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Few-nucleon scattering in pionless effective field theory
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We present a comprehensive theoretical study of low-energy few-nucleon scattering for systems with A � 4.
To this end, we utilize pionless effective field theory, which we employ at next-to-leading order. We show that at
this level the theory yields accurate predictions for the low-energy scattering parameters in all studied channels.
These predictions are on par with the best experimental evaluations and the available theoretical calculations. We
confirm the recent observation that a four-body force is needed at next-to-leading-order and find that for nuclear
systems it only appears in a single spin-isospin channel.
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I. INTRODUCTION

Effective field theories (EFTs) provide a thorough frame-
work for the study of low-energy physics. In nuclear physics,
EFTs are low-energy manifestations of the underlying theory,
quantum chromodynamics (QCD). As such, they are formu-
lated in terms of baryons and mesons as the fundamental
degrees of freedom, rather than quarks and gluons, and are
constructed to obey the symmetries of QCD. For a recent
review see, e.g., [1].

Of particular interest is pionless EFT (/πEFT), which is the
simplest possible nuclear EFT, having the mesons integrated
out leaving the nucleons as the only degrees of freedom.
/πEFT is best suited to describe very low-energy processes
and to explore universal physics, i.e., phenomena which are
not sensitive to the details of the interparticle interaction and
are therefore common to systems as different as nucleons and
atoms. As the deuteron binding energy is unnaturally small,
light nuclei belong to a universality class where the scattering
length is much larger than the interaction range. For a large
and positive scattering length, a bound dimer exists whose
energy is almost entirely determined by the scattering length
alone. Besides the deuteron, another natural example of such
a dimer is the He2 molecule.

Behind its apparent simplicity, /πEFT, as is implied here,
exhibits some peculiar features, such as (a) the Wigner bound,
which limits the possible values of the effective range and thus
forces a perturbative treatment of all but leading-order (LO)
terms [2]; (b) the Thomas collapse, compelling the promotion
of a three-body contact term to LO [3,4]; (c) the Efimov effect
[5], dictating the three-body states binding energy; and (d)
the appearance of a four-body force at next-to-leading-order
(NLO) [6]. Here, we would like to test the utility of /πEFT,
comparing the predictions of the theory at NLO to experi-
mentally measured low-energy two-clusters s-wave scattering
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data of reactions involving A � 4 nucleons. To be more spe-
cific, as we use the A = 2 nucleon-nucleon (N + N) scattering
lengths and effective ranges, as well as the triton binding
energy, to fit the low-energy constants (LECs) of the theory,
we test /πEFT ability to predict the three-body N + 2N , and
the four-body 2N + 2N , and N + 3N low-energy scattering
parameters.

The application of /πEFT to study low-energy scattering
dates back to its first days [7,8]. However, so far, published
works were predominantly limited to nuclear systems with
A � 3, i.e., nucleon-nucleon or nucleon-deuteron scattering.
Here, we extend these studies considering perturbative in-
sertion of next-to-leading order (NLO) terms and describing
most s-wave scattering processes with A � 4.

When the scattering length is much larger than the in-
teraction range, three identical bosons in an s wave exhibit
the Efimov effect. In the corresponding spin-half fermionic
system, three particles in a relative s wave are blocked due to
the Pauli principle, and therefore Efimov effect appears only
in higher partial waves [9–11]. Scattering of an atom from
fermionic dimer, however, exhibits universal characteristic,
and the atom-dimer scattering length aa−dm is determined by
the atom-atom scattering length aaa, aa−dm ≈ 1.2aaa [12–14].
Moreover, the dimer-dimer scattering length is also universal
and adm−dm ≈ 0.6aaa [15].

In nuclear physics, where the nucleons carry two internal
degrees of freedom, spin and isospin, both phenomena are
relevant. In some cases, three or four nucleons have sym-
metric spatial wave functions and therefore behave like a
bosonic system, while in other cases they have an antisym-
metric one and thus behave like fermions, depending on the
quantum numbers. To see that, let us consider three nucleons
with zero total orbital angular momentum. In the spin-isospin
S, I = (1/2, 1/2) channel, the nucleons behave like bosons
and therefore bound Efimovian three-body state exists and a
three-body force is to be introduced to set its energy [4]. In
contrast, neutron-deuteron scattering in the S, I = (3/2, 1/2)
channel is subject to Pauli blocking, and therefore universal
fermionic behavior is expected [12].
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This is also the case for the four nucleon system. While
deuteron-deuteron scattering in the S, I = (2, 0) channel has
a fermionic nature, the S, I = (0, 0) channel is bosonic and
a bound four-body state exists, i.e., 4He. This channel is
of particular interest since it was shown recently that for a
bosonic system, a four-body force must be introduced at NLO
to regularize the system [6]. It is therefore interesting to check
if such a force is needed also in the nuclear case, and if so in
which channels.

Several studies have applied /πEFT to the nd scattering
[7,8,16–24]. The spin-quartet s-wave channel was studied in
Refs. [7,8], resuming effective-range corrections to all orders.
The calculated nd scattering length was found to be 6.33 fm,
in excellent agreement with the experimental value 6.35(2) fm
[25]. The calculated phase shifts agreed with the phase shift
analysis of Refs. [26,27]. In the S, I = (1/2, 1/2) channel, a
three-body parameter is needed and can be fitted, for example,
to the triton binding energy. Perturbative range corrections in
this channel were considered in Ref. [18], and they were fol-
lowed by calculations of higher-order contributions in [19,20].
A fully perturbative study of nd scattering up to N 2LO was
done in Ref. [21], in a way that does not require the calculation
of the full off-shell scattering amplitude, needed in earlier
studies [28,29]. In the presence of Coulomb interaction, pd
scattering was studied as well [30–32].

So far, four-nucleon scattering has not been explored ex-
tensively within the framework of /πEFT. The p3He and nt
scattering lengths were calculated at LO in Ref. [33]. While
the p 3He results were burdened by relatively large theoretical
errors, the predicted nt scattering lengths were found to be
somewhat smaller than a compilation of phenomenological
results presented there. A calculation of the spin-singlet n 3He
scattering length was performed in Ref. [34] using a nonper-
turbative /πEFT NLO potential.

Here, we present a systematic study of low-energy nu-
clear scattering up to A � 4. We calculate scattering lengths
and effective ranges for all available spin-isospin channels,
to second order in /πEFT. To this end, we apply a shallow
harmonic oscillator trap to the studied system, and extract the
corresponding scattering parameters using the Busch formula
[35,36]. Bound-state energies and wave functions with and
without the trap are obtained employing a correlated Gaussian
basis with the stochastic variational method (SVM) [37].

