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Systematic analysis of the impacts of symmetry energy parameters on neutron star properties
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The impacts of various symmetry energy parameters on the properties of neutron stars (NSs) have been
recently investigated, and the outcomes are at variance, as summarized in Table III of Phys. Rev. D 106, 063005
(2022). We have systematically analyzed the correlations of slope and curvature parameters of symmetry energy
at the saturation density (ρ0 = 0.16 fm−3) with the tidal deformability and stellar radius of nonspinning neutron
stars in the mass range of 1.2–1.6 M� using a large set of minimally constrained equations of state (EoSs).
The EoSs at low densities correspond to the nucleonic matter and are constrained by empirical ranges of a
few low-order nuclear matter parameters from the finite nuclei data and the pure neutron matter EoS from
chiral effective field theory. The EoSs at high densities (ρ > 1.5–2ρ0) are obtained by a parametric form for
the speed of sound that satisfies the causality condition. Several factors affecting the correlations between the
NS properties and the individual symmetry energy parameters usually considered in the literature are explored.
These correlations are quite sensitive to the choice of the distributions of symmetry energy parameters and
their interdependence. But, variations of NS properties with the pressure of β-equilibrated matter at twice
the saturation density remain quite robust which may be due to the fact that the pressure depends on the
combination of multiple nuclear matter parameters that describe the symmetric nuclear matter as well as
the density dependence of the symmetry energy. Our results are practically insensitive to the behavior of EoS at
high densities.

DOI: 10.1103/PhysRevC.107.055804

I. INTRODUCTION

The equations of state (EoSs) of β-equilibrated charge neu-
tral matter and their connections to the properties of neutron
stars (NSs) have been studied for the last several decades
[1–3]. The precise knowledge of the properties of NS and
the data on heavy ion collisions may constrain the behav-
ior of EoSs at suprasaturation densities [4]. The radius and
tidal deformability from a population of neutron stars over
a wide range of mass (1–3 M�) would probe the EoS at
densities up to a few times (∼2–8) of the saturation density
ρ0 ≈ 0.16 fm−3 encountered at the center of finite nuclei.
The tidal deformability parameter of NS, which encodes the
information about the EoS has been inferred for the first
time from a gravitational wave event GW170817 observed
by the advanced-LIGO [5] and advanced-Virgo detectors
[6] from a binary neutron star (BNS) merger with a total
mass of the system, 2.74+0.04

−0.01M� [7,8]. Another subsequent
event GW190425, likely originating from the coalescence
of BNSs was observed [9]. The BNS signals emitted from
coalescing neutron stars are likely to be observed more
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frequently in the upcoming runs of LIGO-Virgo-KAGRA
and the future detectors, e.g., Einstein Telescope [10] and
Cosmic Explorer [11]. The unprecedented constraints on the
EoS promised by gravitational wave astronomy through the
detailed analysis of gravitational wave parameter estimation
have triggered many theoretical investigations of the NS prop-
erties [9,12–20]. Recently, two different groups of neutron star
interior composition explorer (NICER) x-ray telescopes pro-
vided neutron star’s mass and radius simultaneously for PSR
J0030+0451 with R = 13.02+1.24

−1.06 km for mass 1.44+0.15
−0.14M�

[21] and R = 12.71+1.14
−1.19 km for mass 1.34+0.15

−0.16M� [22],
which are the complementary constraints on the EoS. For
heavier pulsar PSR J0740+6620, R = 13.7+2.6

−1.5 km with
mass 2.08 ± 0.07M� [23] and R = 12.39+1.30

−0.98 km with mass
2.072+0.067

−0.066M� [24] were reported. Current observational
lower bound on the maximum NS mass is Mmax = 2.35 ±
0.17M� for the black-widow pulsar PSR J0952-0607 [25]
that exceeds any previous measurements, including Mmax =
2.27+0.17

−0.15M� for PSR J2215-5135 [26]. If the observational
bounds are reliable, stiffer EoSs are required to support the
NS with a mass higher than 2M�.

The present lower bound on Mmax suggests that the density
at the center of the star with canonical mass 1.4M� may lie
in the range ∼2–3ρ0 [27,28]. The behavior of EoSs around
ρ0 may be important in determining the properties of such
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NSs. It has been shown that the radius of a neutron star with
its mass in the range of 1–1.4 M� is strongly correlated with
the pressure for β-equilibrated matter at the densities 1–2ρ0

[29]. Similar analyses have been extended to the tidal de-
formability, which is also found to be strongly correlated with
pressure at 2ρ0 [30–32]. The EoS for β-equilibrated matter
can be decomposed into that for symmetric nuclear matter
and density-dependent symmetry energy. It may be important
to constrain them individually. Recently, it was shown in
Ref. [33] that the accurate knowledge of the equation of state
of β-equilibrated matter may not be resolved appropriately
into its two main components, symmetric nuclear matter, and
density-dependent symmetry energy. Similar conclusions are
also drawn in Refs. [34,35].

There have been several attempts to study the correla-
tions of radius and tidal deformability of a neutron star with
individual nuclear matter parameters which determine the
density dependence of symmetry energy [13,30,31,36–46].
The nuclear matter parameters, often drawn randomly from
uncorrelated uniform or Gaussian distributions, are found to
be weakly correlated with the NS properties. The distributions
of nuclear matter parameters obtained by fitting the experi-
mental data on finite nuclei properties within the mean-field
models are somewhat better correlated with the NS properties.
Lately, the impact on the NS properties due to constraints
on the low-density EoS imposed by the finite nuclei data
have been investigated using more than 400 mean-field mod-
els derived from the nonrelativistic Skyrme interactions and
relativistic Lagrangians which describe the interactions of
nucleons through σ , ω, and ρ mesons [47]. The group of mod-
els that describe very well the properties of symmetric and
asymmetric finite nuclei yields a stronger correlation between
the tidal deformability for the NS with canonical 1.4M� mass
star and the slope of the symmetry energy at the saturation
density (ρ0). Several factors that affect the correlations of
NS properties with the nuclear matter parameters are also
summarized in Table III of Ref. [48].

