
PHYSICAL REVIEW C 107, 055502 (2023)

113Cd β-decay spectrum and gA quenching using spectral moments
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We present an alternative analysis of the 113Cd β-decay electron energy spectrum in terms of spectral moments
μn, corresponding to the averaged values of nth powers of the β particle energy. The zeroth moment μ0 is
related to the decay rate, while higher moments μn are related to the spectrum shape. The here advocated
spectral-moment method (SMM) allows for a complementary understanding of previous results, obtained using
the so-called spectrum-shape method (SSM) and its revised version, in terms of two free parameters: r = gA/gV

(the ratio of axial-vector to vector couplings) and s (the small vectorlike relativistic nuclear matrix element,
s-NME). We present numerical results for three different nuclear models with the conserved vector current
hypothesis (CVC) assumption of gV = 1. We show that most of the spectral information can be captured by the
first few moments, which are simple quadratic forms (conic sections) in the (r, s) plane: An ellipse for n = 0 and
hyperbolas for n � 1, all being nearly degenerate as a result of cancellations among nuclear matrix elements.
The intersections of these curves, as obtained by equating theoretical and experimental values of μn, identify
the favored values of (r, s) at a glance, without performing detailed fits. In particular, we find that values around
r ≈ 1 and s ≈ 1.6 are consistently favored in each nuclear model, confirming the evidence for gA quenching in
113Cd, and shedding light on the role of the s-NME. We briefly discuss future applications of the SMM to other
forbidden β-decay spectra sensitive to gA.
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I. INTRODUCTION

The search for the rare process of neutrinoless double beta
decay (0νββ), as well the study of its implications for the
fundamental nature of the neutrino field (Dirac or Majorana),
represent a major topic in both particle and nuclear physics
[1–3]. The predicted rate of this decay, as well as of other
weak-interaction nuclear processes, depends sensitively on
the effective value of the weak axial-vector coupling gA that,
in nuclear matter, appears to be generally different [4,5] from
the vacuum value gvac

A = 1.276 [6,7]. In particular, effective
quenching factors q = gA/gvac

A < 1 have been discussed in a
variety of observed β and ββ decays, whose Gamow-Teller
(GT) nuclear matrix elements are reduced by factors of q and
q2, respectively; see, e.g., [4,5,8–11].

While the theoretical connections among disparate values
of q and their physical origin are still subject to research
[4,12–14], from a phenomenological viewpoint it makes sense
to study observables that appear to be particularly sensitive to
possible quenching effects. In this context, highly forbidden
nonunique β decays offer a very interesting avenue, since both
their calculated decay rates and energy-spectrum shapes are
found to change very rapidly around quenched values gA ≈ 1,
due to subtle cancellations among large nuclear matrix ele-
ments (NME) [15].

For the fourth-forbidden nonunique β decay of 113Cd,
detailed experimental data are available for the energy

spectrum S(we) in terms of the β energy we [16,17]. The data
constrain both the overall decay rate (or, analogously, the
half-life) and the energy spectrum shape (as a function of we).
It is highly nontrivial to match the corresponding theoretical
predictions with data, since the values of gA that best fit
the decay half-life are not necessarily the same that best fit
the decay spectral shape and may be in conflict [15,17,18],
although both indicate large NME cancellations. These two
approaches to constraining gA in 113Cd β decay, dubbed as
half-life and spectrum-shape methods [18], have only recently
been reconciled by varying a small parameter multiplied by
the vector coupling gV, namely, the so-called small relativistic
nuclear matrix element s-NME [19] (VM(0)

431 in the notation
of Behrens and Bühring [20]), the estimates of which, from
the conserved vector current (CVC) hypothesis or based on
specific nuclear models, are rather uncertain but crucial for
forbidden decays [21,22].

In particular, by treating the s-NME as a free parame-
ter to be determined by data in a revised version of the
spectrum-shape method (SSM) [19], both the 113Cd half-life
and spectrum data in [19,23] have been found to match well
the theoretical predictions of different models, with consistent
values of the quenching factor and the s-NME. These nontriv-
ial results, which represent a strong indication for gA quench-
ing in 113Cd, deserve in our opinion further analysis, aiming
at a better understanding of the comparison of theory and
data, in light of recent and future investigations of forbidden
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β-decay spectra in other nuclides [22,24,25]. In particular,
we aim at reducing the relevant spectral information to a
relatively small set of quantities or parameters to be studied.