The paper starts with a short description of /πEFT in Sec. II.
In Sec. III we present the numerical tools applied in our work.
The fitting of /πEFT low-energy constants is briefly described
in Sec. IV. The results for different few-nucleons channels are
presented in Sec. V, followed by our conclusions in Sec. VI.

II. MODEL

In this work, we study the few-nucleons scattering in the
framework of /πEFT. The dynamical degrees of freedom are
nucleons, while pions, as well as other degrees of freedom, are
integrated out, and the corresponding physics is encapsulated
in the low energy constants.

Since EFT contains all terms consistent with the symme-
tries of the underlying theory, a power counting, i.e., a scheme
to determine which terms belong to each order of the theory,

must be introduced in order to restore its predictive power.
Naive power counting suggests only two-body s-wave contact
interactions at LO, and therefore the relevant Lagrangian den-
sity should be

LLO = N†

(
i∂0 + ∇2

2m

)
N − 1

2
C(0)

0

(
N†P̂0,1

2b N
)2

− 1

2
C(0)

1

(
N†P̂1,0

2b N
)2

. (1)

Here, we set h̄ = 1, N is the nucleon field operator and m
its mass, P̂S,I

2b is a projection operator on a two-body channel
with spin S and isospin I , C(0)

0 and C(0)
1 are the low-energy

constants.
In the three-body spin-isospin S, I = (1/2, 1/2) channel all

nucleons can occupy the s shell and the system collapses [3].
As a result, a three-body contact term must be introduced [4],

L(3b)
LO = − 1

6 D(0)
(
N†P̂1/2,1/2

3b N
)3

, (2)

where D(0) is the three-body LEC and P̂S,I
3b is a projection

operator into a tree-body spin-isospin channel.
At LO, the interaction is to be iterated, which is equivalent

to solving the nonrelativistic Schrödinger equation with the
Hamiltonian

HLO = − 1

2m

∑
i

∇2
i + V (0)

2 + V (0)
3 , (3)

where V (0)
2 and V (0)

3 are LO two- and three-body contact
potentials, respectively.

The singular nature of contact interactions requires regular-
ization, which is performed here by applying a local Gaussian
regulator that suppresses momenta above an ultraviolet cutoff.
Physical quantities predicted by the theory have to be inde-
pendent of the cutoff since it is not physical quantity. This
is achieved via renormalization, i.e., by fitting the values of
the LECs to run with the cutoff in such a way that a chosen
set of physical observables is reproduced. The regularized LO
two-body potential then is

V (0)
2 =

∑
i< j

(
C(0)

0 P̂0,1
i j + C(0)

1 P̂1,0
i j

)
gλ(ri j ), (4)

and the three-body potential is

V (0)
3 = D(0)

0

∑
i< j<k

∑
cyc

P̂1/2,1/2
i jk gλ(ri j )gλ(rik ), (5)

where gλ(r) ∝ exp(−λ2r2/4) is the chosen regulator, cyc de-
notes the cyclic sum, and ri j = |ri − r j | is a relative distance
between nucleons i and j. As λ → ∞, the contact nature of
the interaction is recovered.

The next-to-leading order contains range corrections, with
new LECs C(1)

2 and C(1)
3 to be determined from two-body
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observables. The corresponding potential can be written as

V (1)
2 =

∑
i< j

(
C(1)

2 P̂0,1
i j + C(1)

3 P̂1,0
i j

)(
gλ(ri j )

−→∇ 2
i j + ←−∇ 2

i jgλ(ri j )
)
.

(6)

Unlike the LO interaction, which has to be treated nonpertur-
batively, NLO consists of a single insertion of the potential.
Renormalization cannot be achieved for a positive effective
range when an inconsistent subset of higher-order corrections
is included by the nonperturbative solution of the Schrödinger
equation with the NLO potential [38]. Note that only re-
cent studies of /πEFT scattering indeed treat NLO terms
perturbatively.

Perturbative inclusion of range corrections, Eq. (6),
changes renormalization conditions used at LO. As a result
one has to consider perturbative inclusion of counterterms in
a form equivalent to Eqs. (4) and (5). This ensures that the
renormalization conditions applied at LO remain satisfied at
NLO and it leads to three other LECs—C(1)

1 , C(1)
2 , and D(1)

0 .
For a bosonic case, it was shown recently that a contact

four-body term has to be added at NLO [6]. In this work, we
demonstrate that indeed this is also the case for nuclei and a
four-body term has to be considered in the S, I = (0, 0) four-
body channel to obtain reasonable results at this order. Here,
we use hyper-radial four-body force

V4 = E (1)
0

∑
i< j<k<l

P̂0,0
i jkl gλ(ri jkl ), (7)

where ri jkl is the four particles hyper-radius, r2
i jkl =∑

μ<ν∈{i, j,k,l} r2
μν , and E (1)

0 denotes four-body LEC. Note, that
the more economical hyper-radial form of the four-body force
was chosen over the one using a cyclic sum which includes
many permutations.

III. METHOD

Few-body bound-state solutions are obtained by expanding
the corresponding wave function � in a correlated Gaussian
basis,

� =
∑

i

ci Â exp

(
−1

2
xT Aix

)
χ i

SMS
ξ i

IMI
, (8)

where the operator Â ensures antisymmetrization between nu-
cleons, xT = (x1, . . . , xA−1) is a set of Jacobi coordinates, and
χ i

SMS
and ξ i

IMI
stand for the relevant spin and isospin parts, re-

spectively. Here, Ai is an (A − 1) × (A − 1) positive-definite
symmetric matrix with A(A − 1)/2 nonlinear parameters.
Both bound-state energies and variational parameters ci are
obtained by diagonalizing the Hamiltonian matrix. In order
to choose basis states with the most appropriate nonlinear
parameters, we use the SVM [37], which was proved to offer
an effective procedure to optimize the finite basis set, yielding
a very accurate description of bound states.

Scattering states are not compact in space, which makes
them more difficult to calculate. As a result, it might be easier
to extract scattering parameters from bound-state calculations.
To do so, one can apply periodic boundary conditions to
the system at hand, calculate the discrete energies for a few

box sizes, and then use the Lüscher formulas to extract the
scattering parameters in free space [39].