We have considered a large set of minimally constrained
EoSs for the NS matter in the present work to examine in
detail the correlations between the properties of a neutron
star in the mass range 1.2–1.6M� and the parameters that
govern the density dependence of symmetry energy. The
EoSs at low densities corresponds to the nucleonic matter
in β equilibrium and are described by the nuclear matter
parameters evaluated at ρ0. These EoSs are constrained by
empirical values of the low-order nuclear matter parameters
determined by the experimental data on the bulk properties
of finite nuclei together with the pure neutron matter (PNM)
EoS from a precise next-to-next-to-next-to-leading-order
(N3LO) calculation in chiral effective field theory. The
composition of NS matter at high density (ρ > 2ρ0) is not
very well known due to the possibility of the appearance of
various new degrees of freedom such as hyperons, kaons,
and quarks [49–51]. Beyond a transition density (ρtr),
taken to be 1.5–2ρ0, the EoSs are constructed simply by
imposing the causality condition on the speed of sound
and are independent of compositions of NS matter. The
posterior distributions of nuclear matter parameters that
describe the low-density EoSs are obtained within a Bayesian

approach with minimal constraints. These constraints
introduce correlations among the nuclear matter parameters.
The joint posterior or correlated distribution of the nuclear
matter parameters is employed to study the sensitivity of
NS properties to the parameters that govern the density
dependence of the symmetry energy. The calculations are
also performed for uncorrelated uniform and Gaussian
distributions of the nuclear matter parameters obtained by
their marginalized posterior distribution. The influence of the
various correlations considered due to a few other factors
usually encountered in the literature are investigated.

The paper is organized as follows. We briefly outline our
methodology in Sec. II. The results for the correlations of NS
properties with various symmetry energy parameters at ρ0 and
the pressure for β-equilibrated matter at 2ρ0 are discussed in
detail in Sec. III. The summary and outlook are presented in
Sec. IV.

II. METHODOLOGY

We discuss in brief the construction of the equation of state
(EoS) at low and high densities. The low-density EoS below
2ρ0 is obtained using Taylor expansion, and the high-density
EoS is constructed keeping a check on the speed of sound so
that the causality is not violated.

A. EoS at low density

We express energy per nucleon at a given density ρ and
asymmetry δ using parabolic approximation as

E (ρ, δ) = E (ρ, 0) + Esym(ρ)δ2 + ..., (1)

where δ = ρn−ρp

ρ
is determined using the β equilibrium and

the charge neutrality conditions. The energy per nucleon
for the symmetric nuclear matter E (ρ, 0) and the density-
dependent symmetry energy Esym(ρ) are expanded around ρ0

using individual nuclear matter parameters as [52–56]

E (ρ, 0) = e0 + 1

2
K0

(
ρ − ρ0

3ρ0

)2

+ 1

6
Q0

(
ρ − ρ0

3ρ0

)3

, (2)

Esym(ρ) = J0 + L0

(
ρ − ρ0

3ρ0

)
+ 1

2
Ksym,0

(
ρ − ρ0

3ρ0

)2

+ 1

6
Qsym,0

(
ρ − ρ0

3ρ0

)3

. (3)

In Eqs. (2) and (3), e0 is the binding energy per nucleon, K0

is the incompressibility coefficient, J0 is the symmetry energy
coefficient, its slope parameter L0, Ksym,0 the symmetry en-
ergy curvature parameter, Q0[Qsym,0] is related to third-order
density derivatives of E (ρ, 0) [Esym(ρ)].

B. EoS at high density

We impose the causality condition on the speed of sound
to construct the EoS beyond the transition density (ρtr), which
is taken to be 1.5–2ρ0. The high-density part of the EoS
(ρ > ρtr) joins smoothly to the one at the low density such
that the velocity of the sound never exceeds the velocity
of light and asymptotically approaches the conformal limit
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(c2
s = 1

3 c2). The velocity of sound for ρ > ρtr is given as [57]

c2
s

c2
= 1

3
− c1 exp

[
− (ρ − c2)2

n2
b

]
+ hp exp

[
− (ρ − np)2

w2
p

]

×
[

1 + erf

(
sp

ρ − np

wp

)]
, (4)

where the peak height hp determines the maximum speed of
sound, the position np determines the density around which
it happens, the width of the curve controls by wp and nb,
and the shape or skewness parameter sp. For a given value of
nb, the parameters c1 and c2 are determined by the continuity
of the speed of sound and its derivative at the transition density
ρtr . The values of nb, hp, wp, and np are drawn from the
uniform distribution with ranges in between 0.01–3.0 fm−3,
0.0–0.9, 0.1–5.0 fm−3, and (ρtr + 0.08)–5.0 fm−3, respec-
tively [57]. We have taken sp equal to zero throughout our
calculations as it does not have much effect on the stiffness
of EoS.