We start from the basic property that any smooth spectrum
S(we) can be characterized by (and reconstructed from) the
series of its moments μn, namely, by the spectrum-averaged
values of wn

e for n � 0 [26,27]. This approach to spectra
allows for the unification of the half-life method (connected
to μ0) and the SSM (connected to μ1,2,3,...) in a single
“spectral-moment method” (SMM). We show that a few
moments μn can capture with high accuracy the whole
spectral information in terms of the two free parameters,
r = gA/gV and s = s-NME, where gV is the vector coupling
(assumed to be unity as in [19]). Furthermore, since the
moments μn are simple quadratic forms in (r, s), the
information contained in the infinite family of spectra
S(we | r, s) can be eventually discretized, with significant
conceptual and numerical advantages.

Concerning experimental data, herein we use the absolute
113Cd β-decay spectrum of [16] including the energy cali-
bration and systematics assessment performed in [28]. Con-
straints on (r, s), as obtained by comparing theoretical and
experimental moments, are interpreted in terms of intersec-
tions of isomoment curves (an ellipse for μ0 and hyperbolas
for μ1,2,3,...). In each of three different nuclear models for
the NME, such intersections are closest for rather similar
values of the (r, s) parameters. Since most of the relevant
features appear to be captured by just the first few moments,
the method can be pragmatically applied to future forbidden
β-decay measurements in different nuclei, where the available
spectral data might be more limited than for 113Cd.

Our work is structured as follows. In Sec. II we discuss
the spectral-moment method, the adopted notation, and the
numerical values of the first few moments. In Sec. III we
discuss the implications of equating the theoretical and
experimental moments in terms of the (r, s) parameters. We
find evidence for r ≈ 1, corresponding to a multiplicative
renormalization of the axial-vector coupling, as well as
for |s| ≈ 1.6 (with a preference for positive values of s),
corresponding to an additive contribution to vectorlike
NME, consistent with earlier findings utilizing a different
approach and independent data [19]. We summarize our
results and consider further applications of the SMM in
Sec. IV. Technical aspects about NMEs and quadratic forms
are discussed in Appendices A and B, respectively.

II. SPECTRAL MOMENTS: METHOD, NOTATION,
AND NUMERICAL VALUES

In this section we define the notation used in the SMM to
describe the 113Cd β-decay spectra (experimental and the-
oretical) in terms of a truncated set of spectral moments.
Numerical values for such moments are also derived.

A. β-decay spectrum notation

Following [15,18,19], we introduce a dimensionless energy
parameter we,

we = We

me
= 1 + Te

me
, (1)

where We and Te are, respectively, the total and kinetic ener-
gies of the electron with mass me.

The energy spectrum S(we) is defined as the fractional
number of decays ne per single nucleus and per unit of time t
and of energy we:

S(we) = d2ne

dt dwe
, (2)

where we ∈ [1, w0], and the endpoint w0 is set by the Qβ

value of the decay (w0 = 1 + Qβ/me). When needed, exper-
imental (e) and theoretical (t) spectra are distinguished by
superscripts,

Se = Sexpt, (3)

St = Stheo. (4)

In order to link our formalism with common nuclear
physics notation, we remind that the total decay rate λ (or,
equivalently, the half-life t1/2) is obtained by integrating S(we)
over the interval [1, w0]:

λ =
∫ w0

1
S(we) dwe = ln 2

t1/2
. (5)

However, we shall not use either λ or t1/2 hereafter, for the
following reason.

Due to increasingly high backgrounds at low energy, the
experimental spectrum is typically reported above a detector-
dependent kinetic energy threshold Tthr > 0 [16,17,19,28] that
defines the we threshold as wthr = 1 + Tthr/me > 1. There-
fore, the decay half-life t1/2 can be estimated only by
extrapolating the measured Se spectrum down to T → 0; see,
e.g., [16]. However, any adopted extrapolation function may
well be different from the computed theoretical spectra in the
range [1, wthr] below threshold. In order to avoid potential bi-
ases, we shall thus consistently compare the experimental and
theoretical spectra only in the energy range above threshold,

we ∈ [wthr, w0]. (6)