A similar approach, which we use here, is to trap the
studied nuclear A-body system in a harmonic oscillator (HO)
potential

VHO(r) = m

2A
ω2

∑
i< j

(ri − r j )
2 (9)

with oscillator frequency ω. Consider the scattering of two
bound subclusters B and C, and using a trap with length
bHO = √

2/(mω) much larger than the other length scales of
the system, the subclusters then can be considered as point-
like particles. As a result, one can match the asymptotic part
of the trapped wave function to the known solution of two
trapped particles with a short-range interaction. The BC phase
shifts δBC at relative momentum k then can be extracted using
the Busch formula [35,36]

−
√

4μω
�(3/4 − εn

ω/2ω)

�(1/4 − εn
ω/2ω)

= k cot δBC, (10)

where μ = mBmC/(mB + mC ) is the BC reduced mass, �(x)
is the Gamma function, k = √

2μεn
ω, and εn

ω = En
ω(A) −

Eω(B) − Eω(C) is the nth excited state energy of the
trapped A-body system with respect to the B + C thresh-
old. Here, bound-state energies Eω(B), Eω(C), and En

ω(A)
are calculated using the SVM. Throughout this work BC ∈
{NN, nd, nt, n3He, dd} and all phase shifts are extracted ap-
plying HO trap lengths 15 fm � bHO � 50 fm.

Note that one should consider energy levels above the
trapped B + C threshold disregarding possible BC bound
states. If there are any higher thresholds corresponding to
further disintegration of B or C subclusters we select only
such levels which correspond to BC scattering in the HO
trap.

The scattering length aBC and effective range rBC then result
from fitting the calculated phase shifts with the effective range
expansion (ERE)

k cot δBC = − 1
aBC

+ 1
2 rBCk2 + . . . . (11)

Next-to-leading order bound-state energies are obtained con-
sidering a single insertion of the NLO potential. Using
first-order perturbation theory,

ENLO = ELO + 〈�LO|V NLO|�LO〉
〈�LO|�LO〉 , (12)

where V NLO stands for the sum of all NLO potential terms
and �LO is the LO bound-state wave function. Scattering
predictions at NLO are calculated by changing the trapped
energies, using first-order perturbation theory, Eq. (12), and
then applying Eq. (10) to extract the scattering parameters
[40,41]. This way one can avoid calculating the off-shell
scattering matrix while still taking NLO in a perturbative
way.

Since Eq. (10) relies on the difference between energies in
shallow traps, the corresponding values should be calculated
with high precision. To do so we first use SVM to build
several basis sets, each optimized for different trap lengths
and cutoffs. These basis sets are then joined into a larger basis
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FIG. 1. (a) The deuteron binding energy as a function of the cutoff λ. The BLO
2 (SVM) and BNLO

2 (SVM) denote LO and NLO binding
energies calculated using SVM. The BLO

2 (analyt) and BNLO
2 (analyt) values are predictions of Eq. (13). (b) The 4He binding energy as a function

of the cutoff λ. The BLO
4 (SVM) and BNLO

4 (SVM; no 4b) denote LO and NLO binding energies calculated using SVM with no four-body
force considered at NLO. The BLO

4 (SVM; ∞) stands for LO /πEFT binding energy extrapolated to λ → ∞ using B4(λ) = B4(∞) + α/λ

function. The Bfit
4 shows experimental 4He binding energy with Coulomb energy subtracted which is used to fix the NLO four-body force. The

experimental triton binding energy Bexp
3 is shown for comparison.

while omitting those states which are nearly linear dependent
to maintain the numerical stability [42]. Checking the conver-
gence of the bound-state energies En

ω(A), Eω(B), and Eω(C),
as well as NLO expectation values with an increasing amount
of basis states, we verify that the overall accuracy is below
10−4 MeV.

IV. FITTING THE EFT

Setting the numerical tools, we can fit the /πEFT LECs to
reproduce relevant experimental observables.

The LO potential, Eq. (3), has two two-body LECs,
C(0)

0 and C(0)
1 , corresponding to two s-wave NN channels,

spin-singlet (1S0), and spin-triplet (3S1). We fit these LECs
to reproduce the experimental spin-singlet neutron-neutron
scattering length a0

nn = −18.95 fm [43,44] and spin-triplet
proton-neutron scattering length a1

pn = 5.419 fm [45], respec-
tively. Since LO terms are iterated to all orders, one can apply
standard tools to calculate the scattering length; we use the
variable phase method [46] as well as extracted it from phase
shifts calculated with the Numerov method.

At NLO, each two-body channel has a new momentum-
dependent term, Eq. (6), thus the effective ranges can be
reproduced as well. Since NLO terms have to be treated
perturbatively, we utilize the distorted-wave Born approxi-
mation (DWBA) to fit the LECs. To preserve leading order
renormalization conditions, we consider a perturbative cor-
rection to the LO interaction. This results in two LECs in
the NN 1S0 channel, C(1)

0 and C(1)
2 , and two LECs in the

NN 3S1 channel, C(1)
1 and C(1)

3 , fitted to reproduce experimen-
tal neutron-neutron spin-singlet effective range r0

nn = 2.75
fm [47] and proton-neutron spin-triplet effective range r1

pn =
1.753 fm [45], respectively, while keeping the same values of
scattering lengths as have been fitted at LO.

As we fit the two-body potential to scattering data, the
deuteron binding energy B2 is a prediction of the EFT. In the
left panel of Fig. 1 we show LO and NLO B2 values calculated
via SVM as a function of the cutoff. For zero-range attractive

interaction, the LO and NLO deuteron binding energy can be
calculated analytically

BLO
2 = 1

m
(
a1

NN

)2 , BNLO
2 = BLO

2

(
1 + r1

NN

a1
NN

)
. (13)

Corresponding binding energy values are shown as red (LO)
and blue (NLO) dotted lines in Fig. 1(a). Clearly, our SVM
results converge to these values as λ −→ ∞.

To constrain the LO three-body term we use SVM to solve
for the triton binding energy and fit its D(0)

0 LEC to reproduce
the experimental value, B3 = 8.482 MeV [48]. Although no
new three-body term appears at NLO, the LO term has to
be corrected by introducing a three-body counterterm. Using
the LO triton wave function, the corresponding LEC D(1)

0 is
fitted perturbatively keeping the NLO triton binding energy
at its experimental value, while inserting the two-body NLO
interaction.

