energy of ( j3), i �= j = 1, 2, γ = 1 −
mkmj/[(m3 + mk )(m3 + mj )], DL

mm′ (0, ω, 0) is the Wigner
function, CLm

λ0lm is the Clebsh-Gordon coefficient [55], L is the
total angular momentum of the three-body system, α = (nlλ)
are quantum numbers of a three-body state, ω is the angle
between the Jacobi coordinates �ρi and �ρi′ , νi is the angle

between �ri′3 and �ρi, νi′ is the angle between �ri3 and �ρi′ , and
R(1)

nl (|�r23|) and R(2)
n′l ′ (|�r23|) are the radial parts of the wave

functions ϕ(1)
n (�r23) and ϕ

(2)N̄N
n′ (�r13). The following relations

are useful for a numerical treatment: sin νi = (ρi′/γ ri′3) sin ω

and cos νi = (1/γ ri′3)(βiρi + ρi′ cos ω) (i �= i′ = 1, 2). Equa-
tions (14) and (15), involving smoother unknown functions
f (1)
n (�ρ1) and f (2)

n′ (�ρ2), are more appropriate for numerical
treatment than the full three-body equations (10)–(11).
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Coupled integral-differential equations (14) and (15) can
be solved in the framework of different close-coupling ap-
proximation schemes, such as 2 × (1s), 2 × (1s + 2s), 2 ×
(1s + 2s + 2p), etc. Symbol “2×” indicates that the close-
coupling expansion is carried out for the two wave-function
components, viz., Eqs. (12) and (13). For instance, if n = n′ =
1 we apply only two atomic states, i.e., two ground states (1s)
of each target. When n = n′ = 2 we use two or three atomic
target states resulting in 2 × (1s + 2s) or 2 × (1s + 2s + 2p)
approximation. Our computing approach for numerical solu-
tion of the coupled integral-differential equations (14)–(15) is
discussed in the Appendix.

The full potentials between p̄ and d and between p̄ and t are
complex, because their second part, vN̄N

13 (�r13), possesses the
asymmetric N̄-N nuclear interactions [56–61]. In this work
we did not explicitly include the strong interaction in our
calculations, that is why in the case of the target p̄d and p̄t
eigenfunctions we use pure two-body Coulomb (atomic) wave
functions.

ϕ
(2)N̄N
n′ (�r13) ≈

∑
l ′m′

R(2)
n′l ′ (r13)Yl ′m′ (r̂13), (16)

where the function R(2)
n′l ′ (r13) and the spherical harmonic

Yl ′m′ (r̂13) are the radial and the angular parts of the hydrogen-
like atomic wave function [62], and {n′, l ′, m′} are the usual
principal and the angular quantum numbers of the antiprotonic
hydrogen atom. Nonetheless, the strong p̄d and p̄t interactions
are approximately taken into account through the eigenener-
gies En′ which have shifted values from the original Coulomb
levels εn′ [63], that is

En′ ≈ εn′ + �EN̄N
n′ = −μ2/2n′2 + �EN̄N

n′ , (17)

where μ2 is the reduced mass of the targets p̄d or p̄t in the
final channels of the reactions (3) and (4).

The idea of such a first-order approximation where pure
Coulomb atomic eigenfunctions are used and the eigenvalues
(atomic spectrum) are shifted, taking into account the nuclear
interaction between the antiproton and the atomic nucleus,
apparently goes back to Ref. [64], where low-energy scat-
tering of antiprotons on atoms was considered. In this work
we apply the few-body equations (8) and (12)–(17) with the
use of an energy shift �EN̄N

n′ in the eigenstates of p̄d and
p̄t . The energy shifts can be computed, for example, with the
use of the well-known Deser-Goldberger-Baumann-Thirring
formula [63]:

�EN̄N
n′ = − 4

n′
as

Bp̄H
εn′ , (18)

where as is the pure nuclear strong interaction scattering
length in the p̄ + H collision (where H is d or t), i.e. without
the inclusion of Coulomb interaction between the particles,
Bp̄H is the Bohr radius of deuteronium, i.e., the p̄d atom or
the p̄t one. Computational details and derivations of the final
equations suitable for numerical calculations can be found in
the Appendix.

III. NUMERICAL RESULTS

A. Collisions between p̄’s and muonic atoms

In this section we discus our calculations for the reactions
(3) and (4). Just like in Ref. [29], in the current work we
carried out numerical calculations only for the transitions to
the ground state of the antiprotonic atoms, i.e., α = 1s in
Eqs. (3) and (4). In this state the size of the p̄d and p̄t atoms is
about ≈10 fm. Thus one can expect that the contribution of the
nuclear forces to the three-body scattering cross sections and
rates should be significant. We assume that these reactions
will be useful to study nuclear matter-antimatter interaction
in future experiments.

