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Based on the Skyrme-Hartree-Fock model (SHF) as well as its extension [the Korea-IBS-Daegu-SKKU
(KIDS) model] and the relativistic mean-field (RMF) model, we have studied the constraints on the parameters
of the nuclear matter equation of state (EOS) from adopted astrophysical observables using a Bayesian approach.
While the masses and radii of neutron stars generally favor a stiff isoscalar EOS and a moderately soft
nuclear symmetry energy, model dependence on the constraints is observed and mostly originates from the
incorporation of higher-order EOS parameters and differences between relativistic and nonrelativistic models.
At twice saturation density, the value of the symmetry energy is constrained to be 48+15

−11 MeV in the standard SHF
model, 48+8

−15 MeV in the KIDS model, and 48+5
−6 MeV in the RMF model, around their maximum a posteriori

values within 68% confidence intervals. Our study helps to obtain a robust constraint on nuclear matter EOS,
and, meanwhile, to understand the model dependence of the results.
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I. INTRODUCTION

Compact stars are natural laboratories for investigating
properties of dense nuclear matter. Observables of neutron
stars, such as their masses, radii, as well as the gravitational
waves emitted from the mergers of binary stars, are help-
ful for understanding the equation of state (EOS) of nuclear
matter in both the isoscalar and isovector channels [1,2],
or, in other words, the binding energy per nucleon ESNM in
isospin symmetric nuclear matter and the energy excess due
to the finite isospin asymmetry characterized by the nuclear
symmetry energy Esym. For example, the mass of the neutron
star is determined by the stiffness of the nuclear matter EOS,
and the radius of the neutron star is closely related to the
nuclear symmetry energy [3]. Thanks to the pioneer studies
by nuclear physicists, ESNM(ρ) and Esym(ρ) around the sat-
uration density ρ0 are better constrained compared to those
at suprasaturation densities. For instance, the incompressibil-
ity K0 characterizing the stiffness of ESNM(ρ) is constrained
within 220–260 MeV from studies on the isoscalar giant
monopole resonance (ISGMR) [4–8], and the value E0

sym and
the slope parameter L of the nuclear symmetry energy at the
saturation density are constrained respectively within E0

sym =
31.7 ± 3.2 MeV and L = 58.7 ± 28.1 MeV from surveying
dozens of analyses [9,10]. Neutron star observables may help
to better constrain higher-order EOS parameters characteriz-
ing ESNM and Esym at suprasaturation densities.
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It is encouraging to see that data on neutron star properties
have been emerging in recent years, providing opportunities
to constrain the nuclear matter EOS in the multimessage era
of nuclear physics. From relativistic Shapiro time delay, the
mass of PSR J0740+6620 was measured to be 2.14+0.10

−0.09M�
[11] and later refined to be 2.08+0.07

−0.07M� [12], providing a
large maximum mass to rule out soft EOS of neutron star
matter. Based on data collected by Neutron Star Interior Com-
position Explorer (NICER), the radius of PSR J0740+6620
was further measured to be R = 13.7+2.6

−1.5 km in Ref. [13] and
R = 12.39+1.30

−0.98 km in Ref. [14]. For canonical neutron stars,
their radii are estimated to be within R1.4 = 10.62–12.83 km,
inferred from photospheric radius expansion bursts and ther-
mal emissions [15]. The more recent measurements of PSR
J0035+451 by NICER gave a mass of 1.44+0.15

−0.14M� and a
radius of R = 13.02+1.24

−1.06 km in Ref. [16], and a mass of
1.34+0.15

−0.16M� and a radius of R = 12.71+1.14
−1.19 km in Ref. [17],

with the deduced radius slightly larger than that from Ref. [15]
while there are significant overlaps. Besides, the analysis
of GW170817 by the LIGO/Virgo Collaboration has found
that the tidal deformability from the neutron star merger is
constrained within �1.4 = 190+390

−120 [18] for canonical neutron
stars.

Observations of neutron stars have been used to con-
strain the nuclear matter EOS based on various models, e.g.,
the parametrized EOSs such as those directly using EOS
parameters [5,19,20], using polytropic EOSs [21–25], and
speed-of-sound models [26,27], and nonparametric models
such as those using spectral methods [28] or Gaussian pro-
cesses [29], as well as the chiral effective field theory [30–33].
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In the present study, we investigate the constraints on the
EOS from neutron star observables based on widely used
effective nuclear models, i.e., the Skyrme-Hartree-Fock (SHF)
model as well as its extension [the Korea-IBS-Daegu-SKKU
(KIDS) model], and the relativistic mean-field (RMF) model.
Compared with the parametrized EOS, these phenological
models, which start from an effective nuclear interaction or
a Lagrangian and give the nuclear matter EOS based on
the mean-field approximation, have a more clear and better
defined theoretical basis. Another advantage of employing
effective nuclear interaction models is that one can study neu-
tron stars, heavy-ion reactions, and nuclear structures based
on the same model with well-developed approaches, so it
is helpful for constraining the nuclear force and the nuclear
matter EOS from high to low densities. In order to constrain
quantitatively different EOS parameters and investigate their
correlations under the constraints of multiple neutron star ob-
servables, we employ Bayesian analysis in the present study.
In previous studies [34–36], coefficients in these effective
models have been successfully expressed inversely in terms
of EOS parameters, so we are able to do Bayesian sampling
in the space of EOS parameters rather than in that of model
coefficients, making the Bayesian analysis more effective. We
have also investigated the effect of the neutron star crust on
the observables as well as its impact on the constraint of EOS
parameters. While considerable model dependence on the fi-
nal constraints is observed, a stiff ESNM and a moderately soft
Esym at suprasaturation densities are favored by the adopted
astrophysical observables based on the SHF model as well as
its extension and the RMF model.