At LO, the 4He binding energy B4 is correlated to that of
the triton, and thus no four-body force is needed. However,
it was shown recently [6] that this is not the case at NLO
for a bosonic system, where a contact four-body term has
to be added to regularize the four boson system. Here, we
show that this is also the case for nuclei. Figure 1(b) shows
B4 as a function of the cutoff. The LO results, calculated
via SVM, indeed converge at large λs to a reasonable value.
However, the perturbative inclusion of NLO corrections with-
out the four-body force gives much smaller binding energy.
One should notice that for λ � 10 fm−1 such NLO corrections
induce change larger than 30% with respect to the LO result
which casts certain doubts on the validity of a perturbative
approach. Furthermore, while it is generally expected that
residual cutoff dependence will decrease with the inclusion of
higher orders, our findings indicate the opposite trend. This
applies not only to the results presented here, but also to
similar results for N + 3N scattering in the same channel. This
reveals the necessity of a four-body force, Eq. (7), at NLO. Its
LEC E (1)

0 is perturbatively fitted, using SVM LO 4He wave
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FIG. 2. Left side: Spin-singlet NN scattering length a0
NN (a) and effective range r0

NN (b) values extracted from LO (red) and NLO (blue)
phase shifts calculated via Busch formula, Eq. (10), as a function of increasing momentum cutoff λ. Dotted lines show experimental a0

NN and
r0

NN constraints used to fix LO and NLO LECs. Black dots stand for LO r0
NN calculated via the Numerov algorithm. All LO Busch results are

slightly shifted to the right in order to avoid complete overlap by displaying Busch NLO a0
NN and Numerov LO r0

NN results. Right side: The
same as in the left panel but for spin-triplet NN channel.

function to get B4 = 29.046 MeV [49], corresponding to the
experimental value with Coulombic energy subtracted.

V. RESULTS

Equipped with the tools needed to study few-nucleon elas-
tic scattering, we performed accurate calculations for A � 4
nuclear systems within LO and NLO /πEFT. Considering a
wide range of momentum cutoffs λ ∈ [1, 10] fm−1 we assess
the cutoff dependence of our results, which also enable us
to estimate the truncation error at each order by the residual
cutoff dependence [50]. Our predictions are then thoroughly
compared to the available experimental data.

A. Two nucleons

To check our numerical procedure, we consider two-
nucleon s-wave scattering in the 1S0 and 3S1 channels. As
mentioned above, corresponding experimental values of scat-
tering lengths and effective ranges are used as an input to
fit LO and NLO two-body LECs, respectively. We calculate
here the low-energy scattering parameters from the phase shift
extracted from SVM energies in a harmonic trap using the
Busch formula.

In Figs. 2(a) and 2(b) we show the NN spin-singlet scatter-
ing length and effective range values, respectively, calculated
using the Busch formula as a function of the momentum
cutoff λ. Equivalent results for spin-triplet channel are in
Figs. 2(c) and 2(d). For LO /πEFT potential, we obtain cutoff
independent scattering length values in agreement with exper-
imental constraints used in the LO fit. As we approach the
limit of zero-range interaction λ → ∞, the effective ranges
r0

NN and r1
NN converge to zero. Direct comparison between

their residual values calculated at finite λ ∈ [1, 10] fm−1 using
the Busch formula and those extracted using the Numerov
algorithm reveals basically identical results.

Including perturbative NLO terms into the Busch formula
yields the same values of scattering lengths as at LO. Cal-
culated effective ranges, r0

NN and r1
NN , are at NLO cutoff

independent and in agreement with corresponding experimen-
tal values which have been used to fix C(1)

0 , C(1)
1 , C(1)

2 , and C(1)
3

LECs via the distorted-wave Born approximation.

B. Three nucleons

For a system of three nucleons, there are two spin-isospin
channels S, I = (1/2, 1/2) (doublet) and S, I = (3/2, 1/2)
(quartet) which describe s-wave elastic scattering between
deuteron bound state and the remaining nucleon. In all other
channels, there is no two-body bound state.

1. Doublet channel (S = 1/2)

In the spin-doublet channel, all nucleons are allowed to
occupy the s shell, and thus a three-body repulsive force is
needed to prevent the Thomas collapse [3,4].

A characteristic feature here is the presence of a node
in the S matrix located close to the threshold. This leads
to an anomalous behavior of corresponding scattering phase
shifts: once displayed in terms of k cot δ1/2

nd as a function of
nd relative momentum squared k2 they are dominated by
the presence of a pole and conventional ERE does not ap-
ply. Hence, one must consider the modified effective range
expansion [26]

k cot δ1/2
nd = −A + B

2
k2 − C

1 + Dk2
+ . . . , (14)

where a1/2
nd = 1/(A + C), r1/2

nd = B, and the last term accounts
for a pole position at k2 = −1/D.

We calculate the spin-doublet nd scattering phase shifts at
LO and NLO for different momentum cutoffs λ. Inspection
of the corresponding k cot δ1/2

nd values reveals considerable
dependence on the nd relative momentum k2 in agreement
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FIG. 3. Left side: Spin-doublet nd scattering lengths a1/2
nd (a) and effective ranges r1/2

nd (b) at LO (red) and NLO (blue), extracted using
modified ERE, Eq. (14), as a function of increasing momentum cutoff λ. (c) Possible LO (red) and NLO (blue) k cot δ1/2

nd values suggested by
cutoff variation for λ ∈ [1.25, 10] fm−1. Black dots represent experimental phase shifts from Ref. [26], the k2 < 0 point relates to the triton
bound state. A dashed black vertical line marks the deuteron breakup threshold.

with the pole structure assumed in Eq. (14). In order to explore
the effect of the pole on the nd scattering, we fit calculated
LO and NLO k cot δ1/2

nd values using Eq. (14). At LO, the
pole position moves quite rapidly with an increasing cutoff
from the subthreshold region k2 < 0 above the nd threshold
k2 > 0 and starts to converge at λ � 4 fm−1. The inclusion
of NLO corrections stabilizes the pole position just below the
nd threshold. In Fig. 3(c) we show possible k cot δ1/2

nd values
given by a residual cutoff dependence for λ ∈ [1.25, 10] fm−1.
One can see that once NLO corrections are included, a good
agreement of our results with the experimental data [26] is
achieved.

The LO and NLO a1/2
nd and r1/2

nd values, extracted from
the fit via Eq. (14), are shown as a function of the cutoff in
Figs. 3(a) and 3(b), respectively. Larger uncertainties in LO
r1/2

nd results are induced by the dominance of the pole term in
the modified ERE in a small momentum region between the
nd threshold and the deuteron breakup threshold. Consider-
ing residual cutoff variation for λ ∈ [1.25, 10] fm−1 and the
numerical accuracy of our results, we obtain

LO : a1/2
nd = −0.9(1.5) fm, r1/2

nd = 1.20(26) fm,

NLO : a1/2
nd = 0.92(29) fm, r1/2

nd = 1.74(33) fm.