B. Spectral moments μn

It is well known from statistics that a smooth spectrum
S(we), defined over an interval we ∈ [wthr, w0], can be de-
scribed by a series of moments {μn}n�0 [26,29]. The zeroth
moment, defined as

μ0 =
∫ w0

wthr

S(we) dwe, (7)

encodes the overall spectrum normalization, while the first
and higher moments, defined as

μn =
∫ w0

wthr
S(we) wn

e dwe∫ w0

wthr
S(we) dwe

(n � 1), (8)

encode the spectrum shape information, via the averaged val-
ues of increasingly high powers of the main variable.1

1The so-called central moments, not used herein, are alternatively
defined by averaging the powers (we − μ1)n for n � 2. The second
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Note that, in our case, μ0 has the dimension of an in-
verse time, being defined as the decay rate in the interval
[wthr, w0] above threshold (see also Eq. (5) for the total rate
in [1, w0]). All the other moments are instead dimensionless.
When needed, moments of theoretical and experimental spec-
tra will be distinguished by superscripts:

S = St → μn = μt
n, (9)

S = Se → μn = μe
n. (10)

There is vast, interdisciplinary literature on the inverse
moment problem, namely, on possible methods to reconstruct
the original function S(we) from a finite number of moments
{μn}n=0,...,N with some approximations [27,30,31]. While all
methods tend to improve their accuracy for increasing N ,
some may converge faster or better than others, depending on
specific features of the function(s) S(we).

We have checked that a simple reconstruction algorithm
based on an expansion in Legendre polynomials, as described
in [32], is sufficient enough to allow for the reconstruction of
the 113Cd spectra at subpercent level (more accurately than is
needed for our purposes) in the entire parameter space relevant
for this work, with just N = 6 moments. Representative ex-
amples of theoretical spectra reconstructed from a finite set of
moments are shown below in Sec. II D. Such results are con-
sistent with (but more general than) the findings of Ref. [16],
where the experimental spectrum was well approximated in
terms of a sixth-order polynomial function.

We shall thus limit ourselves to N = 6 and consider the
truncated set of moments

{μn} = μ0, μ1, . . . , μ6. (11)

Actually, as we shall see in several ways, interesting results
can be obtained by considering just the first two or three
moments out of the above set.

C. Experimental spectrum Se(we)

In this work we consider the experimental spectrum Se(we)
of 113Cd as measured in [16], after a recalibration of the
energy scale and the deconvolution of resolution effects as de-
scribed in [28] (see Fig. 29 therein). The experimental thresh-
old Tthr = 26 keV [28] and the endpoint Qβ = 323.83 keV
[33] define the analysis range:

we ∈ [wthr, w0] = [1.051, 1.634]. (12)

In this range, the experiment observed Ne = 2.222 × 106

events for Nd = 8.858 × 1022 decaying nuclei over a data-
taking time t = 9.929 × 106 s [16,28]. The corresponding
decay rate provides the zeroth moment μe

0 = Ne/(Nd t ):

μe
0 = 2.526 × 10−24 s−1. (13)

Figure 1 shows the experimental spectrum in the range of
Eq. (12), as taken from [28] with the above normalization.
The spectrum is reported in bins of width �we = 2 keV/me,

central moment is the variance, the third the skewness, and the fourth
the kurtosis.

FIG. 1. Experimental energy spectrum for 113Cd β decay (cen-
tral values and total 1σ errors) as taken from [28]. See the text for
details.

together with total (statistical and systematic) uncertainty in
each bin.

From the above Se(we) we derive the following values for
the experimental moments (up to N = 6):

μe
1 = 1.291, (14)

μe
2 = 1.686, (15)

μe
3 = 2.226, (16)

μe
4 = 2.970, (17)

μe
5 = 4.004, (18)

μe
6 = 5.452. (19)

We postpone the discussion of related uncertainties to Sec. III.
A final comment is in order. In [16], by extrapolating the

observed spectrum below threshold (i.e., for we ∈ [1, 1.051]),
the total number of decays was estimated to be N ′

e = 2.40 ×
106 for the exposure Nd t , corresponding to a decay rate
λ = N ′

e/(Nd t ) = 2.73 × 10−24 s−1 and to the quoted half-life
t1/2 = ln 2/λ = 8.04 × 1015 yr. As previously mentioned, we
do not use extrapolated quantities such as λ or t1/2 in this
work.