We construct the high-density equation of state starting
from transition density (ρtr), where the energy density [ε(ρtr )],
the pressure [P(ρtr)], and the derivative of energy density
[ε′(ρtr )] are known. The successive values of ε and P are ob-
tained by assuming a step size �ρ = 0.001 fm−3 as follows:

ρi+1 = ρi + �ρ, (5)

εi+1 = εi + �ε

= εi + �ρ
εi + Pi

ρi
, (6)

Pi+1 = Pi + c2
s (ρi )�ε, (7)

where the index i = 0 refers to the transition density ρtr . Note,
in the Eq. (6) �ε has been evaluated using the thermody-
namic relation P = ρ∂ε/∂ρ − ε valid at zero temperature.
Once the EoS has been generated, the NS properties, such as
the radius and tidal deformability as a function of mass, are
obtained by solving the Tolman-Oppenheimer-Volkoff (TOV)
equations by varying the central density of the star.

C. Bayesian estimation of nuclear matter parameters

The detailed statistical analysis of the parameters of a
model for a given set of data can be carried out in the Bayesian
approach. It gives the joint posterior distributions of model
parameters by which one can study the distributions of given
parameters and correlations among the parameters. Based on
the Bayes theorem, the joint posterior distribution of the pa-
rameters P(θ|D) is given as [58]

P(θ|D) = L(D|θ)P(θ)

Z , (8)

where D and θ are the data and set of model parameters,
respectively. Here, P(θ) is the prior for model parameters,
L(D|θ) is the likelihood function, and Z is the evidence. The
marginalized posterior distribution for a parameter θi can be
obtained as

P(θi|D) =
∫

P(θ|D)
∏
k �=i

dθk . (9)

We use the Gaussian likelihood function defined as

L(D|θ) =
∏

j

1√
2πσ 2

j

e
− 1

2

(
d j −m j (θ)

σ j

)2

, (10)

where the index j runs over all the data, d j and mj are the data
and corresponding model values, respectively. The σ js corre-
spond to the adopted uncertainties. The posterior distribution
of Eq. (8) can be evaluated by implementing a nested sampling
algorithm. We have used the Pymultinest nested sampling [59]
in the Bayesian Inference Library [60].

III. RESULTS AND DISCUSSION

The EoSs for the asymmetric nuclear matter at low den-
sities are expressed in terms of nuclear matter parameters
which are evaluated at the saturation density as outlined in
Sec. II A [Eqs. (2) and (3)]. The joint posterior distribution of
nuclear matter parameters is obtained within a Bayesian ap-
proach using minimal constraints. These constraints introduce
correlations among the nuclear matter parameters. The EoSs
at high density (ρ > ρtr) are constructed by simply imposing
the causality condition on the speed of sound as outlined in
Sec. II B. A large set of EoSs is constructed by appropriately
combining the low and high-density parts. These EoSs are
employed to evaluate various NS properties, like radius, tidal
deformability, and maximum mass. We assess the dependence
of radius and tidal deformability on the slope and curvature
parameters of the symmetry energy evaluated at ρ0 as well
as on the pressure P(2ρ0) for the β-equilibrated matter. The
sensitivity of these dependencies to the various factors as
follows are analyzed:

(i) The behavior of the high-density part of the EoS,
(ii) The choice of distributions of nuclear matter parame-

ters, their interdependence, and uncertainties,
(iii) The lower bound on the maximum mass of the stable

neutron stars,
(iv) The value of the transition density,
(v) Upper bound on the value of tidal deformability.

A. Priors and posterior distributions of NMPs

The posterior distributions of the NMPs are obtained by
subjecting the EoSs to a set of minimal constraints, which
includes the basic nuclear matter properties at the satura-
tion density and the EoS for the pure neutron matter at low
densities from N3LO calculation in the chiral effective field
theory [27]. Only a few low-order NMPs are well constrained,
such as the binding energy per nucleon in symmetric nuclear
matter e0 ∼ −16.0 MeV and symmetry energy coefficient
J0 = 32.5 ± 2.5 MeV from the binding energy of finite nuclei
over a wide range of nuclear masses [61–67]. The nuclear
matter incompressibility coefficient, K0 = 240 ± 50 MeV for
the symmetric nuclear matter is constrained from the ex-
perimental data on the centroid energy of isoscalar giant
monopole resonance in a few heavy nuclei [68,69]. The value
of symmetry energy slope parameter has been deduced by the
neutron-skin thickness of 48Ca nucleus by CREX [70] and
that in 208Pb by the PREX-2 collaboration [71]. The PREX-
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TABLE I. Uniform prior distributions are assumed for all the
NMPs except for e0, which is kept fixed to −16.0 MeV. The min-
imum (min) and maximum (max) values of the NMPs are listed in
the units of MeV.

&K0 Q0 J0 L0 Ksym,0 Qsym,0

min 190 −1200 30 0 −500 −250
max 290 400 35 100 300 1350

2 data analysis performed by Reed et al. in Refs. [41,72]
places L0 = 106 ± 37 MeV. Other studies combining astro-
nomical observations and PREX-2 data are L0 = 53+14

−15 MeV
[73]. A smaller value of L0 = 54 ± 8 MeV has also been
inferred from PREX-2 data [74]. The CREX data predict L0 =
0–51 MeV [75]. The remaining nuclear matter parameters,
Q0, Ksym,0, and Qsym,0 appearing in Eqs. (2) and (3) are only
weakly constrained [31,32,76–79]. The prior for the bind-
ing energy per nucleon is kept fixed to e0 = −16.0 MeV
throughout. The prior distributions of J0 and K0 are assumed

to be uniform with a rather small range, whereas the other
higher-order nuclear matter parameters correspond to uniform
distributions with large ranges. We have listed the assumed
prior distributions for each of the nuclear matter parameters
in Table I. The values of d and σ in Eq. (10) are taken from
Refs. [27,80] for the energy per neutron, and we consider a
6 × N3LO uncertainty band for our calculations. In addition
to likelihood and priors, we have imposed a few filters on the
nuclear matter parameters: (i) pressure for the β-equilibrated
matter should increase monotonically with density (thermody-
namic stability), (ii) symmetry energy is positive semidefinite,
and (iii) maximum mass of neutron star must exceed 2M�
(observational constraint).