Having access to the fitted parameters of Eq. (14), we
search for roots of the equation k cot δ1/2

nd − ik = 0. This pro-
vides us with a momentum γ

1/2
nd of the first triton excited

state which we find in a form of near-threshold virtual state
(Re(γ 1/2

nd ) = 0; Im(γ 1/2
nd ) < 0). In Fig. 4 we show Im(γ 1/2

nd )
results at LO and NLO as a function of λ. Including NLO
corrections largely suppresses a residual cutoff dependence.
Taking into account numerical accuracy and λ variation
we obtain at LO Im(γ 1/2

nd ) = 0.117(19) fm−1 and at NLO
Im(γ 1/2

nd ) = 0.1271(39) fm−1, corresponding to energies of
E1/2

nd = −0.43(14) MeV and E1/2
nd = −0.503(31) MeV, re-

spectively. Our results agree rather well with LO /πEFT

prediction E1/2
nd = −0.574 MeV of Ref. [24] and energy pre-

dicted by a separable potential model E1/2
nd = −0.48 MeV

[51].

2. Quartet channel (S = 3/2)

In the spin-quartet channel, two nucleons are allowed to oc-
cupy the s shell forming S = 1 deuteron bound state. The third
nucleon is Pauli blocked preventing Thomas collapse and thus
no three-body repulsive force is necessary. Moreover, LO
and NLO potentials, Eqs. (4),(6), contribute to this channel
only through s-wave spin-triplet two-body interaction which
provides us with a resemblance to a fermionic atom-dimer
scattering.

The LO nd spin-quartet phase shifts k cot δ3/2
nd in the zero-

range limit can be obtained straightforwardly solving the

FIG. 4. Imaginary part of the triton virtual state momentum
Im(γ 1/2

nd ) as a function of momentum cutoff λ obtained as a
root of k cot δ1/2

nd − ik = 0. Here, k cot δ1/2
nd is represented by modified

ERE, Eq. (14), and fitted to calculated LO (red) and NLO (blue) nd
phase shifts in S = 1/2 s-wave channel.
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FIG. 5. The same as Fig. 3, but for spin-quartet nd scattering. In (a) and (b), red dotted lines show STM [12] a3/2
nd and r3/2

nd zero-range
predictions. Blue dotted lines show a3/2

nd and r3/2
nd values calculated using universal fermionic atom-dimer relations in Eqs. (15) and (16). Black

error bars in (c) represent experimental phase shifts from Ref. [27]. The dotted black line in the same panel shows scattering prediction at the
zero-range limit obtained by solving the STM equation [12].

Skorniakov-Ter-Martirosian (STM) equation [12]. The corre-
sponding results are depicted using a black dotted curve in
Fig. 5(c). Starting at k = 0 calculated STM k cot δ3/2

nd values
first decrease with increasing k2 and then start to raise at very
small momentum value k2 ≈ 0.003 fm−2. This is a signature
of negative effective range as well as significantly restricted
convergence radius of ERE with two first terms.

Due to aforementioned behavior of s-wave spin-quartet
nd elastic scattering, we use larger harmonic oscillator trap
lengths up to bHO � 140 fm which allows us to extract
n − d S = 3/2 scattering phase shifts at very low relative
momenta down to k2 ≈ 0.0002 fm−2. The LO and NLO
scattering lengths a3/2

nd and effective ranges r3/2
nd are then ob-

tained fitting ERE, Eq. (11), to k cot δ3/2
nd values for k2 ∈

[0.0002, 0.002] fm−2. In Figs. 5(a) and 5(b) we present the
corresponding values as a function of momentum cutoff λ.
Considering again residual cutoff variation and numerical ac-
curacy of our predictions we get

LO : a3/2
nd = 6.355(25) fm, r3/2

nd = 1.71(85) fm,

NLO : a3/2
nd = 6.322(5) fm, r3/2

nd = 1.875(65) fm.

The red dotted lines in Figs. 5(a) and 5(b) show zero-
range LO nd spin-quartet scattering length and effective
range calculated using the STM. Apparently, our LO re-
sults converge to these values. Extrapolating [ f (λ) = f (∞) +
α/λ] LO results for λ � 7 fm−1 yields a3/2

nd (∞)/a1
NN =

1.17906(3) and r3/2
nd (∞)/a1

NN = −0.037(3) values which
agree with the STM prediction a3/2

nd (STM)/a1
NN = 1.179066

and r3/2
nd (STM)/a1

NN = −0.0383.
Our NLO results are compared to predictions of universal

relations for the fermionic atom-dimer scattering length aa−dm

and effective range ra−dm given, up to linear correction in
atom-atom effective range, by the atom-atom scattering pa-

rameters aaa and raa [12–14,52],

aa−dm

aaa
= 1.179066 − 0.03595

raa

aaa
, (15)

ra−dm

aaa
= −0.0383 + 1.0558

raa

aaa
. (16)

Using the NN spin-triplet scattering parameters this cor-
responds to a3/2

nd /a1
NN = 1.16743 and r3/2

nd /a1
NN = 0.30324.

As in the LO case we extrapolate our NLO results to
the zero-range limit obtaining a3/2

nd (∞)/a1
NN = 1.1666(8) and

r3/2
nd (∞)/a1

NN = 0.32(2) values which agree with the predic-
tions of Eqs. (15) and (16).

We would like to mention that not considering large
enough bHO in our LO calculations one can obtain phase shifts
in the momentum region k2 � 0.02 fm−2, where the corre-
sponding k cot δ3/2

nd behavior might seem linear as a function
of k2. This can be misinterpreted in terms of larger LO r3/2

nd
effective range contradicting the STM result. In fact, per-
forming λ → ∞ extrapolation of these “wrong” r3/2

nd values
leads to r3/2

nd (∞)/a1
NN = 0.082(2), in agreement with result

r3/2
nd (∞)/a1

NN = 0.08(1) of Ref. [53], where HO trap was
applied as well.

3. Zero-momentum nd scattering

So far our predictions of the s-wave nd elastic scatter-
ing have been compared to scarce experimental results of
Ref. [26]. In order to access experimental information for
zero-momentum, a1/2

nd and a3/2
nd in particular, several experi-

ments were performed which provide certain constraints on
the possible scattering length values (a1/2

nd ; a3/2
nd ).

In Fig. 6 we show the (a1/2
nd ; a3/2

nd ) plane with the experi-
mental constraints imposed by the following measurements:
size of a1/2

nd and a3/2
nd (grey) [54], a1/2

nd /a3/2
nd ratio (yellow)

[55], experimental value of nd zero-momentum total cross
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FIG. 6. The (a1/2
nd ; a3/2

nd ) plane with experimental constraints im-
posed by different measurements—size of a1/2

nd and a3/2
nd (grey)

[54], a1/2
nd /a3/2

nd ratio (yellow) [55], nd zero-momentum total cross-
section (pink) [25], and world average of experimental coherent
scattering length (green) [56]. Our /πEFT LO and NLO predictions
are shown by red and blue error bars, respectively.

section (pink) [25]

σ t
nd = 4π

[
1
3

(
a1/2

nd

)2 + 2
3

(
a3/2

nd

)2
]
, (17)

and the world average of experimental nd coherent scattering
length (green) [56]

ac
nd = 1

3 a1/2
nd + 2

3 a3/2
nd . (18)

Our LO and NLO predictions of (a1/2
nd ; a3/2

nd ) scattering lengths
are shown using red and blue error bars, respectively. Corre-
sponding uncertainties are induced by numerics and residual
λ ∈ [1.25, 10] fm−1 dependence of our results.