The rest of this paper is organized as follows. Section II
reviews briefly the theoretical framework, including the for-
mulism of the SHF model as well as its extension and the RMF
model, the way to calculate neutron star observables based
on effective interactions, and the Bayesian analysis method.
Section III discusses the detailed constraints and correlations
on EOS parameters from neutron star observables after a
sensitivity analysis. Finally, we conclude and give our outlook
in Sec. IV.

II. THEORETICAL FRAMEWORK

In the present study, compact stars are assumed to consist
of only nucleons and leptons, and their properties are obtained
from the EOS of neutron star matter based on the nonrelativis-
tic SHF model and the RMF model. We choose a standard
energy-density functional (EDF) of the SHF model as in
Ref. [34] as well as an extension for the density-dependent
term, which was named the KIDS model [37]. For the RMF
model, we choose the Lagrangian form as in Ref. [36]. The
chosen EDFs of the SHF, KIDS, and RMF models allow us to
express model parameters inversely in terms of EOS parame-
ters, so we are able to change a single physics quantity at one
time while keeping the values of other quantities unchanged.
The core-crust transition density is consistently calculated
for a given set of EOS parameters based on the effective
nuclear interaction, and different EOSs are used in the liquid
core, inner crust, and outer crust of the neutron star, from
which the neutron star properties can be obtained by solving

the Tolman-Oppenheimer-Volkoff (TOV) equation as well as
the coupled differential equation for the calculation of the
tidal deformability. The EOS parameters are then constrained
by comparing the resulting neutron star properties with the
adopted astrophysical observables based on a Bayesian ap-
proach.

A. Definition of EOS parameters

In this subsection, we briefly remind the reader the def-
inition of the EOS parameters that characterize the density
dependence of ESNM(ρ) and Esym(ρ). The binding energy per
nucleon in isospin asymmetric nuclear matter with nucleon
density ρ = ρn + ρp and isospin asymmetry δ = (ρn − ρp)/ρ
can be expressed as

E (ρ, δ) = ESNM(ρ) + Esym(ρ)δ2 + O(δ4), (1)

where the symmetry energy is defined as

Esym(ρ) = 1

2

[
∂2E (ρ, δ)

∂δ2

]
δ=0

. (2)

The higher-order δ terms are generally much smaller, so the
EOS is mostly dominated by ESNM(ρ) and Esym(ρ). Both
ESNM(ρ) and Esym(ρ) contain contributions from the kinetic
part and the potential part. While the kinetic part is calculated
from the quasiparticle assumption, the potential part depends
on the EDFs.

Around the saturation density ρ0, ESNM(ρ), and Esym(ρ)
can be expanded in the power of χ = ρ−ρ0

3ρ0
as

ESNM(ρ) = ESNM(ρ0) + K0

2!
χ2 + Q0

3!
χ3 + O(χ4),

Esym(ρ) = Esym(ρ0) + Lχ + Ksym

2!
χ2 + Qsym

3!
χ3 + O(χ4).

In the above, the linear term in the expansion of ESNM(ρ)
vanishes due to zero pressure of SNM at ρ0. The independent
EOS parameters relevant in the present study are the saturation
density ρ0, the binding energy E0, the incompressibility K0,
and the skewness parameter Q0 of SNM at ρ0, the symmetry
energy E0

sym and its slope parameter L, curvature parameter
Ksym, and skewness parameter Qsym at ρ0, and they are defined
respectively as[

∂ESNM(ρ)

∂ρ

]
ρ=ρ0

= 0, (3)

E0 ≡ ESNM(ρ0), (4)

K0 = 9ρ2
0

[
∂2ESNM(ρ)

∂ρ2

]
ρ=ρ0

, (5)

Q0 = 27ρ3
0

[
∂3ESNM(ρ)

∂ρ3

]
ρ=ρ0

, (6)

E0
sym ≡ Esym(ρ0), (7)

L = 3ρ0

[
∂Esym(ρ)

∂ρ

]
ρ=ρ0

, (8)

Ksym = 9ρ2
0

[
∂2Esym(ρ)

∂ρ2

]
ρ=ρ0

, (9)

055803-2



BAYESIAN INFERENCE OF NEUTRON-STAR … PHYSICAL REVIEW C 107, 055803 (2023)

Qsym = 27ρ3
0

[
∂3Esym(ρ)

∂ρ3

]
ρ=ρ0

. (10)

B. Skyrme-Hartree-Fock model

Neglecting the spin-orbit interaction, the effective interac-
tion between nucleons at �r1 and �r2 in the standard SHF model
can be expressed as

vSHF(�r1, �r2) = t0(1 + x0Pσ )δ(�r)

+ 1
2 t1(1 + x1Pσ )[�k′2δ(�r) + δ(�r)�k2]

+ t2(1 + x2Pσ )�k′ · δ(�r)�k
+ 1

6 t3(1 + x3Pσ )ρα ( �R)δ(�r). (11)

In the above, �r = �r1 − �r2 and �R = (�r1 + �r2)/2 are respectively
the relative and central coordinates for the two nucleons,
�k = (∇1 − ∇2)/2i is the relative momentum operator and �k′
is its complex conjugate acting on the left, and Pσ = (1 + �σ1 ·
�σ2)/2 is the spin exchange operator.