The joint posterior distribution of the NMPs for a given
model is the product of the likelihood and the prior dis-
tribution of NMPs [Eq. (8)]. The posterior distribution of
individual parameters can be obtained by marginalizing the
joint posterior distribution with the remaining model parame-
ters. If the marginalized posterior distribution of the parameter
is narrowed down as compared to the corresponding prior

FIG. 1. Corner plot for the nuclear matter parameters (in MeV). The one-dimensional marginalized posterior distributions (salmon)
and the prior distributions (green) lines are displayed along the diagonal plots. The vertical dashed lines indicate 68% (1σ ) confidence
interval. The confidence ellipses for two-dimensional posterior distributions are plotted with 1σ , 2σ , and 3σ confidence intervals along the
off-diagonal plots.
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distribution (uniform distribution in this case), then the pa-
rameter is said to be constrained by the given data or the
likelihood functions. Therefore the narrower distributions of
parameters compared to their prior distributions indicate the
importance of the likelihood function. The likelihood func-
tion imposes additional constraints on the multivariate nuclear
matter parameters of our model driven by the data. The corner
plots for the nuclear matter parameters, which yield the EoSs
consistent with the minimal constraints, are shown in Fig. 1.
The median values of the nuclear matter parameters and the
68% confidence intervals are given in the diagonal plots of
the figure. The 68% confidence intervals for L0, Q0, and Ksym,0

are significantly smaller than their prior ranges implying these
parameters are well constrained by the low-density EoS for
the pure neutron matter. The values of J0, and Qsym,0 are also
constrained to some extent. Except for L0 − Ksym,0 (r = 0.8)
and L0 − J0 (r = 0.65), all other pairs of nuclear matter pa-
rameters do not show any visible correlations.

B. Neutron star properties

The EoSs for β-equilibrated charge neutral matter in the
density ranges 0.5ρ0 to the transition density ρtr are obtained
using a Taylor expansion with NMPs corresponding to the
posterior distribution as displayed in Fig. 1. The calculations
are performed assuming different values for the ρtr in the
range of 1.5–2ρ0. Each of the EoSs beyond ρtr is smoothly
joined by a diverse set of EoSs, which are obtained simply
by imposing the causality condition on the speed of sound
by following Eqs.(4)–(7). The EoS for the density ranges
ρ < 0.5ρ0 comprises outer and inner crusts. We have used the
EoS for the outer crust by Baym-Pethick-Sutherland [81] in
the density range 3.9 × 10−11ρ0 < ρ < 0.0016ρ0. We have
assumed a polytropic form of the EoS for the inner crust as
follows [82]:

p(ε) = α + βε
4
3 . (11)

Here, the parameters α and β are determined in such a way
that the EoS for the inner crust matches with the outer crust
at one end and with the outer core at the other end. There is
a greater sensitivity to the treatment of crust EoS for neutron
stars with mass ∼1M� [83]. The treatment of crust EoS em-
ployed in the present work may introduce the uncertainties
of about 50–100 m in radii of NSs having a mass 1.4M�. In
Ref. [18], it is shown that the choice of EoS for the inner crust
affects both the Love number k2 and compactness parameter
in such a way that the values of the tidal deformability param-
eter remain practically unaltered. Once the EoSs for the core
and crust are determined, the values of neutron star mass, ra-
dius, and tidal deformability corresponding to a given central
pressure can be obtained by solving Tolman-Oppenheimer-
Volkoff equations [1,2].

The 90% confidence interval for pure neutron matter
EoSs (light blue) for the density range (0.5–2.0ρ0) is shown
in Fig. 2. For comparison, colored bands correspond to
6 × N3LO (light green), 2 × N3LO (light red) from chiral
effective field theory are displayed. Our EoSs lie almost in
the middle of the 6 × N3LO band and significantly satisfy
the 2 × N3LO band. This indicates that our EoSs are well

FIG. 2. The energy per neutron [En(ρ ) = E (ρ, 1)] for pure
neutron matter as a function of neutron density. The colored bands
correspond to 6 × N3LO (light green), 2 × N3LO (light red), and
90% confidence interval for the EoSs (light blue) obtained in our
calculation (see text for details).

fitted with the pure neutron matter EoS from a precise next-
to-next-to-leading-order calculation in chiral effective field
theory. The 90% confidence interval for the pressure of the
β-equilibrated matter is plotted as a function of density in
Fig. 3. The results are divided into three groups depending
upon the square of sound speed (c2

s,max) at the center of NS
of its maximum stable mass configuration. The three groups
of EoSs correspond to c2

s,max = 0.5–0.65c2, 0.65–0.8c2, and

FIG. 3. The pressure for β-equilibrated charge neutral matter as
a function of nucleon density. The colored bands correspond to 90%
confidence intervals for the EoSs with different ranges of the square
of the speed of sound at the center of NS with maximum mass (c2

s,max)
(see text for details).
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FIG. 4. The mass-radius relationship (left panel) obtained for the EoSs as shown in Fig. 3. The outer and inner gray shaded regions indicate
the 90% (solid) and 50% (dashed) confidence intervals from the LIGO-Virgo analysis for BNS components of GW170817 event [7,84,85]. The
rectangular regions enclosed by blue and black dashed lines indicate the constraints from the millisecond pulsar PSR J0030+0451 from NICER
x-ray observation [21,22], and PSR J0740+6620 orange dashed line [24]. The right panel displays tidal deformability versus NS mass. The
orange shaded region is the observation for � with 90% posterior interval from the LIGO/Virgo Collaboration (GW170817 event) [84]. The
black line correspond to observational bounds on �1.4 = 190+390

−120 [7]. For the comparison, we have shown violet and gold lines corresponding
to �1.8 = 70–270, and �2.0 = 30–150 obtained from a few well-known theoretical models [18,86].