Our nd scattering length predictions can be further com-
pared to the values extracted from experimental data. The
modified ERE, Eq. (14), was used to fit experimental spin-
doublet nd phase shifts extracting scattering length a1/2

nd =
0.29 fm [26]. Somewhat larger experimental scattering length
a1/2

nd = 0.65(4) fm was extracted from zero-energy scatter-
ing measurements together with its spin-quartet equivalent
a3/2

nd = 6.35(2) fm [25]. Using a compilation of a3/2
nd theoret-

ical predictions a more precise a1/2
nd = 0.645 ± 0.003(exp) ±

0.007(theory) fm value was obtained from the world average
coherent scattering length [56].

C. Four nucleons

A system of four nucleons might exist in nine different
spin-isospin channels where both the total spin S and the
total isospin I can get any value from 0, 1, and 2. Among
these channels only S, I = (0, 0) allows all four nucleons to
occupy the s shell and it is solely this channel that contributes,
within our framework, to the 4He(0+) ground state. As shown

FIG. 7. The dd scattering length a5
dd (a) and effective range r5

dd

(b) in spin-isospin S, I = (2, 0) four-body channel at LO (red) and
NLO (blue) as a function of the momentum cutoff λ. Error bars
denote the numerical uncertainty of our results. Red and blue dot-
ted lines mark predicted dimer-dimer scattering parameters using
Eq. (19) for aaa, raa = (5.419, 0) fm and aaa, raa = (5.419, 1.753)
fm, respectively.

earlier, the inclusion of two- and three-body NLO corrections
to B4 leads to results outside of validity of perturbation theory
and which deviate from the experimental value. Following
Ref. [6], we assume that NLO cutoff invariance in a nuclear
case might be recovered by a perturbative inclusion of a four-
body force. However, it is not clear whether the remaining
S, I four-body channels are affected as well or the necessity
of four-body force remains pertinent only to the S, I = (0, 0)
channel with none of the nucleons being Pauli blocked.

In order to explore cutoff dependence we study s-wave
elastic 3 + 1 scattering in S, I = (0, 0), (1,0), (0,1), and (1,1)
four-body channels and 2 + 2 scattering in S, I = (2, 0) four-
body channel at LO and NLO /πEFT. Here, 2N and 3N
stand for the deuteron and triton ground state, respectively.
Remaining channels S, T = (0, 2), (1,2), (2,1), and (2,2) are
not considered in this work since they do not support partition
into two subclusters.

1. S=2 channel

The S, I = (2, 0) channel allows four-body partition into
two deuteron bound states. Here, we disregard Coulomb in-
teraction, consequently, we do not compare our results of S =
2 s-wave (5S2) dd elastic scattering to Refs. [57,58] where
Coulomb force enters strongly at low momenta. Instead, sim-
ilarly as for S = 3/2 nd scattering, at LO and NLO /πEFT
only s-wave NN spin-triplet interaction contributes and our
calculations can be analyzed through universality in fermionic
dimer-dimer scattering. The corresponding fermionic dimer-
dimer scattering length adm−dm and effective range rdm−dm can
be parametrized through the atom-atom scattering parameters
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FIG. 8. N3N scattering lengths aSI
N3N and effective ranges rSI

N3N at LO (red) and NLO (blue), as a function of increasing momentum cutoff
λ. Scattering parameters are shown for S, I = (0, 1), (1,1), (1,0), and (0,0) spin-isospin four-body channels. Error bars denote the numerical
uncertainty of our results.

aaa and raa by [15,59]

adm−dm

aaa
= 0.5986 + 0.105

raa

aaa
± 0.0005;

rdm−dm

aaa
= 0.133 + 0.51

raa

aaa
± 0.002. (19)

Here, we repeat the procedure already used to analyze spin-
quartet S = 3/2 nd scattering. For LO (zero range) NN
spin-triplet scattering parameters Eq. (19) yields adm−dm =
3.2438(5) fm and rdm−dm = 0.721(2) fm and for the NLO
case adm−dm = 3.4278(5) fm and rdm−dm = 1.615(2) fm. If
5S2 dd elastic scattering exists in a universality window,
i.e., range of validity of Eq. (19), we expect that calculated
LO and NLO deuteron-deuteron scattering parameters should
converge for λ → ∞ to these values of adm−dm and rdm−dm.

We calculate dd phase shifts in the 5S2 channel at LO and
NLO /πEFT. Corresponding scattering lengths add and effec-
tive ranges rdd are shown as a function of λ ∈ [1, 10] fm−1

in Figs. 7(a) and 7(b), respectively. We observe that both LO
and NLO predictions converge with increasing λ to adm−dm

and rdm−dm values predicted via Eq. (19). Our calculations
thus demonstrate that within /πEFT, elastic dd scattering in
the 5S2 channel is in line with the universal prediction of
fermionic dimer-dimer scattering of Refs. [15,59], moreover,

our NLO results show no requirement of four-body force in
this channel.

2. S=0 and S=1 channel

Moving to 3 + 1 scattering, we first check cutoff de-
pendence in S, I = (0, 0), (1,0), (0,1), and (1,1) four-body
channels. In Fig. 8 we show the scattering lengths and ef-
fective ranges extracted from the calculated s-wave N − 3N
phase shifts. We find that in S, I = (1, 0), (0,1), and (1,1) four-
body channels there is no requirement of additional four-body
force. In the S, I = (0, 0) channel the four-body force, Eq. (7),
is included and, as can be seen from the upper left panel of
Fig 8, our NLO results indeed converge with λ. The behavior
of a00

NN and r00
NN scattering parameters at small λ < 2 fm−1 can

be attributed to the passing of the first 0+ excited state of 4He
from the bound state region to the continuum.