A muon (μ−) is ≈ 207 times heavier than an electron
(e−). Therefore, the muonic hydrogen atom Hμ has a very
small size. As a result, in reactions (3)–(4) antiproton can
very closely approach Hμ. But annihilation between p̄ and
d or t will be prevented because of the μ− screening effect
and a strong p̄ and μ− Coulomb repulsion. The quantum-
mechanical p̄ tunneling through the muonic-atomic orbit of
Hμ is also suppressed. This effect can be seen from the
following quantum-mechanical tunneling probability formula
[62]:

B = exp

{
−2

h̄

∫ ρ0

0

√
2M(U (r) − E )dr

}
, (19)

where B is the probability, E is the total energy in the three-
body system, M is the p̄Hμ reduced mass, and U (r) is the
interaction potential between p̄ and Hμ:

U (r) =
(

1

r
+ μ0

)
e−2μ0r, (20)

μ0 is the muonic hydrogen reduced mass, i.e., μ0 ≈ 207me,
where me is the electron mass. The integration in Eq. (19) can
be done up to ρ0 ≈ 10 m.a.u. One can compute the integral
(19) and show that the argument of the exponent in Eq. (19)
is a large number. Therefore, in the first-order approximation
p̄ tunneling can be neglected. In the case of a similar atomic
system, where one has an electron e− instead of muon, p̄ can
easily penetrate through the light e− cloud and annihilate with
the hydrogen isotopes before the three-body reaction occurs.

Figure 1 shows our results for the reaction p̄ + (dμ−)1s →
( p̄d )α + μ−. Specifically, panel (a) depicts our p̄-transfer
cross sections: σtr (E ). These results are shown in the frame-
work of the 2 × 1s, 2 × (1s + 2s), and 2 × (1s + 2s + 2p)
close-coupling approximations. The contribution of the 2p
atomic states (blue line with open circles) is large. Slow p̄ can
approach the (dμ) atom to very close distances and strongly
polarize it. Therefore, the inclusion of the polarization channel
in Eqs. (12)–(13) is very important. This result is in good
agreement with some earlier conclusions in atomic physics
[65]. Specifically, in the interaction between ions and atoms,
2p atomic states (channels) play a significant role in the
formation of the ion+atom polarization force or polarization
potential. This potential is of high importance at low- and very
low-energy collisions [65].

The inclusion of the nuclear interaction between p̄ and d
increased the cross section almost three times. This is seen
on Fig. 1(a) black line with open squares. The inclusion of
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(a) (b)

FIG. 1. (a) Three-body transfer cross section of the reaction (3)
in 1s, 1s + 2s, and 1s + 2s + 2p close-coupling approximations.
(b) Elastic scattering cross section of the reaction (3) multiplied by
collision velocity v. Here (m.a.u.) stands for muonic atomic units,
i.e., mμ = e− = h̄ = 1.

the p̄d strong interaction has been done within the framework
of Eqs. (16)–(18). One can find the p̄d atom ground-state
Coulomb energy shift in Table 5.2 of Ref. [26]. The averaged
experimental result has the following value:

�E p̄d
n′=1s = 1050 eV, (21)

which was adopted in our work. However, the result for
�E p̄d

n′=1s differs quite significantly from the theoretical calcu-
lations based on the three-body theory [59] and another older
paper [58]. With the use of the given �E p̄d

n′=1s (21), one can
estimate the p̄ + d scattering length,

ap̄d
s = − Bp̄H

4εn′=1s
�E p̄d

n′=1s = 0.682 fm, (22)

and compute the Coulomb energy shift for 2s and 2p states
(n′ = 2),

�E p̄d
n′=2 = 131.25 eV. (23)

These values have been included in Eq. (8) in our calculation
of the reaction (3). In Fig. 1(b) we illustrate present results
for the cross section σel multiplied by the incident velocity
between the colliding particles, i.e., σelv. In this case the
contribution of the 2p atomic states (polarization effect) is
also significant, but the contribution of the strong interaction
to the elastic channel is not very large.