0.8–1.0c2 are depicted by different colors. All the EoSs in
each group are plotted up to the same density 7ρ0. The overall
stiffness of the EoS increases with the c2

s,max.
The EoSs displayed in Fig. 3 are employed to obtain the

mass-radius relationship for static neutron stars as presented
in Fig. 4 (see left panel). For the comparison, we also dis-
play the constraints obtained from the GW170817 event and
NICER x-ray observation. The maximum mass of a neutron
star lies in the range of 2.1–2.7M�, and the radius for a neu-
tron star with mass 1.4M� lies in the range 11.8–14 km. Our
mass-radius relationships exclude smaller values of radius for
a given mass, as predicted by the GW170817 event. This is
due to the choice of priors for the low-order nuclear matter
parameters constrained by the experimental data on bulk prop-
erties of the finite nuclei. In the right panel of Fig. 4, we plot
the variations of tidal deformability as a function of mass. We
display the constraints obtained from the GW170817 event
for comparison. The value of tidal deformability �1.4 is high-
lighted [7]. Further, we depict the constraints on � for NS
of mass 1.8M� and 2.0M� within 90% CI obtained from ten
realistic models that can accurately describe the finite nuclei
properties and support the 2M� neutron star masses [18,86].
The values of tidal deformability obtained with our minimally
constrained EoSs have a reasonable overlap with the ones
inferred from the GW170817 event.

In Fig. 5, we display the corner plot describing various
quantities associated with neutron stars, such as the central
density ρc and corresponding pressure Pc for the neutron star
with canonical (1.4M�) and maximum mass, radius R1.4, tidal
deformability �1.4, and maximum mass Mmax. To understand
the impact of the high-density EoS, the distributions of all
the quantities are segregated into three different groups of

stiffness for the EoSs according to the range of c2
s,max at

the higher density part as indicated with different colors. It
can be seen from the diagonal plots that the distributions for
ρc,1.4, Pc,1.4, �1.4, and R1.4 are more-or-less independent of
c2

s,max. The median values of ρc,max decrease with c2
s,max, but

Mmax and Pc,max increase. The ρc,1.4, Pc,1.4, R1.4, and �1.4 are
strongly correlated with each other, the absolute values of
Pearson’s correlation coefficients being r ∼ 0.86–0.98. The
ρc,max and Pc,max are moderately correlated with the prop-
erties of NS with canonical mass (| r |∼ 0.70–0.85), except
for ρc,1.4. The Mmax show strong correlations with ρc,max

(| r |∼ 0.94), but, relatively weakly correlated with Pc,max(|
r |∼ 0.78). The maximum mass of a stable neutron star seems
to be weakly correlated with the properties of NS with canon-
ical mass.

C. Neutron star properties and symmetry energy parameters

The correlations of NS properties with various symmetry
energy parameters and the pressure of β-equilibrated matter
have been extensively investigated earlier using nonpara-
metric [73], parametric [31,87], and physics-based models
[37,39,41,42,73] and found to yield the results which are
sometimes at variance, as summarized in Table III of
Ref. [48]. Some of these studies include constraints imposed
by bulk nuclear properties, while others have also imposed
those through the constraints on nuclear matter parameters
assuming them to be independent of each other. We now study
the correlations of various NS properties with the L0, Ksym,0,
and P(2ρ0) using our minimally constrained EoSs and assess
how they are affected by the several factors as listed at the
beginning of this section.
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FIG. 5. Corner plot for the central density (ρc in ρ0) and corresponding pressure (Pc in MeV fm−3) for the neutron star with canonical
and maximum mass, radius (R1.4 in km), tidal deformability (�1.4), and maximum mass (Mmax in M�) of NS. The confidence ellipses for
two-dimensional posterior distributions are plotted with 1σ (solid line) and 2σ (dashed line) confidence intervals along the off-diagonal plots.
The vertical dashed lines indicate 68% confidence intervals.

We have seen in the previous subsections that our EoSs
yield the various properties of neutron stars within reasonable
observational as well as theoretical bounds. As mentioned
earlier, the EoSs for ρ � ρtr are obtained with the nuclear mat-
ter parameters, which are interdependent due to the minimal
constraints. We employ these EoSs to study the variations of
radius and tidal deformability with the slope (L0), curvature

(Ksym,0), and P(2ρ0) for NS with mass 1.2–1.6 M�. The pa-
rameters L0 and Ksym,0 determine the density dependence of
symmetry energy. We first consider in detail our results for the
tidal deformability corresponding to the NS with canonical
mass assuming ρtr = 2ρ0. We show the dependence of tidal
deformability �1.4 on the L0, Ksym,0 and P(2ρ0) in Fig. 6.
The results for all three groups of EoSs corresponding to
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FIG. 6. The tidal deformability (�1.4) as a function of slope parameter (L0), curvature parameter (Ksym,0) and the pressure of β-equilibrated
matter [P(2ρ0)].

different values of c2
s,max overlap with each other, indicating

that the values of �1.4 seem to be more-or-less insensitive
to the behavior of EoS at high densities (ρ > ρtr). The �1.4

tend to increase with L0, Ksym,0, and P(2ρ0). The values of
correlation coefficients, as indicated in Fig. 6, are practically
independent of the choice of c2

s,max. Hereafter, we show the
results obtained by combining all three groups of the EoSs.