Based on the Hartree-Fock approach, the above effective
interaction leads to the following energy density for uniform
nuclear matter:

ε = εk + ε0 + εSHF
ρ + εeff , (12)

where the kinetic energy density εk as well as the potential en-
ergy density ε0 from the zero-range interaction, εSHF

ρ from the
density-dependent interaction, and εeff from the momentum-
dependent interaction can be expressed respectively as

εk = τ

2m
,

ε0 = t0
4

[
(2 + x0)ρ2 − (2x0 + 1)

(
ρ2

n + ρ2
p

)]
,

εSHF
ρ = t3ρα

24

[
(2 + x3)ρ2 − (2x3 + 1)

(
ρ2

n + ρ2
p

)]
,

εeff = 1

8
[t2(2x2 + 1) − t1(2x1 + 1)](τnρn + τpρp)

+ 1

8
[t1(2 + x1) + t2(2 + x2)]τρ,

with m being the bare nucleon mass and τ = τn + τp being
the total kinetic density. For nucleons with isospin index
q = n, p in cold static nuclear matter, the kinetic density is
τq = p5

Fq/10π2, with pFq = (3π2ρq)1/3 being the Fermi mo-
mentum. The parameters t0, t1, t2, t3, x0, x1, x2, x3, and α

can be solved inversely from the macroscopic quantities [34],
i.e., the saturation density ρ0, the binding energy E0 at ρ0,
the incompressibility K0, the isoscalar and isovector nucleon
effective masses m�

s and m�
v at the Fermi momentum in normal

nuclear matter, the value E0
sym and the slope parameter L of the

symmetry energy at ρ0, and the isoscalar and isovector density
gradient coefficient GS and GV .

As an extension of the above standard SHF EDF, the
density-dependent term in the effective interaction [Eq. (11)]
is replaced by the following form in the KIDS model:

vKIDS
ρ (�r1, �r2) = 1

6

3∑
i=1

(t3i + y3iPσ )ρ i/3( �R)δ(�r), (13)

and the energy density is modified accordingly to

ε = εk + ε0 + εKIDS
ρ + εeff , (14)

where

εKIDS
ρ =

3∑
i=1

[
1

16
t3iρ

2+i/3 − 1

48
(t3i + 2y3i )ρ

i/3ρ2
3

]
(15)

is the contribution from the density-dependent interaction,
with ρ3 = ρn − ρp being the isovector density. Compared to
the standard SHF model, the additional coefficients in the
KIDS model, i.e., t3i and y3i, allow us to vary more individ-
ual EOS parameters, i.e., Q0, Ksym, and Qsym as shown in
Ref. [35].

C. Relativistic mean-field model

In the present study, we take the following Lagrangian
form of the RMF model:

L = Lnm + Lσ + Lω + Lρ + Lωρ, (16)

with

Lnm = ψ̄ (iγ μ∂μ − m)ψ + gσ σ ψ̄ψ − gωψ̄γ μωμψ

− gρ

2
ψ̄γ μ�ρμ�τψ,

Lσ = 1

2

(
∂μσ∂μσ − m2

σ σ 2) − A

3
σ 3 − B

4
σ 4,

Lω = −1

4
FμνFμν + 1

2
m2

ωωμωμ + C

4

(
g2

ωωμωμ
)2

,

Lρ = −1

4
�Bμν �Bμν + 1

2
m2

ρ �ρμ�ρμ,

Lωρ = 1

2
α′

3g2
ωg2

ρωμωμ�ρμ�ρμ.

In the above, Lnm is the contribution from the kinetic part
of nucleons as well as its coupling to σ , ω, and ρ mesons,
with ψ , σ , ωμ, and �ρμ being the fields of nucleons and corre-
sponding mesons, Lσ , Lω, and Lρ are free and self-interacting
terms of σ , ω, and ρ mesons, respectively, with �τ being the
Pauli matrices, and Lωρ represents the cross interaction term
between ω and ρ mesons. The antisymmetric field tensors
Fμν and �Bμν are defined as Fμν = ∂νωμ − ∂μων and �Bμν =
∂ν �ρμ − ∂μ�ρν − gρ (�ρμ × �ρν ).

Based on the mean-field approximation, the meson fields
are treated as classical fields, and applying the Euler-Lagrange
equations leads to the following coupling equations for these
fields:

m2
σ σ = gσ ρs − Aσ 2 − Bσ 3, (17)

m2
ωω0 = gωρ − Cg4

ωω3
0 − α′

3g2
ωg2

ρρ
2
0(3)ω0, (18)

m2
ρρ0(3) = 1

2 gρρ3 − α′
3g2

ωg2
ρρ0(3)ω

2
0, (19)

where σ , ω0, and ρ0(3) are expectation values of the meson
fields at the ground state, with the subscript 0 representing
the time component in the Dirac space and the subscript 3
representing the z component in the Pauli space. ρs = ρsn +
ρsp is the scalar density, with the contribution from nucleons
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of isospin index q expressed as

ρsq = 2
∫ m�

q√
p2 + m�

q
2

d3 p

(2π )3
, (20)

where m�
q = m − gσ σ is the Dirac nucleon effective mass,

different from the nonrelativistic p mass in the SHF model
(see, e.g., Ref. [38]). The energy density can be expressed as

ε = εRMF
k + 1

2
m2

σ σ 2 + A

3
σ 3 + B

4
σ 4

− 1

2
m2

ωω2
0 + gωω0ρ − C

4

(
g2

ωω2
0

)2

− 1

2
m2

ρρ
2
0(3) + gρ

2
ρ0(3)ρ3 − 1

2
α′

3g2
ωg2

ρω
2
0ρ

2
0(3), (21)

where

εRMF
k = 2

∑
q

∫ (√
p2 + m�

q
2 − m

) d3 p

(2π )3
(22)

is the kinetic energy contribution. The EOS in the RMF model
is determined by g2

σ /m2
σ , g2

ω/m2
ω, g2

ρ/m2
ρ , A, B, α′

3 and C. As
shown in Ref. [36], the first six parameters can be expressed
in terms of ρ0, E0, K0, E0

sym, L, and m�
s for a given C. In

the present study, we are able to vary another independent
EOS parameter Q0 by adjusting the value of C, so there are
a total of seven independent EOS parameters in the RMF
model. For arbitrary values of these EOS parameters, the field
equations [Eqs. (17)–(19)] do not necessarily have solutions
in asymmetric nuclear matter at high densities, especially for
ω0. However, we noticed that all RMF parametrization sets in
Ref. [39] have C > 0 and α′