In Fig. 2 we present our results for the reaction p̄ +
(tμ−)1s → ( p̄t )α + μ−. This is an attractive three-charged-
particle reaction with the participation of tritium. Tritium is
a radioactive hydrogen isotope and it would be extremely
interesting to investigate the influence of the strong interaction
between p̄ and t on the rate of the reaction (4). Also, with
the study of reaction (4) it should be possible to estimate the
nuclear potential between p̄ and tritium. In Fig. 2(a) we plot
the three-body transfer cross section σtr of the reaction p̄ +
(tμ−)1s → ( p̄t )α + μ− using 2 × 1s, 2 × (1s + 2s), and 2 ×

(a) (b)

FIG. 2. (a) Three-body transfer cross section of the reaction (4)
in 1s, 1s + 2s, and 1s + 2s + 2p close-coupling approximations.
(b) Elastic scattering cross section of the reaction (4) multiplied by
collision velocity v in muonic atomic units, mμ = e− = h̄ = 1.

(1s + 2s + 2p) close coupling approximations. In Fig. 2(b)
we show the elastic scattering cross section multiplied by
the collision velocity σelv for the process p̄ + (tμ−)1s →
p̄ + (tμ−)1s for the three close-coupling approximations. The
transfer cross section of (4) is much smaller than the corre-
sponding transfer cross section of (3). This result agrees with
the results of previous work [28].

To carry out the transfer rates of the process p̄ +
(tμ−)1s → ( p̄t )α + μ− one needs the nuclear energy shifts of
the ( p̄t) Coulomb levels as an input. However, to our best
knowledge, these data are not available in the literature so
far, i.e., there are no results for �E p̄t

n′=1s. Some information
about the p̄ + t scattering appears in Ref. [66]. Nevertheless,
we report preliminary computational results for the reaction
rates of the reaction p̄ + (tμ−)1s → ( p̄t )α + μ− with the use
of a model approximation.

In the case of the two-particle system ( p̄p) the energy
shift is �E p̄p

n′=1s = 540 eV. In the case of the three-particle
system p̄d , �E p̄d

n′=1s = 1050 eV [26] (Table 5.2). Therefore,
we assume that in the case of the four-particle system, i.e., p̄t ,
the ground state Coulomb level energy shift due to the nuclear
interaction is �E p̄t

n′=1s ≈ 1575 eV. We adopt this value and
use it in our calculation of the rate of the reaction (4) with
the inclusion of the strong p̄t interaction in the final state. As
a preliminary treatment, the energy range for this calculation
was only 10−3 � E � 2 eV.

In these processes the inclusion of the 2p atomic states in
the close-coupling expansion (12)-(13) is important for the
transfer and for the elastic channels. In Fig. 3 we present the
charge transfer rates λ for the p̄d and p̄t formation reactions,
i.e.,

λ(E ) = σtr (E )v, (24)

where σtr (E ) is the total cross section and v is the collision
velocity. These results are shown in the framework of the
2 × 1s, 2 × (1s + 2s), and 2 × (1s + 2s + 2p) close-coupling
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(a) (b)

FIG. 3. (a) Three-body reaction rates for (3) in 1s, 1s + 2s,
1s + 2s + 2p close-coupling approximations and with inclusion of
the strong nuclear interaction between p̄ and d . (b) Same as in (a) but
for the reaction (4) together with the results of Ref. [28] in muonic
atomic units, mμ = e− = h̄ = 1.

approximations, viz., Eqs. (12)–(13) for (a) p̄ + dμ and for
(b) p̄ + tμ. The contribution of the polarization (2p states)
is large for both reactions. At very low energies, i.e., E �
10−2 eV, the rates attain almost a constant value: λ(E ) 
const. This is in a good agreement with the general law of
the quantum-mechanical rearrangement scattering theory; see
for example Ref. [62]. Therefore, one can assume that the
use of the six-state model is justified and acceptable in our
calculations.

The energy dependence of the present rates λ(E ) agrees
with the result of Ref. [28], as can be found from Fig. 3.
From Figs. 3(a) and 3(b) one can conclude that the effect of
the p̄d and p̄t final-state nuclear interactions on the antiproton
transfer rate is significant. The effect increased the rate λ(E )
almost three times (black full line with circles). Here, as in
Ref. [28], all our p̄ + (dμ−) results for the reaction rates λ(E )
were multiplied by a factor of 5. The same for p̄ + (tμ−): all
our p̄ + (tμ−) original rates, λ(E ), were multiplied by a factor
of 25 in Fig. 3(b). These transfer rates attain a constant value
at low energies. For the p̄ + (tμ−) collision the present rates
are in reasonable agreement with those obtained in Ref. [28].
In Figs. 1 and 3 we find that at low energies the contribution of
the nuclear interaction could be large. This is not entirely un-
expected: first, because the nuclear interaction is much larger
than the atomic interaction; second, at such low energies the
result is very sensitive to the model interaction used in the
calculation. Only a more microscopic calculation can reveal
the actual state of affairs, which is beyond the scope of the
present investigation.