To study the impact of the interdependence of nuclear
matter parameters on the results shown in Fig. 6, we have
generated two different distributions of nuclear matter param-
eters with the help of their posterior distributions, as shown in
Fig. 1. These distributions of the nuclear matter parameters
are (a) uncorrelated Uniform (U-Unc) and (b) uncorrelated
Gaussian (G-Unc). The parameters of U-Unc and G-Unc dis-
tributions are obtained from the 95% confidence interval of
the marginalized distributions of Fig. 1. Often, U-Unc and
G-Unc distributions have been employed to study the cor-
relations of �1.4 with various symmetry energy parameters
[31,37,39,42].

In Fig. 7, we plot the variations of dimensionless tidal
deformability �1.4 with L0 for the three different distributions

of nuclear matter parameters as indicated (orange circles).
The extreme right panels are labeled as G-Cor, correspond-
ing to the ones obtained using correlated or joint posterior
distribution of nuclear matter parameters. The results shown
are obtained by considering the EoSs associated with the
maximum NS mass Mmax � 2.1M�. For the comparison, the
results obtained by fixing the lower order parameters K0 =
240 MeV and J0 = 32 MeV are also displayed (blue stars). In
the figure, Pearson’s correlation coefficients are given for all
three distributions of NMPs. The correlations of �1.4 are very
sensitive to the choice of the distributions of nuclear matter
parameters. The �1.4 is very weakly correlated with L0 for
the case of U-Unc with a correlation coefficient r ∼ 0.39..
for The situation somewhat improves for the case of nuclear
matter parameters corresponding to uncorrelated Gaussian
distribution as indicated by G-Unc (r ∼ 0.48). The posterior
distribution (G-Cor) of nuclear matter parameters obtained
from minimal constraints (see Fig. 1) yields relatively stronger
correlations of �1.4 with L0 (r ∼ 0.72). The correlations also
increase marginally when the values of low-order nuclear
matter parameters such as K0 and J0 are kept fixed (blue stars).

FIG. 7. Variations of tidal deformability (�1.4) with slope parameter (L0) for three different distributions of the nuclear matter parameters
which are with uniform uncorrelated (U-Unc), Gaussian uncorrelated (G-Unc), and Gaussian correlated posterior distributions (G-Cor) as
discussed in the text in details. The results are obtained by considering the EoSs associated with maximum NS mass Mmax � 2.1M�. The
circle (orange) symbols represent the results obtained by varying all parameters, whereas the (blue) star symbols represent those obtained by
fixing K0 = 240 MeV and J0 = 32 MeV.
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FIG. 8. The variation of the tidal deformability (�1.4) with curvature parameter (Ksym,0) for three different nuclear matter parameter
distributions with uniform uncorrelated (U-Unc), Gaussian uncorrelated (G-Unc), and posterior distributions (G-Cor) are discussed in details
in the text. The results are shown for those EoSs which are associated with a maximum mass of NS � 2.1M�. The symbols in circles (orange)
represent the results obtained by varying all parameters, whereas stars (blue) symbols represent the results obtained when K0 = 240 MeV and
J0 = 32 MeV are fixed.

Evidently, the correlations of �1.4 with L0 depend on the
various factors, such as the constraints imposed on the nuclear
matter parameters that govern the low-density behavior of
the EoSs. The variations of �1.4 with Ksym,0 for different
distributions of nuclear matter parameters are plotted in Fig. 8.
The correlations for �1.4 with Ksym,0 for different cases are
stronger in comparison to those obtained with L0. It appears
that the correlations of �1.4 with various symmetry energy
parameters are quite sensitive to the distributions of nuclear
matter parameters employed. Our results for the correlations
for the U-Unc case are qualitatively similar to those obtained
in Refs. [37,42] with a similar strategy for nuclear matter pa-
rameters but with different models. Similar qualitative trends
are observed for the G-Unc [31]. The correlations significantly
improve even with the inclusion of minimal constraints, as
indicated by G-Cor. Our results for the case of G-Cor are in
harmony with those obtained very recently using about 400
nonrelativistic and relativistic mean field models [47], which
demonstrates the impact of low-density EoSs on the properties
of NS of canonical mass. It was found that tighter constraints
on the bulk properties of finite nuclei, such as binding energy,
charge radii, and isoscalar giant monopole resonance energy,
yield stronger correlations of �1.4 with L0 and Ksym,0. The cor-
relations of �1.4 with various symmetry energy parameters are
stronger only when the nuclear matter parameters evaluated at
saturation densities that govern the low-density behavior of
EoSs, are appropriately constrained.

The variations of �1.4 with the pressure of β-equilibrated
charge neutral matter at twice the saturation densities P(2ρ0)
are plotted in Fig. 9. The correlations of �1.4 with P(2ρ0) are
quite robust, independent of distributions of nuclear matter
parameters. It may be pointed out that the pressure is re-
lated to the density derivative of the energy per particle and
would depend on several nuclear matter parameters, except
for ρ = ρ0. Its value at ρ0 is mainly governed by the L0.
The strong �1.4 − P(2ρ0) correlations may not allow one
to reconstruct the EoS of symmetric nuclear matter and the
density-dependent symmetry energy very accurately, though
they are highly desirable [33]. The accurate determination of

lower-order nuclear matter parameters from the bulk proper-
ties of finite nuclei in conjunction with tighter constraints on
P(2ρ0) may shed some light on the value of high-order nuclear
matter parameters.