D. Theoretical spectrum St (we) and its free parameters (r, s)

As discussed in [18] and references therein, the theoretical
β-decay spectrum St (we) can be generally expressed as

St (we) = ln 2

κ
C(we) pwe (w0 − we)2 F0(Z, we), (20)
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where C(we) is the so-called shape factor, p is the electron
momentum in units of me, and F0(Z, we) is the Fermi function
with the final nuclear state having Z = 49. In contexts where
extreme precision is required, small correction terms account-
ing for, e.g., radiative effects and atomic screening become
important. For the purposes of this work these ≈1% correc-
tions are insignificant but have been included as described in
[18]. The conversion constant κ reads

κ = 2π3 ln 2

m5
e (GF cos θC )2

= 6289 s, (21)

where GF is the Fermi constant and θC is the Cabibbo
angle. For nonunique decays the shape factor has a compli-
cated expression including universal kinematic factors and
nuclear matrix elements (NME). The latter capture all the
nuclear-structure dependent information regarding the decay.
In the formalism of Behrens and Bühring [20] the NME
arise from a multipole expansion of the nuclear current. The
NME are then expanded as a power series resulting in an
expression including vector NME VM(m)

KLs and axial-vector
NME AM(m)

KLs. The matrix elements with the smallest angular
momenta K and L allowing for the decay dominate, with
the first term in the power series, m = 0, being by far the
most important. For fourth-forbidden unique decays there are
four leading-order NME, with the dominant matrix elements
being VM(0)

440 and AM(0)
441, and with significantly smaller con-

tributions coming from VM(0)
431 and AM(0)

541. The expansion
can be further carried out to next-to-leading order, result-
ing in a total of 45 NME [18] that depend on we and on
powers of the nuclear radius R = 1.2 A1/3 fm = 5.8 fm. The
NME need to be numerically computed with specific nuclear
models. Following [18,19] we consider the microscopic in-
teracting boson-fermion model (IBFM-2), the microscopic
quasiparticle-phonon model (MQPM), and the interacting
shell model (ISM). First we discuss general aspects of the
spectrum structure, and then report model-dependent numeri-
cal results in terms of spectral moments.

In general, C(we) is a sum over squares and products of
linear combinations of NME, each being multiplied by either
the vector coupling gV or the axial-vector coupling gA. The
couplings arise in the formalism of beta decays as a means
to normalize the hadron current when moving from the quark
level to the level of nucleons, and each axial-vector matrix
element is always preceded by gA and each vector matrix
element by gV. By defining the ratio

r = gA/gV (22)

one can formally write St (we) as a quadratic form in r [15],

St = g2
V

(
St

V + rSt
VA + r2St

A

)
, (23)

where St
A includes only axial-vector NME, St

V only vector
NME, and St

VA is a mix of vector and axial-vector NME.
Hereafter we shall assume as in [19], in accordance with the
conserved vector current (CVC), that

gV = 1, (24)

while r will be treated as a free theoretical parameter to
be fixed by the data. We shall comment on deviations from
Eq. (24) in Sec. III.

As discussed in detail in [18], the quadratic form in
Eq. (23) entails delicate cancellations among large NME for
r ≈ 1, where agreement between theory and data can be usu-
ally found in terms of either the spectrum normalization [15]
or its shape [17], but not both at the same time (as far as r is
the only free parameter) [15,18]. In particular, the main NME
cancellation term turns out to be the square of a binomial, up
to subleading NME terms ε and ε′:

St ∝ (
VM(0)

440 − α AM(0)
441 r + ε

)2 + ε′, (25)

where α is a numerical coefficient of O(1) and the M’s are
“large” NME, typically of O(102)–O(103) in units of fm4; see
[18] for details of the notation and for numerical M values
in the various nuclear models. For r ≈ 1, it turns out that the
two large M’s tend to cancel each other, leaving a residual of
O(1) [18]. Therefore, a subleading term ε∼O(1) may still play
a significant role, especially if its numerical value is rather
uncertain.