3 > 0, which guarantee that the
field equations have solutions, and this condition is then used
to rule out unphysical EOS parameter sets. In addition, the
square of the coupling constants (g2

σ , g2
ω, and g2

ρ) calculated
from the macroscopic physics quantities should be positive,
adding to the limitation of the parameter space. For the quan-
titative limits of the parameter space from the present EDF of
the RMF model, we refer the reader to the Appendix.

D. Neutron star observables

In the present study, we assume that the neutron star
from the center to the surface contains the liquid core of
uniform neutron star matter, the inner crust consists of nu-
clear pasta phase, and the outer crust is composed of ion
lattice and relativistic electron gas. The neutron star matter
contains neutrons, protons, electrons, and possibly muons if
the charge chemical potential is large enough. The fraction
of each component is determined by the β equilibrium and
the charge-neutrality condition. The total energy density of
neutron star matter can be expressed as

V = ε + ρm + εl , (23)

where ε is obtained from the standard SHF [Eq. (12)], KIDS
[Eq. (14)], or RMF [Eq. (21)] model, and εl is the energy
density of electrons and muons by assuming that they are free
massive fermions. The pressure of neutron star matter can be

calculated through the relation

P = Pnuc + Pl (24)

where

Pnuc =
∑

q

μqρq − ε (25)

is the pressure from nucleons, with the chemical potential for
nucleons of isospin q obtained from μq = ∂ε/∂ρq, and Pl is
the pressure from leptons. The thermodynamic consistency
relation is satisfied for the global neutron star matter and
for each component. The transition density ρt between the
liquid core and the inner crust is self-consistently determined
with a thermodynamical approach as detailed in Refs. [40,41],
i.e., below the transition density the system is unstable and
satisfies the relation

∂μn

∂ρn

∂μp

∂ρp
−

(
∂μn

∂ρp

)2

< 0. (26)

The EOS of the inner crust is parametrized as

P = a + bV γ , (27)

where the default value of γ is taken to be 4/3 [42–44] while
results from other values are compared in order to investigate
the effect of the crust EOS on the constraints of the EOS
parameters, and a and b are determined by the continuity
condition [40] of the EOS at ρt and at the boundary between
the inner crust and the outer crust, with the density in the
latter case taken to be ρout = 2.46 × 10−4 fm−3. In the outer
crust, we use the BPS EOS [45,46] in the density range 6.93 ×
10−13 fm−3 < ρ < ρout, and we use the FMT EOS [45] in
the density range of 4.73 × 10−15 fm−3 < ρ < 6.93 × 10−13

fm−3. For special parameter sets such that the neutron star
matter is always stable, there is no core-crust transition, and
we use the EOS of neutron star matter in the whole density
range. More consistent studies using unified EOSs from core
to crust can be found in Refs. [47–50].

With the EOS from high to low densities constructed
above, the mass and radius of a neutron star can be calculated
through the TOV equation

dP(r)

dr
= − M(r)[V (r) + P(r)]

r2

[
1 + 4πP(r)r3

M(r)

]

×
[

1 − 2M(r)

r

]−1

, (28)

where M(r) is the gravitational mass inside the radius r of
the compact star and can be obtained from the integral of the
following equation:

dM(r)

dr
= 4πr2V (r). (29)

The tidal deformability � of compact stars during their merge
is related to the love number k2 through the relation � =
2
3 k2β

−5, with the latter given by [51–53]

k2 = 8
5 (1 − 2β )2[2 − yR + 2β(yR − 1)]

× {2β[6 − 3yR + 3β(5yR − 8)]
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+ 4β3[13 − 11yR + β(3yR − 2) + 2β2(1 + yR)]

+ 3(1 − 2β )2[2 − yR + 2β(yR − 1)] ln(1 − 2β )}−1.

(30)

In the above, β ≡ M/R is the compactness of the neutron star
and yR ≡ y(R) is the solution at the star surface to the first-
order differential equation

r
dy(r)

dr
+ y(r)2 + y(r)F (r) + r2Q(r) = 0, (31)

with

F (r) = r − 4πr3[V (r) − P(r)]

r − 2M(r)
,

Q(r) =
4πr

[
5V (r) + 9P(r) + V (r)+P(r)

∂P(r)/∂V (r) − 6
4πr2

]
r − 2M(r)

− 4

[
M(r) + 4πr3P(r)

r2(1 − 2M(r)/r)

]2

. (32)

For a given central density ρ(r = 0), the above equations can
be solved from the center (r = 0) to the surface (r = R) where
the density is lower than ρcut ≈ 4.73 × 10−15 fm−3. For spe-
cial parameter sets such that the neutron star matter is always
stable but the pressure becomes negative at low densities,
the above equations are solved from the center to where the
pressure becomes zero.