The results presented in Figs 7–9 may also be sensitive
to the range of values for the �1.4 as well as to the bounds
on the nuclear matter parameters. In Table II, we have listed
the values of Pearson’s correlation coefficient for �1.4 − L0,
�1.4 − Ksym,0, and �1.4 − P(2ρ0) obtained for the joint poste-
rior distribution of nuclear matter parameters. The correlation
coefficients increase with the increase in the upper bound on
�1.4. In particular, these effects are quite strong for the case
of �1.4 − L0 and �1.4 − Ksym,0.

So far, we have considered only the case of tidal deforma-
bility for a neutron star with the canonical mass obtained
for the EoSs assuming ρtr = 2.0ρ0, beyond which the high-
density part of the EoS is switched on. We now consider the
tidal deformability and radius with neutron star masses M =
1.2, 1.4, and 1.6M� and study their correlations with symme-
try energy slope L0, curvature parameters Ksym,0, and pressure
P(2.0ρ0). In Table III, we present the values of Pearson’s
correlation coefficients for �M and RM with L0, Ksym,0, and
P(2ρ0). These values of correlation coefficients are calculated

TABLE II. The Pearson’s correlation coefficients for �1.4 with
the slope parameter (L0), curvature parameter (Ksym,0) of the sym-
metry energy and the pressure for β-equilibrated matter at a density
2ρ0 [P(2ρ0)] obtained using joint posterior distribution of the nuclear
matter parameters. The results are obtained assuming different upper
bounds on �1.4 and those are associated with a maximum mass of
NS � 2.1M�.

Upper bound on �1.4 �1.4 − L0 �1.4 − Ksym,0 �1.4 − P(2ρ0)

400 0.29 0.42 0.88
600 0.54 0.71 0.97
800 0.67 0.81 0.98
1000 0.72 0.84 0.98
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FIG. 9. A variation in tidal deformability (�1.4) with the pressure of β-equilibrated matter at 2ρ0 based on three different nuclear matter
parameter distributions, namely uniform uncorrelated (U-Unc), Gaussian uncorrelated (G-Unc), and posterior distributions (G-Cor), are
discussed in detail in the text. The results are shown for those EoSs which are associated with a maximum mass of NS � 2.1M�. As shown
by the circles (orange) symbols, results obtained with all parameters varied, while those obtained with K0 = 240 MeV and J0 = 32 MeV fixed
are represented by the stars (blue) symbols.

for ρtr = 1.5, 1.75, and 2.0ρ0 and Mmax � 2.1M�. The results
are obtained for the joint posterior distribution of nuclear mat-
ter parameters (Fig. 1), which determine the EoS at ρ � ρtr .
The correlations increase a little with the ρtr = 1.5–2.0ρ0. It is
interesting to note that the � − L0 correlations are moderate,
while the � − Ksym,0 correlations become relatively stronger
which further increase for the � − P(2ρ0) case. The corre-
lations involving the NS radius display little different trends;
the R − L0 correlations are stronger than those for R − Ksym,0.
The correlations of R − P(2ρ0) are weaker than those for
� − P(2ρ0). The values of correlation coefficient presented in
Table III may not be significantly affected by the inclusion of
any exotic degrees of freedom beyond 2ρ0, since the EoSs be-
yond the ρtr have diverse behavior as they are obtained simply
by imposing the causality condition. We have also repeated
the calculations to obtain the joint posterior distribution of
nuclear matter parameters by reducing the uncertainty on the

TABLE III. The Pearson’s correlation coefficients for �M and
RM , corresponding to different neutron star mass M with the slope
parameter (L0), curvature parameter (Ksym,0) of the symmetry energy,
and the pressure for β-equilibrated matter at a density 2ρ0 [P(2ρ0)].
The correlation coefficients are obtained at different transition densi-
ties and for the lower bound on maximum neutron star mass Mmax �
2.1M�.

�M RM

ρtr
ρ0

M
M� L0 Ksym,0 P(2ρ0) L0 Ksym,0 P(2ρ0)

1.5 1.2 0.76 0.85 0.91 0.83 0.67 0.76
1.4 0.70 0.81 0.93 0.79 0.70 0.81
1.6 0.60 0.76 0.91 0.72 0.70 0.86

1.75 1.2 0.77 0.87 0.94 0.84 0.70 0.81
1.4 0.71 0.83 0.96 0.80 0.74 0.88
1.6 0.61 0.77 0.97 0.73 0.72 0.91

2.0 1.2 0.80 0.88 0.97 0.85 0.73 0.86
1.4 0.72 0.84 0.98 0.81 0.75 0.91
1.6 0.65 0.80 0.98 0.75 0.75 0.94

pure neutron matter EoS by a factor of two. The values of the
median and the 68% confidence interval for the nuclear matter
parameters with the reduced uncertainties are K0 = 239+34

−32,
Q0 = −5+258

−343, J0 = 32.19+0.9
−0.9, L0 = 52+8

−8, Ksym,0 = −102+63
−60,

and Qsym,0 = 722+379
−510. The values of symmetry energy coef-

ficient J0, slope parameter L0, and curvature parameter Ksym,0

are now more constrained as compared to those in Fig. 1. Sim-
ilar to Table III, we have listed the values of Pearson’s correla-
tion coefficients for �M and RM with L0, Ksym,0 and P(2ρ0) in
Table IV. The values of correlation coefficients show similar
trends as listed in Table III, but the values of correlation coef-
ficients for �M and RM with L0, Ksym,0 are reduced. But, the
correlations of the �M and RM with P(2ρ0) seem to be more-
or-less independent of the ranges of the nuclear matter param-
eters, which once again implies that the NS properties may
be more sensitive to the combination of several nuclear mat-
ter parameters rather than the individual ones. We have also
examined the influence of the lower bound on the maximum
mass of NS for 2.1 M� to 2.4 M� on our correlation systemat-
ics. The correlations do not change significantly; for example,
the correlation coefficient value for �1.4 with L0 and Ksym,0

changes from 0.72 to 0.78 and from 0.84 to 0.86, respectively.