B. Low-energy elastic scattering: d + (tμ−)1s

As a further test of our few-body approach approximation
(12)-(13) we carry out additional calculations of the elastic
scattering (1). This collision is of a significant interest as a
Coulomb three-body problem in the muon-catalyzed fusion

TABLE I. Low-energy s-wave d + (tμ−)1s elastic scattering re-
sults for K11 = tan(δ(εc )) together with the results of works [67] and
[68] at kinetic energy εc below the (tμ−)n=2 threshold.

εc (eV) This work Ref. [67] Ref. [68]

0.01 −0.0247 −0.02384
0.04 −0.0494 −0.0509
0.1 −0.0784 −0.0856 −0.0875
0.3 −0.1360 −0.1627
0.5 −0.1761 −0.2206 −0.220
1.0 −0.2509 −0.3363 −0.335

cycle. In the literature there are few high quality calculations
of (1). These calculations are based on dissimilar quantum-
mechanical methods. Here we choose two of them [67,68] for
comparison with our results. As in works [67,68] we carried
out computation for the so-called K11 matrix element, i.e.,
K11 = tan[δ(εc)] for the elastic scattering (1), where δ(εc) is
the scattering phase at the collisions energy εc. The set of
coupled second order integral-differential Eqs. (14)–(15) has
been solved numerically. As the first boundary condition we
imposed

f (1)
α (ρ1) ∼

ρ1→0
f (2)
α′ (ρ2) ∼

ρ2→0
0. (25)

We imposed a “standing wave” equation as the second bound-
ary condition for the single open elastic scattering channel,
which is described by the function f (1)

1s (ρ1), whereas all other
channels are closed:

f (1)
1s (ρ1) ∼

ρ1→+∞ sin
(
k(1)

n=1ρ1
) + K11 cos

(
k(1)

n=1ρ1
)
,

f (2)
α′ (ρ2) ∼

ρ2→+∞ 0. (26)

Our calculation approach and numerical procedures are pre-
sented in the Appendix; see for example Eqs. (A20)–(A24).
The authors of [67] use an adiabatic expansion approach with
the use of hundreds of expansion functions in the frame-
work of the three-body Schrödinger equation. In Ref. [68] a
three-dimensional equation was numerically solved without
expansion functions but only in the framework of total angular
momentum L = 0.

In elastic scattering collisions the contribution of the po-
larization channels is very important. Therefore it would be
interesting to check how our two-cluster equation approach
works in the case of the problematic process (1). Table I
shows our results for K11 = tan[δ(εc)] together with the re-
sults of Refs. [67,68]. One can see that our simpler six-state
approximation reproduces quite satisfactory results for K11.
Therefore, our results for K11 are quite sufficient to make
conclusions about the validity of our computational approach
and the six-state close-coupling approximation.

C. p-d exchange three-body reaction

Another intriguing system of three Coulomb particles is
discussed below in this section, namely the reaction involv-
ing the massive SUSY particle X −, i.e., the charge-exchange
reaction (2). As we mentioned in the Introduction, X − is a
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TABLE II. Reaction channel total cross sections σt and rates λ in collision (2) at very low energies together with the corresponding results
of work [10] obtained under different quantum-mechanical approximations. Here εc is the collision energy, v is the center-of-mass collision
velocity, πa2

p = 26.1 b, ap = 28.8 fm is the (pX −) Bohr radius, and λ = N0σtv, where N0 = 4.25 × 1022 cm3 is the hydrogen density.

This work Results from Ref. [10]

εc (eV) v (km/s ) σt (units of πa2
p) σt (cm2) λ (s−1) λa (s−1) λb (s−1) λc (s−1)

0.0001 0.0988 4.135 × 104 107.91 × 10−20 4.53 × 108 ≈ 0.3 × 108 ≈ 1.8 × 108 ≈ 12 × 108

0.001 0.312 1.307 × 104 34.11 × 10−20 4.53 × 108

0.01 0.988 0.413 × 104 10.77 × 10−20 4.52 × 108

0.1 3.12 1.30 × 103 3.38 × 10−20 4.48 × 108

aScreened potential approximation.
bScreened+dipole.
cThree-body Born.

hypothetical, primordial, long-lived massive particle which
has its origins in the SUSY theory. The foundational idea that
X − could catalyze nuclear reactions in the BBN cycle goes
back to the original publications [10,20,21,69]. This idea was
subsequently developed in many stimulating studies; see for
example [15,16,70]. In Ref. [71] important few-body varia-
tional calculations were performed for nuclear reaction with
participation of X − in the theory of BBN:

(4He X −) + d → 6Li + X −. (27)

Reaction (27) could change (if X − exist) the fundamental
predictions for lithium during BBN. This is because of so-
called catalytic enhancement of 6Li production. In work [15]
it was found that the catalytic channel is more efficient than
the standard channel by factor ≈108. It was proved in [71]
with precise calculations. However, in this paper we consider
another process involving X −, namely the so-called p-d ex-
change reaction [10]. Apparently for the first time this reaction
was mentioned in Ref. [69], and first numerical estimations
of this process were done in work [10] with the following
examination of the d-d nuclear reaction induced by X −. In
this paper we carry out a few-body calculation for (2) based on
the set of coupled equations (8)–(9). In our computer program
we basically needed just to change the masses of the particles.
Our cross sections and rates are shown in Table II together
with the results of work [10]. The resulting rates λa, λb, and
λc in Table II we reproduced with the use of the corresponding
total cross sections, σt , from Fig. 1 of Ref. [10]. The well
known equation for the rate was used: λ = N0σtv, where N0

is the hydrogen density and v is the initial collision velocity
between d and (pX −).

To end of section we would like to mention another three-
charged-particle collision with participation of X −. This is the
reaction of the formation of (4He X −) with strong and long-
range Coulomb interaction in the output channel:

4He++ + (pX −) → (4HeX −) + p. (28)

This reaction was mentioned, for example in Ref. [16], and
is related to the 6Li formation problem (27). Therefore, it
would be very useful and important to estimate the total cross
section and the rate of the process (28). Our two component
few-body approach, Eqs. (8)–(9), can be applied in the same
manner as was done in paper [72].

IV. CONCLUSIONS AND OUTLOOK

In this paper, several different three-charged-particle sys-
tems were computed in a unified few-body approach. A
system of coupled two-component equations (8)–(9) or
(10)–(11) was applied together with a modified close-coupling
approximation technique (12)–(13). The advantage of this
approach over other methods is the independent formulation
of the two-body targets of the reactions, for instance, (dμ)
in the input channel and (p̄d) in the output channel in the
reaction (3). This distinctive property of the coupled integral-
differential equations allows us to avoid the overcompleteness
problems and provide accurate three-body asymptotes for
�1(�r23, �ρ1) and �2(�r13, �ρ2) [50].

In addition to the above, the method of the coupled
equations allows us to effectively incorporate the nuclear in-
teraction between the antiproton and deuterium nucleus in the
second output channel. We treat the Coulomb and Coulomb-
nuclear three-body systems with arbitrary masses, i.e., the
masses of the charged particles are taken as they are. We
do not apply any type of adiabatic approximations, when the
dynamics of heavy and light parts of the system are separated.
This makes it possible to carry out calculations of very differ-
ent three-body systems both in the case of reactions and in the
case of elastic scattering.

One of the main goals of this paper was to carry out
a detailed few-body treatment of the heavy-charge-particle
reactions (3) and (4) at low energies and investigate the influ-
ence of the strong nuclear interaction on the final state of these
reactions, i.e., the influence of the p̄d and p̄t short-range nu-
clear forces on the output parameters of (3) and (4). In the case
of the reaction (3) we demonstrated that this influence is quite
significant: up to 275%. Therefore, one can conclude that the
three-body reaction can be considered as a possible candi-
date for future experiments with participation of low-energy
antiprotons and muons in order to produce the antiprotonic
hydrogen atom ( p̄d) and study the nuclear interaction between
p̄ and d at low energies. In regard to the very interesting
( p̄t) system we carried only preliminary estimations of the
influence of the strong p̄t forces on the reaction outputs. It
was also found that the effect is significant.

There is another useful point related to the reactions (3)
and (4). It concerns the problem of the long-range part of the
strong N̄N interaction [22]. We assume that these forces and,
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for instance, isospin mixing effects can manifest themselves
in the antiprotonic atoms’ ( p̄d) and ( p̄t) radiative annihilation
[73]. In the case of the low-energy elastic scattering (1) we
obtained satisfactory results for the tangent of the scattering
phase δ(εc), i.e., K11. One can see from Table I that our six-
state 1s + 2s + 2p close-coupling approximation works very
well, especially at very low energies.