It was realized in [19,21,22] that this role can be played by
so-called small relativistic NME, dubbed the s-NME in [19]
and here just as s for simplicity, where

s = VM(0)
431, (26)

in units of fm3. On the one hand, with very simple (though un-
realistic) assumptions related to the nuclear-structure aspects
of the decay, the CVC hypothesis would imply (in our adopted
units) the numerical relation VM(0)

431 = 0.0678(R−1) VM(0)
440

[19], leading to expected values s ∼ O(1–10). On the other
hand, numerical evaluations of s either give s = 0 due to
model-specific limitations relating to a restricted model space
(in the IBFM-2 and ISM models) or to s � 0.4 (in the MQPM
model) [18]. A more detailed discussion of the uncertain esti-
mates of s = VM(0)

431 as compared with VM(0)
440 and AM(0)

441 is
presented in Appendix A.

Given such uncertainties, in [19] the s-NME was simply
assumed as a free parameter, presumably of O(1), to be con-
strained by comparison with the data (together with gA). It
turns out that, in this way, both the experimental spectrum
shape and its normalization can be well reproduced theoreti-
cally [19]. In the same spirit, we treat (r, s) as free parameters
in our analysis.

Figure 2 shows three representative theoretical spectra
St (we) calculated in the IBFM-2 model (dashed lines) for
three different (r, s) values. Their accurate reconstruction
through a set of moments truncated at N = 6 is also shown
in the left panel (dotted lines). Analogously, the right panel
shows the reconstruction truncated at N = 2: It can be seen
that the main qualitative features of the spectra are already
captured by using just the first three moments μ0, μ1, and μ2.
Similar results hold for the spectra calculated in the MQPM
and ISM models (not shown). The analysis in Sec. III will
confirm that, in general, a few moments are enough to derive
useful indications on the (r, s) parameters.

In particular, by using as free parameters both r and s, it
appears from Fig. 2 that one can alter both the peak position
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FIG. 2. Representative examples of theoretical spectra St as calculated in the IBFM-2 model (dashed lines), for three representative pairs
of the (r, s) parameters. The reconstruction of the spectra based on a truncated set of moments is also shown (dotted lines) for N = 6 (left
panel) and N = 2 (right panel).

and the normalization of the theoretical spectrum, and may
thus hope to match the experimental spectrum in Fig. 1. It
turns out that this result is achieved for typical values r ≈ 1
(confirming gA quenching) and s ∼ O(1) (in the expected
numerical ballpark), where the large NME cancellations men-
tioned in the context of Eqs. (25) and (26) take place. We shall
recover very similar results, not only by using an independent
data set [16,28] (as reported in Fig. 1), but by adopting a
different perspective, based on the following generalization of
the quadratic form in Eq. (23).

We observe that, since s adds to the NME terms multiplied
by gV, it must appear up to second power in St (ω). Moreover,
a mixed dependence ∝ r s must emerge from the VA term in
Eq. (23). Therefore, the spectrum St (we) must be a quadratic
form in both r and s, as well as any integral over it involving
wn

e (with n � 0),∫ w0

wthr

St (we) wn
e dwe =

∑
i+ j�2

an
i j ri s j, (27)

where the numerical coefficients an
i j (with n being a super-

script, not a power) are expressed in units of s−1 as the
spectrum St . The zeroth moment μt

0(r, s) corresponds to the
above quadratic form with n = 0, while the nth moment
μt

n(r, s) for n � 1 corresponds to a ratio of quadratic forms
(with index n at numerator and zero at denominator).

In practice, to evaluate the an
i j coefficients for a given

nuclear model at fixed n, one just needs to calculate the energy
spectrum St (we | r, s) at six arbitrary points (r, s), evaluate the
integral on the left-hand side (l.h.s.) of Eq. (27), and solve in
the six unknowns {an

i j}.2 Table I reports the numerical {an
i j}

values (in units of 10−24 s−1) up to N = 6, for the three
nuclear models discussed in this work.

2To be sure, we have numerically checked the validity of Eq. (27)
over a dense grid sampling the relevant (r, s) parameter space, in all
of the three nuclear models (IBFM-2, MQPM, and ISM).

Summarizing, we have discretized the continuous informa-
tion contained in the infinite family of spectra St (we | r, s) into
a small number of moments μt

n, each depending on simple
quadratic forms in the free parameters r and s (involving six
coefficients an

i j at any n). This approach greatly simplifies
the numerical calculation of the theoretical moments, as well
as their comparison with the experimental moments μe

n, as
discussed below.