With no Coulomb interaction, our N − 3N results in
Fig. 8 might be regarded as nt or n3He scattering. Adopting
full isospin symmetry the nt system might scatter either in
the S, I = (0, 1) (spin-singlet) or S, I = (1, 1) (spin-triplet)
four-body channel. For n3He, the corresponding s-wave
spin-singlet and spin-triplet scattering has contribution from
two four-body spin-isospin channels S, I = (0, 1) + (0, 0)
and S, I = (1, 1) + (1, 0), respectively. To the best of our
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FIG. 9. Left panel: The (a0
nt ; a1

nt ) plane with experimental constraints imposed by different measurements—size of coherent scattering
length ac

nt (1972) [60], (1981) [61], (1985) [62], and total cross section at zero momentum σ t
nt (1972) [60], σ t

nt (1980) [63]. Our /πEFT LO
and NLO predictions are shown by red and blue error bars, respectively. Right panel: The (a0

n3He
; a1

n3He
) plane with experimental constraints

imposed by different measurements—size of coherent scattering length ac
n3He

(1979) [68], (2004) [69], (2006) [70]; size of incoherent scattering
length ainc

n3He
(2002) [71], (2014) [72]; and total cross section at zero momentum σ t

n3He
(1977) [73]. Our a1

n3He
NLO prediction is represented by

a blue band. For references to individual theoretical predictions in both panels (black dots/error bars) see the text.

knowledge, there are no available s-wave low momentum
experimental phase shifts below the t/3He breakup threshold.
Consequently, only the zero momentum part of our results, in
terms of scattering lengths, will be compared to a collection
of available experimental data and theoretical works.

3. Zero momentum nt and n3He scattering

Unlike in the nd case, more unsettled situation persists in
zero-momentum nt and n3He scattering. Here, spin-singlet
(a0

N3N ) and spin-triplet (a1
N3N ) scattering lengths, N3N ∈

{nt, n3He}, are constrained by experimentally measured co-
herent scattering length

ac
N3N = 1

4 a0
N3N + 3

4 a1
N3N , (20)

incoherent scattering length

ainc
N3N =

√
3

4

[
a1

N3N − a0
N3N

]
, (21)

or the total cross section at zero momentum

σ t
N3N = 4π

[
1
4

(
a0

N3N

)2 + 3
4

(
a1

N3N

)2
]
. (22)

In the left panel of Fig. 9 we show the (a0
nt ; a1

nt ) plane with
shaded areas representing possible sets of scattering length
values suggested by experimentally measured ac

nt [60–62]
or σ t

nt [60,63]. As can be seen from the figure, experimen-
tal results are mostly in mutual disagreement or burdened
by a rather large experimental uncertainty. Adding to the
figure also theoretical predictions of microscopic four-body
calculations using AV18 NN interaction with and without
Urbana IX three-body force [64,65], and χEFT(N 3LO) NN
interaction with and without three-body χEFT(N 2LO) force
[66] suggests smaller area of possible (a0

n3H; a1
n3H). Interest-

ingly, scattering lengths extracted from the R-matrix analysis

of p3He scattering data [67] seem to be slightly shifted from
these theoretical results. At LO /πEFT the size of a0

nt and a1
nt

scattering lengths was predicted in Ref. [33], here, a rather
large theoretical uncertainty was assigned via momentum cut-
off variation between 2 and 8 fm−1. In the same work, the
author numerically demonstrated a correlation between the
triton binding energy B3 and (a0

nt , a1
n3H) where with decreas-

ing B3 the magnitude of scattering lengths grows. This is in
agreement with slightly shifted AV18 and chiral results with
no three-body force—disregarding the three-body interaction
in these calculations slightly underestimates experimental B3.

We extract nt s-wave scattering parameters in spin-singlet
and spin-triplet from our N − 3N calculations in S, I = (0, 1)
and S, I = (1, 1) four-body channels, respectively. Note that
within our approach B3 is used to renormalize a three-body
contact interaction, consequently, S, I = (1/2, 1/2) three-
body bound state (3N) is kept consistently fixed at triton
experimental binding energy both at LO and NLO. Taking
into account numerical errors and residual cutoff variation for
λ ∈ [1.25, 10] fm−1 we obtain scattering length values

LO : a0
nt = 3.42(50) fm, a1

nt = 3.06(42) fm,

NLO : a0
nt = 4.035(65) fm, a1

nt = 3.566(47) fm,

which are displayed by red (LO) and blue (NLO) error bars
in the left panel of Fig. 9. Our LO predictions are in agree-
ment with Ref. [33]. A slightly larger uncertainty of our
LO results is induced by a larger λ interval considered for
theoretical error assessment than in Ref. [33]. This error es-
timate is significantly reduced including subleading effective
range corrections. At NLO resulting a0

nt and a1
nt are predicted

in remarkable agreement with AV18 and χEFT microscopic
results with three-body forces included.

In the right panel of Fig. 9 we depict the (a0
n3He; a1

n3He)
plane where shaded areas denote possible sets of scattering
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length values suggested by experimental ac
n3He [68–70], ainc

n3He
[71,72], and σ t

n3He [73]. Similarly as in the n3H case some
experimental constraints are in mutual disagreement. There
are only few available theoretical results—microscopic cal-
culation using AV18 interaction with and without Urbana IX
three-body force and R-matrix analysis of p3He scattering
data [74].

In our /πEFT calculations of n3He scattering we fix
at NLO the ground state energy of the S, I = (1/2, 1/2)
three-body system at experimental B(3He) = 7.718 MeV
[48], hence we simulate the correct position of the
corresponding 3 + 1 threshold. The spin-triplet scattering
length is then calculated by isospin-averaging a1

n3He =√
1/2(a(1,0)

N3N )2 + 1/2(a(1,1)
N3N )2 over S, I = (1, 0) and (1,1) four-

body channels,

NLO : a1
n3He = 3.360(45) fm,

where the error is estimated in the same manner as in the case
of nt scattering. Our result is then depicted in the right panel of
Fig. 9 in a form of a blue horizontal band showing consistency
with the previous theoretical studies.

Not considering the Coulomb interaction introduces cer-
tain shortcomings into our description of spin-singlet n3He
scattering. First, t and 3He ground state energies are degen-
erate, which leads to degenerate pt and n 3He thresholds as
well. As a result, the position of the 0+

2 resonance in 4He is
not correctly reproduced. The same subsequently holds for
the low-energy n3He scattering in the S, I = (0, 0) four-body
channel which is strongly affected by the resonance position.
Therefore, we give here only our result for the isospin-triplet
S, I = (0, 1) component of the a0

n3He scattering length

NLO : a(0,1)
n3He = 4.171(82) fm, (23)

keeping in mind that its dominant I = 0 contribution has to
be determined in future studies with Coulomb interaction
included.

VI. CONCLUSION

We performed a thorough analysis of s-wave scattering
processes in A � 4 nuclear systems within the first two
orders of /πEFT. Using the stochastic variational method
we solved the few-body Schrödinger equation for nuclear
bound states both inside and outside the shallow harmonic
oscillator trap. This allowed us to extract s-wave scatter-
ing phase shifts using the Busch formula in all possible
A-body spin-isospin channels which support partition into two
subclusters.