E. Bayesian analysis

To obtain the probability distribution functions (PDFs) of
EOS parameters under the constraints of astrophysical observ-
ables, we employ the Bayesian approach, and the analysis
method can be formally expressed as the Bayes’ theorem,

P(M|D) = P(D|M )P(M )∫
P(D|M )P(M )dM

, (33)

where P(M|D) is the posterior probability for the model M
given the data set D, P(D|M ) is the likelihood function or
the conditional probability for a given theoretical model M
to predict correctly the data D, and P(M ) denotes the prior
probability of the model M before being confronted with the
data. The denominator of the right-hand side of the above
equation is the normalization constant.

Since the coefficients in the standard SHF, KIDS, and RMF
model can now be expressed in terms of physics quantities,
we vary the physics quantities as model parameters in the
Bayesian analysis. Due to the different numbers of coeffi-
cients in different models, the numbers of independent model
parameters are also different. Table I lists the default values of
model parameters in each model as well as their prior ranges.
In the sensitivity analysis, we will check with the sensitivity of
a single model parameter within its prior range to astrophys-
ical observables, with the values of other model parameters
fixed at their default values. In the Bayesian analysis, we
will vary all independent model parameters within their prior
ranges. We try to set the default values of model parameters to
be the same so that the model dependence can be investigated
on the same basis. In the standard SHF model, we try to

TABLE I. Default values of macroscopic quantities in the stan-
dard SHF, KIDS, and RMF models used in the present study.
Quantities with asterisk are not independent ones but are calculated
from other independent quantities. For independent quantities, they
are varied within their prior ranges in the sensitivity analysis and
Bayesian analysis.

SHF KIDS RMF Prior range

ρ0 (fm−3) 0.16 0.16 0.16
E0 (MeV) −16 −16 −16
K0 (MeV) 260 260 260 220–260 [4–8]
Q0 (MeV) −323� −323 −389 −800–400 [55,56]
E 0

sym (MeV) 30 30 30 28.5–34.9 [9,10]
L (MeV) 60 60 60 30–90 [9,10]
Ksym (MeV) −105� −105 −127� −400–100 [55,56]
Qsym (MeV) 214� 214 474� −200–800 [55,56]
m�

s/m 0.8 0.8 0.73 0.5–0.9
m�

v/m 0.7 0.7 0.73� 0.5–0.9
GS (MeV fm5) 132 132
GV (MeV fm5) 5 5

get a two-solar-mass neutron star by setting the default value
of K0 as the upper limit from its prior range obtained from
studies on ISGMR [4–8], while values of other quantities are
taken as the default ones in the MSL0 force [34]. Q0, Ksym,
and Qsym are not independent quantities in the standard SHF
model but are calculated from other quantities. In the KIDS
model, Q0, Ksym, and Qsym can be varied independently, while
we set their default values as those calculated from the default
parameter set for the standard SHF model. Although Q0 is an
independent variable in the RMF model, the parameter space
is limited, so the largest available value of Q0 is chosen as
the default value. For the Dirac isoscalar effective mass in the
RMF model, we set its default value to be m�

s = 0.73m so that
it corresponds effectively to the same nonrelativistic isoscalar
effective mass [38,54] as in SHF and KIDS models. The Dirac
isovector effective mass is then m�

v = 0.73m from the present
RMF Lagrangian without δ-meson coupling.

For the standard SHF model, there are a total of ten
independent variables, and we choose to vary EOS parame-
ters p1 = K0 uniformly within 220–260 MeV from ISGMR
studies [4–8], and p2 = E0

sym and p3 = L uniformly within
28.5–34.9 MeV and 30–90 MeV, respectively, according to
Refs. [9,10]. For the KIDS model, there are a total of 13 inde-
pendent variables, and we choose to vary higher-order EOS
parameters p4 = Q0, p5 = Ksym, and p6 = Qsym uniformly
within their prior ranges obtained based on analyses of terres-
trial nuclear experiments and EDFs [55,56], in additional to
those in the standard SHF model. For the RMF model, there
are a total of seven independent variables, and we choose to
vary EOS parameters p1 = K0, p2 = E0

sym, p3 = L, and p4 =
Q0. We also vary m�

s/m and m�
v/m in the standard SHF and

KIDS models within their empirical ranges. In nonrelativistic
models, especially for KIDS [57], we expect that the effective
masses are decoupled from the nuclear matter EOS, to be
confirmed by the results. For the Dirac effective mass m�

s/m
in the RMF model, it is expected to be closely related to the
EOS, and we will vary it in the same empirical range.
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TABLE II. Most probable values and uncer-
tainties of adopted astrophysical observables for
the Bayesian analysis.

R1.4 (km) 11.725 ± 1.105 [15]
R2.08 (km) 13.7+2.6

−1.5 [13] and 12.39+1.30
−0.98 [14]

�1.4 190+390
−120 [18]

Mmax >2.08M� [12]
cs <1

Results of representative astrophysical observables from
a certain model parameter set are compared with data sets,
for which we choose the radius dexp

1 = R1.4 of a canonical
neutron star with M = 1.4M�, the radius dexp

2 = R2.08 of PSR
J0740+6620 with M = 2.08M�, and the tidal deformabil-
ity dexp

3 = �1.4 of a canonical neutron star. The likelihood
function, which describes quantitatively how well the theoret-
ical results d th

1,2,3,... reproduce the corresponding observables
dexp

1,2,3,..., is defined as

P[D(d1, d2, d3, . . . )|M(p1, p2, p3, . . . )]

= �i=1

{
1

2πσi
exp

[
−

(
d th

i − dexp
i

)2

2σ 2
i

]

× �(Mmax − 2.08M�)�(1 − cs)

}
, (34)

where the Heavyside functions put solid constraints that the
maximum mass of the neutron star should be larger than
2.08M� and the speed of sound cs = √

∂P/∂ε inside a neutron
star should be smaller than the speed of light, otherwise the
likelihood function is zero. σi are estimated from uncertainty
ranges for the astrophysical data. In the case of asymmetric
uncertainties, we use different values of σi for d th

i > dexp
i and

d th
i < dexp

i . Table II lists the values of dexp
i as well as the

corresponding uncertainty ranges to be used in the Bayesian
analysis.