III. SPECTRAL MOMENT METHOD: COMPARISON
OF THEORY AND DATA

In this section we explore the implications of equating a
finite set of theoretical and experimental moments:

μt
n(r, s) = μe

n (n = 0, 1, . . . , N ). (28)

Each of the above equations sets a quadratic form in (r, s)
equal to a constant, and thus leads to a conic section in the
corresponding coordinates. It turns out that, for n = 0, the
conic section is a slanted and elongated ellipse, while for
n � 1 the conics form a bundle of hyperbolas. In the ideal
case (perfect match between theory and data), all these curves
would intersect in a single (r, s) point; in real cases, the var-
ious crossing points will cluster with some dispersion around
a preferred (r, s) region. The smaller the dispersion, the better
the agreement between the experimental and theoretical mo-
ments and spectra. In Appendix B we discuss general features
of the conic sections and of their crossings, that allow one to
visualize the effects of large NME cancellations, as well as
to interpret previous fit results obtained in [19] through the
revised spectrum shape method. Below we show our results in
the (r, s) plane and discuss the preferred parameter values in
the three nuclear models considered.

Figure 3 shows the loci of points in the (r, s) plane ful-
filling Eq. (28) up to N = 6, for the models IBMF-2 (left),
MQPM (middle), and ISM (right). In each panel, one can
see (part of) the slanted ellipse determined by the zeroth
moment, and the bundle of hyperbolas determined by the
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TABLE I. Coefficients an
i j of the quadratic forms parametrizing the theoretical moments up to N = 6, in each of the three nuclear models

considered in this work. The an
i j are expressed in units of 10−24 s−1.

Model n an
20 an

02 an
11 an

10 an
01 an

00

0 +2.8998 +0.7914 +2.8163 −5.8662 −2.9952 +3.1087
1 +3.6046 +1.0225 +3.5722 −7.2731 −3.7984 +3.8552
2 +4.5331 +1.3358 +4.5835 −9.1214 −4.8722 +4.8357

IBFM-2 3 +5.7690 +1.7640 +5.9492 −11.574 −6.3214 +6.1368
4 +7.4305 +2.3542 +7.8102 −14.862 −8.2949 +7.8803
5 +9.6855 +3.1738 +10.368 −19.312 −11.005 +10.239
6 +12.774 +4.3204 +13.912 −25.390 −14.758 +13.460
0 +20.086 +0.7914 +7.5565 −41.059 −7.8113 +21.146
1 +24.911 +1.0225 +9.5846 −50.905 −9.9058 +26.223
2 +31.253 +1.3358 +12.298 −63.839 −12.706 +32.892

MQPM 3 +39.676 +1.7640 +15.962 −81.005 −16.485 +41.740
4 +50.976 +2.3542 +20.955 −104.01 −21.632 +53.598
5 +66.281 +3.1738 +27.817 −135.15 −28.700 +69.640
6 +87.205 +4.3204 +37.325 −177.68 −38.485 +91.542
0 +17.509 +0.7914 +7.0682 −33.572 −6.8313 +16.166
1 +21.713 +1.0225 +8.9655 −41.627 −8.6632 +20.050
2 +27.238 +1.3358 +11.504 −52.208 −11.113 +25.151

ISM 3 +34.576 +1.7640 +14.932 −66.252 −14.418 +31.919
4 +44.418 +2.3542 +19.603 −85.078 −18.920 +40.990
5 +57.748 +3.1738 +26.024 −110.56 −25.103 +53.262
6 +75.969 +4.3204 +34.920 −145.36 −33.663 +70.018

first and higher moments. The two regions where the ellipse
and the bundle cross each other correspond to positive and
negative values of s, and are enlarged in the lower set of
panels. As discussed in Appendix B, in principle there are two

other regions of crossing, close to the extremal sides of the
ellipse and thus beyond scale (not shown), that would corre-
spond to unphysical values of r (much smaller or much larger
than unity).