Regarding the charge-exchange reaction (2) involving the
superheavy X − particle we have also applied the six-state
approximation. The strong polarization forces have been in-
cluded in these calculations. As can be seen from Table II,
our results are close to those of work [10] performed in the
screened + dipole approximation. This fact allows us to hope
that it is possible to continue such calculations (as in the
current work) and apply the few-body dynamic equations to
the Coulombic reaction (28) with subsequent consideration of
the importance, in the catalyzed BBN theory [15,71], of the
lithium formation nuclear reaction (27).
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APPENDIX

It would be useful to rewrite Eqs. (8) and (9) in the follow-
ing compact form using notations of Eq. (5):

(
E + 1

2Mk
��ρk + 1

2μ j
��r j3 − Vj3

)
�i(�r j3, �ρk )

= (Vj3 + Vjk )�i′ (�rk3, �ρ j ), (A1)

where i �= i′ = 1, 2, M−1
j = m−1

j + (m3 + mk )−1, and μ−1
j =

m−1
3 + m−1

k , where j �= k = 1, 2. To separate the radial and
angular variables, we expand the wave function components
�i over the bipolar harmonics:

{Yλ(ρ̂) ⊗ Yl (r̂)}LM =
∑
μm

CLM
λμlmYλμ(ρ̂)Ylm(r̂), (A2)

where CLM
λμlm are Clebsh-Gordon coefficients and Ylm are

spherical harmonics [55,74]. If we substitute theexpansion of
the wave-function component,

�i(�r j3, �ρk ) =
∑
LMλl

�i
LMλl (ρk, r j3){Yλ(ρ̂k ) ⊗ Yl (r̂ j3)}LM,

into (A1), multiply by the appropriate biharmonic functions, and integrate over the corresponding angular coordinates of the
vectors �r j3 and �ρk , we obtain the following set of integral-differential equations for the case of central potentials:

[
E + 1

2Mkρ
2
k

{
∂

∂ρk

(
ρ2

k

∂

∂ρk

)
− λ(λ + 1)

}
+ 1

2μ j r2
j3

{
∂

∂r j3

(
r2

j3
∂

∂r j3

)
− l (l + 1)

}
− Vj3

]
�i

LMλl (ρk, r j3)

=
∫

d ρ̂k

∫
dr̂ j3

∑
λ′l ′

W (ii′ )LM
λlλ′l ′ �i′

LMλ′l ′ (ρ j, rk3), (A3)

where

W (ii′ )LM
λlλ′l ′ = {Yλ(ρ̂k ) ⊗ Yl (r̂ j3)}∗LM (Vj3 + Vjk ){Yλ′ (ρ̂ j ) ⊗ Yl ′ (r̂k3)}LM . (A4)

One-dimensional equations, convenient for numerical calculations, are obtained if we apply, for example, a modified close-
coupling approach, which consists of expanding each component of the wave function �i(�r j3, �ρk ) over the eigenfunctions of the
following subsystem Hamiltoninans:

ĥ j3 = − 1

2μ j
∇2

�r j3
+ Vj3(�r j3). (A5)

Therefore, we use the following expansion over a complete set of orthogonal atomic functions:

�i
LMλl (ρk, r j3) = 1

ρk

∑
n

f (i)LM
nlλ (ρk )R(i)

nl (r j3), (A6)

where functions R(i)
nl (r j3) with energy Ei

n are defined by the equation

[
Ei

n + 1

2μ j r2
j3

{
∂

∂r j3

(
r2

j3
∂

∂r j3

)
− l (l + 1)

}
− Vj3

]
R(i)

nl (r j3) = 0. (A7)
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Now by substituting Eq. (A6) into (A3), multiplying by the corresponding functions R(i)
nl (r j3) and integrating over r2

j3dr j3, we

obtain the following set of integral-differential equations for the unknown functions f (i)
nlλ(ρk ):

2Mk (E − Ei
n) f (i)

α (ρk ) +
[

∂2

∂ρ2
k

− λ(λ + 1)

ρ2
k

]
f (i)
α (ρk ) = 2Mk

∑
α

∫ ∞

0
dr j3r2

j3

∫
dr̂ j3

∫
d ρ̂kρkQii′

αα′ρ j f (i′ )
α′ (ρ j ), (A8)

where Qii′
αα′ = R(i)

nl (r j3)W (ii′ )LM
λlλ′l ′ R(i′ )

n′l ′ (rk3). In Eq. (A8) and in the following, α ≡ nlλ (α′ ≡ n′l ′λ′), and the redundant label LM
will be omitted. Equation (A8) is still not one dimensional, because α and α′ involve different frames of the Jacobi coordinates,

�ρ j = �r j3 − βk�rk3, �r j3 = 1

γ
(βk �ρk + �ρ j ), �r jk = 1

γ
(σ j �ρ j − σk �ρk ), (A9)

with the following mass coefficients:

βk = mk/(m3 + mk ), σk = 1 − βk, γ = 1 − βkβ j, j �= k = 1, 2. (A10)