TABLE IV. Same as Table III but, the results are obtained using
the uncertainty on the PNM EoS reduced to 3 × N3L0.

�M RM

ρtr
ρ0

M
M� L0 Ksym,0 P(2ρ0) L0 Ksym,0 P(2ρ0)

1.5 1.2 0.47 0.73 0.92 0.68 0.65 0.74
1.4 0.36 0.64 0.93 0.57 0.66 0.83
1.6 0.26 0.58 0.88 0.45 0.65 0.84

1.75 1.2 0.50 0.76 0.95 0.70 0.67 0.81
1.4 0.39 0.72 0.96 0.59 0.68 0.88
1.6 0.31 0.67 0.96 0.49 0.66 0.91

2.0 1.2 0.51 0.77 0.97 0.70 0.70 0.84
1.4 0.40 0.73 0.98 0.59 0.70 0.90
1.6 0.31 0.69 0.98 0.49 0.68 0.94
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We have asset the influence of crust EoS on our correla-
tion systematics. We have repeated our calculations for the
correlations of �1.4 and R1.4 with L0, Ksym,0 and P(2ρ0) for
ρtr = 2ρ0 by using different crust EoSs such as NL3ωρ-L55
[88,89] and TM1e [88,90] available in the CompOSE [91,92].
The results for the correlations involving �1.4 change almost
by 1%. The correlation of R1.4 with L0 also remains practically
unaffected. However, the correlations of R1.4 with Ksym,0 and
P(2ρ0) improve by 5–10%.

IV. CONCLUSIONS

We have constructed a large set of minimally constrained
EoSs for the NS matter and performed a detailed investiga-
tion of the correlations of NS properties with several nuclear
matter parameters that determine the density dependence of
symmetry energy. The joint posterior distribution of nuclear
matter parameters that determine the EoSs at low densities
(ρ � ρtr) is obtained by employing our minimal constraints
within a Bayesian approach. These EoSs are consistent with
(i) the pure neutron matter EoS from a precise next-to-next-to-
next-to-leading-order (N3LO) calculation in chiral effective
field theory and (ii) empirical ranges of low-order nuclear
matter parameters determined by the experimental data on
the bulk properties of finite nuclei. The EoSs beyond ρtr =
1.5–2ρ0 are constrained only by imposing the causality condi-
tion on the speed of sound. The large set of EoSs so obtained
is employed to study the sensitivity of NS properties to the
symmetry energy slope parameter L0 and curvature parameter
Ksym,0 as well as to the pressure of β-equilibrated matter at
2ρ0. The calculations are also performed with uncorrelated
uniform and Gaussian distributions of NMPs that ignore the
interdependence among them as present in their joint posterior
distribution.

The tidal deformability and radius of NS, as a function of
mass, are evaluated using our minimally constrained EoSs.
The NS properties at canonical mass and the maximum NS
mass are found to be consistent with the observational con-
straints. The correlations of tidal deformability and radius
for different NS masses (1.2–1.6M�) with the slope and
curvature parameter of symmetry energy and the pressure
for β-equilibrated charge neutral matter at 2ρ0 are studied.
We have examined the sensitivity of these correlations to
several factors such as, (i) the behavior of the high-density
part of the EoS, (ii) the choice of distributions of nuclear
matter parameters, their interdependence and uncertainties,
(iii) the lower bound on the maximum mass of the stable
neutron stars, (iv) the value of transition density beyond which
the low-density EoSs are smoothly joined with a diverse set
of EoSs constrained only by the causality condition on the
speed of sound, (v) the upper bound on the value of tidal
deformability.

The tidal deformability is reasonably correlated with
the symmetry energy slope parameter L0 for the EoSs
obtained from the joint posterior distribution of nuclear
matter parameters. The correlation of tidal deformability

with Ksym,0 is slightly stronger. These correlations become
even stronger when the priors of lower-order nuclear
matter parameters corresponding to incompressibility
and symmetry energy coefficients are kept fixed. The
correlations become noticeably weaker in the absence
of interdependence among nuclear matter parameters.
For instance, the Pearson’s correlations coefficients for
�1.4 − L0(�1.4 − Ksym,0) are r ∼ 0.4(0.6) for independent
distribution of nuclear matter parameters which become
r ∼ 0.8(0.9) for the joint posterior distribution. This implies
that the correlations of NS properties with individual
symmetry energy parameters are masked in the absence
of appropriate constraints on the EoSs at low densities.
It also partly explains why the outcome of the similar
correlations studied in the earlier publications
[31,37,39,42,48] are at variance. These correlations improve
a little bit with the increase in the transition density. The
diverse behavior of EoSs at high-density (ρ � ρtr), as
modeled by wide variations of the speed of sound within
the causal limit, do not affect the sensitivity of the NS
properties to the symmetry energy parameters evaluated at
saturation density. The results for the correlation of tidal
deformability with the pressure at 2ρ0 are found to be
robust, practically independent of all the factors considered.
The correlations of NS radius with the symmetry energy
parameters are also sensitive to various factors considered.
The vulnerability of correlations of NS properties with
individual parameters of symmetry energy and, on the
contrary, the robustness of their correlations with P(2ρ0)
needs to be further investigated to pin down the combination
of the optimum number of nuclear matter parameters required
to describe the NS properties for the masses ∼1.4M�. With
the observations of heavier NS, the correlation between NS
properties and symmetry energy parameters presented in this
paper may be improved.
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