FIG. 3. Numerical results obtained by imposing the equality of theoretical and experimental moments, μt
n = μe

n (up to N = 6) in the plane
charted by the free parameters r = gA/gV and s = s-NME. The left, middle, and right plots correspond to the IBFM-2, MQPM, and ISM
models, respectively. In each of the three upper panels, note (part of) the slanted ellipse determined by the zeroth moment, and the bundle of
hyperbolas determined by the first and higher moments. For each model, the two lower panels zoom in the regions at s < 0 (left) and s > 0
(right) where the ellipse and the bundle cross each other. See the text for details.
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TABLE II. Intersection points of the zeroth- and first-moment
curves in the (r, s) plane, for each of the three nuclear models
considered.

Model r s

IBFM-2 1.125 +1.617
1.029 −1.675

MQPM 1.068 +1.557
1.020 −1.662

ISM 0.994 +1.635
0.960 −1.729

In each of the enlarged crossing regions reported in Fig. 3
(lower panels), the bundle of hyperbolas shows some disper-
sion, that turns out to be smaller for s > 0 as compared with
s < 0, and minimal for the IBFM-2 model. Therefore, we
expect that the experimental spectrum is best matched by the
theoretical spectra at s > 0 (with respect to s < 0), in partic-
ular for the IBFM-2 model. For definiteness, we check these
expectations by calculating the St spectra at the points where
the μ0 ellipse intersects the μ1 hyperbola, whose coordinates
as reported in Table II.

Figure 4 shows the theoretical spectra corresponding to
the above (r, s) values for the three nuclear models: IBFM-2
(left), MQPM (middle), and ISM (right). In each panel, the
experimental spectrum (in light blue) should be compared
with the blue-dashed and red-dotted spectra, referring to pos-
itive and negative values of s in Table II, respectively. The
spectra with s > 0 are generally slightly broader and less
peaked than the experimental spectrum, while the opposite
happens for the spectra with s < 0. The deviations from the
experimental spectrum are generally smaller for s > 0 than
for s < 0. and can be as small as the experimental errors for
the IBFM-2 model at s > 0. In this context, we recall that
the model IBFM-2 predicts a priori s = 0 [18], and that only
by fixing s ≈ 1.6 does one get the good agreement with the
experimental data in Fig. 4; see Appendix A for details.

We thus find that all models point towards r ≈ 1, corre-
sponding to a quenching factor q = gA/gvac

A ≈ 0.8 assuming

gV = 1; and towards |s| � 1.6, corresponding to a small vec-
torlike relativistic NME in the expected ballpark of O(1), with
a preference for s > 0. More precisely, by grouping the values
in Table II, we find the best match between theory and data
around

r � 0.99 − 1.13, (29)

s � 1.56 − 1.64, (30)

with a secondary (worse) match around r � 0.96–1.03 and
s = −(1.66–1.73), that cannot be excluded a priori from
a phenomenological viewpoint (see also Appendix A). Re-
markably, the above ranges correspond to relatively small
uncertainties on the (r, s) parameters.

It would be tempting to refine the indications in favor of
r ≈ 1 and |s| ≈ 1.6 by attaching more accurate error estimates
to these parameters, as derived by detailed data fits including
both experimental and theoretical uncertainties. However, in
our case the theoretical shape errors are likely to be larger
than the data errors (in contrast with the data analysis in [19]),
as suggested by the fact that, in Fig. 4, the theoretical spectra
are generally outside (or at border of) the experimental error
band. As a check, we have performed numerical least-squares
adjustments of the theoretical spectra by including only ex-
perimental uncertainties, either by fitting the binned spectrum
with uncorrelated total errors in Fig. 1 or by fitting the associ-
ated N = 6 moments with their propagated covariance matrix.
In both cases we obtain unreasonably high values of the min-
imum χ2 per degree of freedom (d.o.f.) (except for the noted
IBFM-2 case at s > 0), and unreasonably tiny errors on (r, s)
at the subpercent level (in all cases), that are much smaller
than the realistic few-percent spread of the same parameters
(see Table II). On the positive side, by using only experimental
errors, the (r, s) best fits are invariably close to the s > 0
solutions reported in Eqs. (29) and (30) and their associ-
ated spectra are close to those in Fig. 4, within percent-level
deviations (not shown). The SMM appears thus to provide
reasonably correct and robust (r, s) values, even with a limited
amount of information and without the need for detailed data

FIG. 4. Theoretical spectra calculated at the (r, s) points reported in Table II, for each of the three nuclear models IBMF-2, MQPM, and
ISM (left, middle, and right panels), as compared with the experimental spectrum of Fig. 1. In each panel, the dashed blue curve refers to the
case s > 0, and the dotted red curve to the case s < 0.
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TABLE III. The single-particle matrix elements VM(0)
431 (fm3) for 113Cd for the relevant orbitals.