It clearly demonstrates that the modulus of �ρ j depends on two vectors, over which integration on the right-hand side of Eq. (A8)
is performed. One can see from Eq. (20) �ρ j = γ �r j3 − βk �ρk . Therefore, in order to obtain a set of one-dimensional integral-
differential equations, corresponding to Eqs. (A8), we will carry out integration over variables {�ρ j, ρ̂k} rather than {�r j3, ρ̂k}. The
Jacobian of this transformation is J = γ −3. Thus, we obtain the following set of one-dimensional integral-differential equations:

2Mk
(
E − Ei

n

)
f (i)
α (ρk ) +

[
∂2

∂ρ2
k

− λ(λ + 1)

ρ2
k

]
f (i)
α (ρk ) = Mk

γ −3

∑
α′

∫ ∞

0
dρ jS

ii′
αα′ (ρ j, ρk ) f (i′ )

α′ (ρ j ), (A11)

where

Sii′
αα′ (ρ j, ρk ) = 2ρ jρk

∫
d ρ̂ j

∫
d ρ̂kR(i)

nl (r j3){Yλ(ρ̂k ) ⊗ Yl (r̂ j3)}∗LM (Vj3 + Vjk ){Yλ′ (ρ̂ j ) ⊗ Yl ′ (r̂k3)}LMR(i′ )
n′l ′ (rk3). (A12)

In Ref. [54] it was shown that the fourfold multiple integration in Eqs. (A12) leads to a one-dimensional integral, and the
expression (A12) could be determined for any orbital momentum value L as

Sii′
αα′ (ρ j, ρk ) = 4π [(2λ + 1)(2λ′ + 1)]

1
2

2L + 1

∫ π

0
dω sin ωρ jρkR(i)

nl (r j3)[Vj3(r j3) + Vjk (r jk )]R(i′ )
n′l ′ (rk3)

×
∑
mm′

DL
mm′ (0, ω, 0)CLm

λ0lmCLm′
λ′0l ′m′Ylm(ν j, π )Y ∗

l ′m′ (νk, π ), (A13)

where DL
mm′ (0, ω, 0) are Wigner functions, ω is the angle between �ρ j and �ρk , ν j is the angle between �rk3 and �ρ j , and νk is the

angle between �r j3 and �ρk . As a result we obtain an infinite set of one-dimensional coupled integral-differential equations for the
unknown functions f 1

α (ρ1) and f 2
α′ (ρ2) [54]:

[(
ki

n

)2 + ∂2

∂ρ2
i

− λ(λ + 1)

ρ2
i

]
f (i)
α (ρi ) =

∑
α′

∫ ∞

0
dρi′ f (i′ )

α′ (ρi′ )

√
(2λ + 1)(2λ′ + 1)

(2L + 1)2

∫ π

0
dω sin ωR(i)

nl (ri′3)

× gi(Vi′3(ri′3) + Vii′ (rii′ ))R
(i′ )
n′l ′ (ri3)ρi′ρi

∑
mm′

DL
mm′ (0, ω, 0)CLm

λ0lmCLm′
λ′0l ′m′

× Ylm(νi, π )Y ∗
l ′m′ (νi′ , π ), (A14)

where L is the total angular momentum of the three-body system and α ≡ (nlλ) are quantum numbers of a three-body state and

gi = 4πMi

γ 3
, ki

n =
√

2Mi
(
E − Ei′

n

)
, γ = 1 − mimi′

(mi + m3)(mi′ + m3)
, i �= i′ = 1, 2. (A15)

where M1 = m1(m2 + m3)/(m1 + m2 + m3), M2 = m2(m1 + m3)/(m1 + m2 + m3), are the reduced masses. We note the useful
relations sin νi = ρi′ sin ω/γ ri′3 and cos νi = (βiρi + ρi′ cos ω)/γ ri′3.

In the case of reactions (2), (3), and (4), we use the following boundary conditions. First, we impose

f (i)
nl (0) ∼ 0, (A16)

and as a second step we apply the well known K̂-matrix formalism. This method has already been applied for the solution
of three-body problems in the framework of a coordinate-space equation [67,68]. For our three-body reaction problems with
i + ( j3) as the initial state in the asymptotic region it considers two solutions to Eq. (A14) satisfying the following boundary
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conditions:

f (i)
1s (ρi ) ∼

ρi→+∞ sin
(
k(i)

n=1ρi
) + Kii cos

(
k(i)

n=1ρi
)
,

f ( j)
1s (ρ j ) ∼

ρ j→+∞
√

vi/v jKi j cos
(
k( j)

n=1ρ j
)
, (A17)

where (i �= j = 1, 2), Ki j are the appropriate coefficients, and vi is the velocity in channel i. With the following change of the
variables in the Eq. (A14):

f(i)
1s (ρi ) = f (i)