Our EFT was fitted to six well-established experimental
parameters. At LO we fixed the two-body LECs using the
experimental nn spin-singlet and np spin-triplet scattering
lengths. The three-body LEC was fitted to the triton ground
state binding energy. NLO terms were included perturbatively.
At this order, LECs of two-body momentum-dependent inter-
action were constrained by the experimental effective ranges
in nn spin-singlet and np spin-triplet channels. In agreement
with the results of Ref. [6], we found it necessary to include
at NLO a four-body force to retain cutoff invariant predictions

once all four nucleons are allowed to occupy the s shell, i.e., in
the S, I = (0, 0) four-body channel. We thus have to include
one four-body LEC, which is fitted to the 0+ ground state
binding energy of 4He.

Using this theory, we calculated elastic nd , dd , nt , and
n3He s-wave scattering at LO and NLO /πEFT. For a wide
momentum cutoff interval λ ∈ [1, 10] fm−1 we numerically
demonstrated that all our predictions converge with increas-
ing cutoff once λ � mπ , i.e., when the momentum cutoff
is much larger than the breakup scale of the theory. Our
results further show that no NLO four-body force is needed
in the S, I = (0, 1), (1,0), (1,1), and (2,0) spin-isospin four-
body channels, while its inclusion in S, I = (0, 0) provides
cutoff invariant scattering predictions. The remaining S, I =
(0, 2), (1,2), (2,2), and (2,1) four-body channels were not
studied; however, it is reasonable to assume that since in
these channels at least two nucleons are Pauli blocked
from the s shell no four-body force will be needed as
well.

Despite the simplicity of the /πEFT approach, all our
NLO low energy scattering predictions are in remarkable
agreement with the available experimental data or results of
other interaction models. In particular, predicted nt scattering
lengths values basically coincide with results obtained with
the AV18+UIX potential [64,65] or χEFT(N 3LO) interaction
with N 2LO three-body force [66]. For clarity we summarize
our nd , nt , and n3He scattering length and effective range
predictions together with a calculated energy of the nd S =
1/2, I = 1/2 virtual state, and compare with the available
theoretical and experimental results in Table I.

The apparent shortcoming of our study is a lack of
Coulomb interaction. Its inclusion would allow us to compare
our predictions with more extensive pd , dd , p3H, or p3He
scattering data. The Coulomb interaction is, in particular,
important for a correct description of the p 3H and n 3He
threshold and the position of a narrow 0+

2 resonance in 4He.
In future work it would be interesting to study Coulomb in-
clusion alongside NLO corrections in A � 4 systems which,
to the best of our knowledge, have not been performed so far.

Our /πEFT calculations should be regarded as a stepping
stone towards a study of subleading corrections in heavier
nuclear systems beyond the s shell. While this work is the first
of its kind where effective range corrections are introduced
perturbatively in a four-body nuclear system, A � 5 nuclear
systems remain unexplored. One of the main advantages of
the Hamiltonian formalism, adopted in our calculations, is a
rather straightforward extension to p-wave scattering such as
n 3H or n 4He, strongly affected by the position of 4H and
5He resonances, or even to heavier nuclei. So far it has been
concluded that at LO nuclear systems beyond the s shell do
not retain bound states in the zero-range contact limit; instead,
they break into bound s-shell subclusters [78,79]. However,
as argued in Ref. [79], including subleading corrections might
change the outcome of LO calculations and bring these sys-
tems to the bound state region. It would be interesting to
explore to which extent this might be done considering NLO
terms.

The form of effective range corrections, methods, and
procedures outlined in this work are applicable beyond the
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TABLE I. Theoretical and experimental nd , nt , and n3He scattering length and effective range values in fm together with energies of
nd S = 1/2, I = 1/2 virtual state E 1/2

nd in MeV. We note that in some /πEFT works [16,18,19,22–24] three-body LEC(s) are fitted to reproduce
experimental scattering length a1/2

nd = 0.65(4) fm [25].

Scattering Values Exp/Model

nd a1/2
nd a3/2

nd

0.29 5.6 exp (nd phase shifts) [26]
0.65(4) 6.35(2) exp (extracted from σ t

nd and ac
nd ) [25]

0.645(3)(7) — exp ac
nd + collection of theor. a3/2

nd results [56]
1.304 6.346 AV18 [75]
0.636 6.437 AV18 + UIX [75]

— 6.33(10) /πEFT (NLO); nonperturbative [7]
— 6.7(7) /πEFT (NLO); nonperturbative [17]
— 6.354(20) /πEFT (N 2LO); partial resummation [20]
— 6.19(30) /πEFT (N 2LO); perturbative [21]

0.92(29) 6.322(5) This work /πEFT (NLO); perturbative
r1/2

nd r3/2
nd

1.7 — exp (nd phase shifts) [26]
— 1.8(1) /πEFT (N 2LO); partial resummation [20]

1.74(33) 1.875(65) This work /πEFT (NLO); perturbative
E 1/2

nd (virt.)
−0.48 separable potential [51]
−0.574 /πEFT (LO) [24]

−0.503(31) This work /πEFT (NLO); perturbative

nt a0
nt a1

nt

3.60(32) 3.10(23) /πEFT (LO) [33]
4.453 3.325 R-matrix (p + 3He) [67]
4.28 3.73 AV18 [64]

4.05(10) 3.595(5) AV18 + UIX [64,65]
4.171(63) 3.646(23) χEFT(N 3LO) (500 & 600) [66]
4.046(81) 3.533(26) χEFT(N3LO) + V3 N2LO (500 & 600) [66]
4.035(65) 3.566(47) This work /πEFT (NLO); perturbative

r0
nt r1

nt

2.08 1.72 AV18 + UIX [76]
2.117(10) 1.743(10) χEFT(N 3LO) (500 & 600) [77]
2.058(4) 1.709(6) χEFT(N3LO) + V3 N2LO (500 & 600) [77]
2.17(15) 1.76(41) This work /πEFT (NLO); perturbative

n3He a0
n3He

a1
n3He

7.790 3.448 AV18 [74]
7.629 3.311 AV18 + UIX [74]
6.98 3.20 R-matrix (p + 3He) [74]

7.5(6) — /πEFT (NLO); nonperturbative [34]
— 3.360(45) This work /πEFT (NLO); perturbative

r0
n3He

r1
n3He

— 1.83(28) This work /πEFT (NLO); perturbative

scope of nuclear systems. In fact, they might be used in an
analysis of LQCD data [80–83] or even in a study of more
exotic systems such as hypernuclei [84–87], and mesic nuclei
[88]. As might be seen in our work, including NLO terms
dramatically improves the predictive power of the theory and
the same outcome might be expected in these systems as well.
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