III. RESULTS AND DISCUSSIONS

We first do sensitivity analysis by changing each individual
EOS parameter within its prior range and thus get a global
picture how the resulting astrophysical observables change
with these EOS parameters. Then, we vary all EOS param-
eters within their prior ranges and obtain the constraints on
these EOS parameters as well as their correlations from the
astrophysical data based on the Bayesian approach. We will
also discuss the posterior EOS from the resulting constrained
EOS parameters.

A. Sensitivity analysis

Figure 1 displays extensively how the core-crust transition
density and relevant astrophysical observables change with
each individual EOS parameters in the standard SHF model.
The transition density is seen to decrease almost linearly with
increasing L, as already observed in Refs. [40,41], while it
is not very sensitive to other EOS parameters. Both the radius

FIG. 1. Dependence of the core-crust transition density ρt (first
row), the radius R1.4 (second row) and the tidal deformability �1.4

(third row) of a canonical neutron star, the maximum mass of the
neutron star Mmax/M� (fourth row), and the radius R2.08 (fifth row)
of a neutron star with mass M = 2.08M� individually on K0, E 0

sym,
L, m�

s/m, and m�
v/m within their prior ranges, with the values of

other parameters fixed at their default values as in Table I, based
on the standard SHF model. Results from different values of EOS
coefficients γ for the inner crust are compared, together with those
without considering the crust (ρt = 0).

and the tidal deformability of a canonical neutron star increase
with increasing L but are not very sensitive to other EOS
parameters. The maximum mass of a neutron star is found
to be moderately sensitive to L but is not very sensitive to
other EOS parameters. We note that the weak sensitivity of
the maximum mass of a neutron star to K0 is due to the small
prior range of K0 constrained by ISGMR, and the resulting Q0,
which increases with increasing K0 according to Eq. (3) and
Fig. 16 of Ref. [35], also has a small range. If a neutron star
with mass M = 2.08M� can be achieved, its radius becomes
sensitive to most EOS parameters. We have also compared
results with different EOSs for crust. Using a soft EOS (γ =
1) for inner crust increases the radius of a canonical neutron
star by 1–2 km compared with a stiff EOS (γ = 1.5). Using
the EOS of the neutron star matter as that for the crust, or
identically by setting ρt = 0, the radius of a canonical neutron
star becomes even smaller. The EOS of the crust has a smaller
effect on the radius of heavier neutron stars, and has a minor
effect on the tidal deformability and the maximum mass of a
neutron star.

Figures 2 displays similar content as Fig. 1 but for the
KIDS model, and additional dependencies on Q0, Ksym, and
Qsym are shown. It is seen that the core-crust transition den-
sity is most sensitivity to Ksym rather than L. We note that
Ksym increases linearly with increasing L in the standard SHF
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FIG. 2. Similar to Fig. 1 but for the KIDS model showing dependence of observables individually on K0, Q0, E 0
sym, L, Ksym, Qsym, m�

s/m,
and m�

v/m within their prior ranges.

model as shown by Eq. (4) of Ref. [35]. Both the radius and
the tidal deformability of a canonical neutron star is sensitive
to L, Ksym, as well as higher-order EOS parameters Q0 and
Qsym. The maximum mass is again insensitive to K0, but most
sensitive to Q0, and moderately sensitive to E0

sym, L, and Qsym,
within their prior ranges. Again, if a neutron star with mass
M = 2.08M� can be achieved, its radius becomes sensitive to
most EOS parameters. The crust EOS has larger effects on
the radius of a canonical neutron star, smaller effects on the
radius of a heavy neutron star, and minor effects on the tidal
deformability and the maximum mass of a neutron star. In the
case of ρt = 0, the kinks for R1.4 and �1.4 at larger L are from
the negative pressure at low densities of neutron star matter,
so the TOV equation is solved until the pressure is zero rather
than a density cut, as mentioned in Sec. II D.

Figures 3 displays similar content as Fig. 1 but for the
RMF model, and the individual variables K0, Q0, E0

sym, L, and
m�

s/m are varied independently within their limited parameter
space with other parameters fixed at their default values. For
example, the available ranges of K0, Q0, and m�

s/m are much
smaller than the prior ranges, as shown in the Appendix.
Here Ksym is not an independent variable, and the transition
density decreases almost linearly with increasing L, similar to
the standard SHF model. Incorporating Q0 as an independent
variable, the radius, the tidal deformability, and the maximum

mass of a neutron star become sensitive to Q0, similar to the
KIDS model. The moderate sensitivities of most astrophysical
observables to the Dirac effective mass m�

s/m is a special
feature in the RMF model compared to nonrelativistic models.
The considerable sensitivity of the neutron-star radius and
the lower sensitivity of the tidal deformability and maximum
mass to the crust EOS are also observed in Fig. 3.