1s (ρi ) − sin
(
k(i)

n=1ρi
)
, (A18)

we get two sets of inhomogeneous equations which we solve numerically. The coefficients Ki j can be obtained from a numerical
solution of the coupled equations. The cross sections are given by the following formula:

σi j = 4π

k(i)2
n=1

∣∣∣∣∣ K̂

1 − iK̂

∣∣∣∣∣
2

= 4π

k(i)2
n=1

δi jD2 + K2
i j

(D − 1)2 + (K11 + K22)2
, (A19)

where (i, j = 1, 2) refer to the two channels, D = K11K22 − K12K21, and i is the imaginary unit.
In order to compute the reaction cross sections, i.e., Eq. (A19), we have to solve numerically the set of integral-differential

equations (A14). The angular integrals in Eq. (A13) are independent of energy E , therefore we needed to compute them only
once. The subintegral expressions in (A13) have a complex dependence on the Jacobi coordinates ρi and ρi′ . To calculate
S(ii′ )

αα′ (ρi, ρi′ ) at different values of ρi and ρi′ an adaptable computer algorithm was applied together with the following mathemat-
ical substitution: cos ω = (x2 − β2

i ρ2
i − ρ2

i′ )/(2βiρiρi′ ). Therefore, the angle dependent part of Eq. (A13) can be written as the
following one-dimensional integral:

S(ii′ )
αα′ (ρi, ρi′ ) = 4π

βi

[(2λ + 1)(2λ′ + 1)]
1
2

2L + 1

∫ (βiρi+ρi′ )

|βiρi−ρi′ |
dxR(i)

nl (x)

[
−1 + x

rii′ (x)

]
R(i′ )

n′l ′ (ri3(x))

×
∑
mm′

DL
mm′ (0, ω(x), 0)CLm

λ0lmCLm′
λ′0l ′m′Ylm(νi(x), π )Y ∗

l ′m′ (νi′ (x), π ). (A20)

A special adaptive FORTRAN program was used in order to carry out the angle integration in (A20).
The set of truncated integral-differential equations (A14) is solved by a discretization procedure; i.e., on the right side of the

equations the integrals over ρ1 and ρ2 are replaced by sums using the trapezoidal rule, and the second-order partial derivatives
on the left side are discretized using a three-point rule [74]. As a result a set of linear equations for the unknown coefficients
f (i)
α (k) (k = 1, Np) can be derived:

[
k(1)2

n + D2
i j − λ(λ + 1)

ρ2
1i

]
f (1)
α (i) − M1

γ 3

Ns∑
α′=1

Np∑
j=1

w jS
(12)
αα′ (ρ1i, ρ2 j ) f (2)

α′ ( j) = 0, (A21)

−M2

γ 3

Ns∑
α=1

Np∑
j=1

w jS
(21)
α′α (ρ2i, ρ1 j ) f (1)

α ( j) +
[

k(2)2
n′ + D2

i j − λ′(λ′ + 1)

ρ2
2i

]
f (2)
α′ (i) = B21

α′ (i). (A22)

Here: coefficients w j are weights of the integration points ρ1i and ρ2i (i = 1, Np), Ns is the number of quantum states which are
taken into account in the expansion (A6). Further, D2

i j is the three-point numerical approximation for the second-order differential
operator: D2

i j fα (i) = [ fα (i − 1)δi−1, j − 2 fα (i)δi, j + fα (i + 1)δi+1, j]/�, where � is a step of the grid � = ρi+1 − ρi. The vector
B21

α′ (i) is

B(21)
α′ (i) = M2/γ

3
Np∑
j=1

w jS
(21)
α′1s0(i, j) sin

(
k( j)

n=1ρ j
)
, (A23)

and in symbolic-operator notation the set of linear Eqs. (A21)–(A22) has the following form [54]:

2×Ns∑
α′=1

Np∑
j=1

Aαα′ (i, j) �fα′ ( j) = �bα (i). (A24)

The discretized equations are subsequently solved by the Gauss elimination procedure. The second-order differential oper-
ators produce three diagonal submatrices. Also, from Eqs. (A21)–(A22) one can see that the matrix A should have a so-called
block-structure. There are four main blocks in the matrix: two of them related to the differential operators and other two to the
integral operators. Each of these blocks should have sub-blocks depending on the quantum numbers α = nlλ and α′ = n′l ′λ′.
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