B. Constraints on EOS parameters

For the default scenario by considering γ = 4/3 for the
EOS of the inner crust, we now display in Fig. 4 the posterior
correlated PDFs between lower-order and higher-order EOS
parameters in both the isoscalar and isovector channels, as
well as the correlated PDFs between the isoscalar and isovec-
tor EOS parameters. In the standard SHF model, it is seen
that a smaller L is generally associated with a larger K0, due
to the constraint of a large Mmax but a small R1.4. A slightly
positive correlation between L and E0

sym is observed in the
same model, likely due to the opposite dependence of neutron
star radii, �1.4, and Mmax on L and E0

sym, as shown in Fig. 1.
In the KIDS model, where both lower-order and higher-order
EOS parameters can be varied independently, there are no
nontrivial correlations, except for the slightly negative correla-
tion between L and Ksym, likely due to the similar dependence
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FIG. 3. Similar to Fig. 1 but for the RMF model showing de-
pendence of observables individually on K0, Q0, E 0

sym, L, m�
s/m, and

m�
v/m within their prior ranges.

of neutron star radii and �1.4 on L and Ksym, as shown in
Fig. 2. In both the KIDS and RMF models, the sharp cut on
the correlated PDF in the (Q0, K0) plane is from the criterion
Mmax > 2.08M� in the definition of the likelihood function
[Eq. (34)]. Similarly to the situation in the KIDS model, there
are no significant correlations between K0 and Q0, K0 and L,
or E0

sym and L in the RMF model.
Integrating over all the other variables leads to the one-

dimensional PDF of each individual physics quantity. We
compare in Fig. 5 the posterior PDFs of EOS parameters
and nucleon effective masses in the three models from the
constraints of astrophysical observables using different crust
EOSs. Q0, Ksym, and Qsym in the standard SHF model are
not independent variables, but are constrained through the
posterior PDFs of other EOS parameters. Comparing the de-
fault scenario (γ = 4/3), without considering crust (ρt = 0)
may lead to significantly different constraints on most EOS
parameters, depending on the chosen EDFs. A too soft EOS
for the inner crust (γ = 1) may lead to a smaller L and/or
a larger Ksym, compared with results from γ = 4/3 and 1.5.
Basically, the astrophysical observables do not put much con-
straint on K0 and E0

sym. On the other hand, a small L is
favored by the small R1.4, while a large Ksym is favored by
the large R2.08, in all three models for the default case of
γ = 4/3. The constraint on Ksym is roughly consistent with
−200 < Ksym < 0 MeV extracted in Refs. [58,59] based on
the KIDS EDF. A large Qsym is favored by the neutron star
radii in the standard SHF model, while Qsym is not much
constrained in the KIDS and RMF models. The constraint of
Mmax favors a large Q0 in the KIDS and RMF models. Due
to the limited prior ranges of Q0 and Ksym in the standard

SHF model and Ksym in the RMF model, which are calculated
from other variables, the corresponding posterior PDFs of
these higher-order EOS parameters are narrower compared to
those in the KIDS model. In the standard SHF model there are
some constraints on the nonrelativistic p mass of nucleons,
since these effective masses are related to higher-order EOS
parameters, e.g., m�

s is related to Q0 and Ksym according to
Eqs. (3)–(5) in Ref. [35]. In the KIDS model, where higher-
order EOS parameters can be varied independently, there are
almost no constraints on these nonrelativistic effective masses.
In the RMF model, where the Dirac mass is closely related
to the EOS, the constraint of Mmax favors a smaller Dirac
effective mass of nucleons, corresponding to a stiffer ESNM.

C. Constraints on EOS

The parameters of effective models are constrained by
the astrophysical observables through the Bayesian analysis,
resulting in the constraints on the EOS of nuclear matter
characterized by ESNM(ρ) and Esym(ρ) according to the EDF.
Based on the three effective models, we compare the prior and
posterior probability distributions of ESNM(ρ) and Esym(ρ)
in Fig. 6, with the prior distribution obtained based on pa-
rameter ranges in Table I, and the posterior distribution from
the Bayesian analysis under the constraints of astrophysical
observables. Since the major constraints from the adopted
astrophysical observables are on the EOS around and above
the saturation density, these figures are plotted in the density
range from 0.5ρ0 to 3ρ0. One sees that the prior distributions
of both ESNM(ρ) and Esym(ρ) are broader in the KIDS model
than in the standard SHF model, due to the larger parameter
space in the KIDS model. While a broad prior distribution of
ESNM(ρ) is seen in the RMF model, that of Esym(ρ) is very
different from the other two models. A large neutron star mass
favors a stiffer ESNM(ρ), especially for the KIDS model and
the RMF model, where Q0 is incorporated as an independent
variable. The posterior ESNM(ρ) is even stiffer in the RMF
model than in the KIDS model, since in the former case the
resulting smaller Dirac effective mass also stiffens the EOS.
While a very stiff Esym(ρ) is still favored to support a heavy
neutron star in the standard SHF model, the radius data mostly
favors a moderately soft Esym(ρ) at suprasaturation densities,
corresponding to a small L and a large Ksym from Fig. 5, based
on all three models. The resulting soft Esym(ρ) is qualitatively
consistent with results from other studies based on nucleonic
models [5,30,60–62], where different astrophysical observ-
ables are adopted.

The symmetry energy at suprasaturation densities is of
special interest for the nuclear physics community, and we
compare its values at ρ = 1.5ρ0 and 2ρ0 from the constraints
of astrophysical observables based on the three effective mod-
els in Fig. 7. As expected, the constraint on Esym(1.5ρ0)
is stronger than that on Esym(2ρ0). One sees that the RMF
model gives the most stringent constraint of the symmetry
energy at suprasaturation densities, mostly due to the narrow
prior range of Esym, compared to the other two models. In-
terestingly, despite the different widths, the posterior PDFs
of Esym(1.5ρ0) peak around 38 MeV and those of Esym(2ρ0)
peak around 48 MeV for all three models. Within 68% con-
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FIG. 4. Posterior correlated PDFs in the (L, K0) and (L, E 0
sym) planes in the standard SHF model (top row), in the (Q0, K0), (L, K0), (L,

E 0
sym), and (L, Ksym) planes in the KIDS model (middle row), and in the (Q0, K0), (L, K0), and (L, E 0

sym) planes in the RMF model (bottom row)
from the constraints of astrophysical observables.

fidence intervals, we obtain Esym(1.5ρ0) = 38+6
−5 MeV in the

standard SHF model, Esym(1.5ρ0) = 38+6
−5 MeV in the KIDS

model, and Esym(1.5ρ0) = 38+4
−4 MeV in the RMF model,

and we obtain Esym(2ρ0) = 48+15
−11 MeV in the standard SHF

model, Esym(2ρ0) = 48+8
−15 MeV in the KIDS model, and

Esym(2ρ0) = 48+5
−6 MeV in the RMF model. Our constraints

FIG. 5. Comparison of the posterior PDFs of K0, Q0, E 0
sym, L, Ksym, Qsym, m�

s , and m�
v in the standard SHF model (top row), the KIDS

model (middle row), and the RMF model (bottom row) from the constraints of astrophysical observables with different crust EOSs. Results
from different crust EOSs with different coefficients γ are compared, and the prior PDF of each individual quantity is also displayed.
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FIG. 6. Probability distributions of ESNM(ρ ) and Esym(ρ ) from parameter ranges in Table I (prior) and under the constraints of astrophysical
observables (posterior) in the standard SHF model (top), the KIDS model (middle), and the RMF model (bottom).

of Esym(2ρ0) are in good agreement with the fiducial value
of about 47 MeV (see Fig. 1 of Ref. [20] and corresponding
discussions).

20 40 60 80
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RMF
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FIG. 7. Posterior and prior PDFs of Esym(ρ ) at ρ = 1.5ρ0 (a) and
2ρ0 (b) in the standard SHF model, the KIDS model, and the RMF
model.

IV. SUMMARY AND OUTLOOK

Based on three effective nuclear interactions, we have stud-
ied the constraints on the EOS of both isoscalar and isovector
channels from adopted astrophysical observables using the
Bayesian approach. In all three models, i.e., the standard SHF
model, the KIDS model, and the RMF model, a stiff isoscalar
EOS is favored by the heavy mass of PSR J0740+6620. While
a soft symmetry energy with a small L is favored by the
empirical radii of canonical neutron stars, Ksym > −200 MeV
is favored by the radius of PSR J0740+6620. Due to the
limit number of independent parameters in the SHF model,
higher-order EOS parameters are related to lower-order ones,
and correlation between EOS parameters are observed under
the astrophysical constraints. With higher-order EOS param-
eters incorporated as independent variables, there are almost
no such correlations between different EOS parameters in the
KIDS and RMF models. The resulting smaller Dirac effective
mass in the relativistic model further stiffens the isoscalar
EOS compared to the nonrelativistic models. In the RMF
model, the parameter space is intrinsically limited in order to
get physical solutions of model coefficients, and this leads to a
different and actually more narrow constraint on the symmetry
energy at suprasaturation densities. The symmetry energy at
twice saturation density is constrained to be 48+15

−11 MeV in
the standard SHF model, 48+8

−15 MeV in the KIDS model, and
48+5

−6 MeV in the RMF model, within their 68% confidence
intervals, and these values are in good agreement with those
from state-of-art studies.
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FIG. 8. Illustration of the limited parameter space in the K0-Q0 plane (a), the m�
s/m-Q0 plane (b), and the E 0

sym-L plane (c) with other
parameters set as their default values in Table I in the RMF model.

In the present study, three models with different num-
bers of free parameters and EDF forms are compared. While
there are some model dependencies, the constraints from the
adopted astrophysical observables on the EOS, especially on
the Esym(ρ) from ρ = ρ0 to 2ρ0, are robust and less sensitive
to model details. Generally, increasing the number of parame-
ters enhances the flexibility of the model and further enables it
to explain better the data. On the other hand, a model with less
number of free parameters but has a stronger prediction power
is always favored. With the limited astrophysical observables
adopted in the present study, although we are unable to judge
the effectiveness of the three models, some lessons have been
learned. On the other hand, while all three models are nucle-
onic models, one can consider them as effective models to
mimic the high-density EOS with hyperon or quark degrees of
freedom. Nonparametrized models, e.g., studies using Gaus-
sian processes [29], are free from the possible hadron-quark
phase transition at high densities. Furthermore, it will be of
great interest to constrain the EOS parameters from not only
astrophysical observables but also nuclear structure data, e.g.,
neutron-skin thickness and nucleus resonances, based on dif-
ferent models. In that case, we can constrain the EOS from
high to low densities, and have a deeper understanding on the
performance of EDFs from effective nuclear interactions.
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APPENDIX: LIMITED PARAMETER SPACE
FOR THE RMF MODEL

In the present study on neutron stars using the Lagrangian
form as Eq. (16) in the RMF model, we set additional
constraints of C > 0 and α′

3 > 0, otherwise the field equa-
tions [Eqs. (17)–(19)] do not necessarily have solutions in
asymmetric nuclear matter at high densities for an arbitrary
parameter set, especially for ω0. In addition, the square of
the coupling constants (g2

σ , g2
ω, and g2

ρ) calculated inversely
from macroscopic physics quantities must be positive. These
lead to certain intrinsic limits of the parameter space for the
present EDF of the RMF model. For instance, with other
parameters set as their default values as in Table I, the value
of Q0 can only be varied within about −400 to −800 MeV by
changing the value of K0, mapping out a much smaller space
compared to its prior range, as shown in Fig. 8(a). We have
also observed that the available values in the m�

s/m-Q0 plane
are quite limited as shown in Fig. 8(b). In addition, a large L
cannot be achieved for a small E0

sym as shown in Fig. 8(c).
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