0 f7/2 0 f5/2 1p3/2 1p1/2 0g9/2 0g7/2 1d5/2 1d3/2 2s1/2 0h11/2

0 f7/2 0 0 0 0 0 0 0 0 0 9.5
0 f5/2 0 0 0 0 0 0 0 0 0 −4.3
1p3/2 0 0 0 0 0 0 0 0 0 −12.5
1p1/2 0 0 0 0 0 0 0 0 0 0
0g9/2 0 0 0 0 0 0 0 0 0 0
0g7/2 0 0 0 0 0 0 0 0 0 0
1d5/2 0 0 0 0 0 0 0 0 0 0
1d3/2 0 0 0 0 0 0 0 0 0 0
2s1/2 0 0 0 0 0 0 0 0 0 0
0h11/2 −9.5 −4.3 12.5 0 0 0 0 0 0 0

fits. Future improvements may include theoretical spectrum
shape errors as estimated, e.g., by a detailed analysis of the
inputs or approximations inherent the current next-to-leading
order NME calculations in each nuclear model; a task that is
beyond the scope of this work.

Similar results on (r, s) were obtained in [19], by apply-
ing a revised spectrum shape approach to an independent set
of 113Cd β-decay data, characterized by a higher threshold
(Tthr � 52–132 keV in different detectors, with 〈Tthr〉 = 92
keV) with respect to the data used herein [16] (having a
single Tthr = 26 keV). In [19], the preferred values for the
free parameters were found to cluster around gA � 0.83–0.99
(somewhat lower than our gA ≈ 0.99–1.13) and around s �
1.85–2.1 (somewhat higher than our s � 1.56–1.64). We sur-
mise that these differences may be due in part to the different
113Cd data sets and in part to the different approach used in the
analysis. In particular, in this work the spectrum normalization
is constrained through the zeroth moment (i.e., the absolute
decay rate μ0 above the 16 keV threshold), while in [19] it is
constrained through the decay half-life (that requires a spec-
trum extrapolation below each of the 52–132 keV detector
thresholds). As noted at the end of Sec. II A, such extrapo-
lations may lead to biases. Altering the normalization leads
to anticorrelated changes between gA and s (as suggested by
the μ0 ellipse in our approach), which is what we find in
comparison with [19]. Apart from these differences, a robust
message emerges from [19] and from this work: Quenched

values of the axial-vector coupling (around gA � 0.9–1), ac-
companied by an adjustment of the small vector NME (around
s � 1.6–2), are required to match the existing 113Cd β-decay
spectrum data in both normalization and shape, in each of the
three nuclear models considered.

Around these (r, s) values, large NME cancellations take
place, leaving residual spectra that reasonably reproduce the
experimental spectrum both in normalization (zeroth moment)
and in shape (first and higher moments). These phenomeno-
logical facts strongly suggest that all the models require the
following adjustments: An overall multiplicative correction to
the axial-vector NME, via a quenched value gA ≈ 1 (for gV =
1); and a small additive vectorlike correction, parametrized
by a s-NME with an absolute value around s ≈ 1.6. One
might wonder whether gV could be used as free parame-
ters instead of s, abandoning the CVC assumption gV = 1.
The answer is negative, since the prefactor g2

V in Eq. (23)
would only affect the zeroth moment μ0 but would can-
cel out in the first and higher moments [Eq. (8)], leading
to a spectrum shape depending on a single free parameter
r. It was already concluded in [15] that one cannot match
both the spectrum normalization and its shape by varying
just gV besides gA. In other words, the additive adjustment
parametrized by s cannot be traded for a multiplicative adjust-
ment parametrized by gV. At present, the CVC assumption
gV = 1 can thus be safely maintained in the context of
113Cd β decay.

TABLE IV. The single-particle matrix elements VM(0)
440 (fm4) for 113Cd for the relevant orbitals.

0 f7/2 0 f5/2 1p3/2 1p1/2 0g9/2 0g7/2 1d5/2 1d3/2 2s1/2 0h11/2

0 f7/2 434 319 −363 −426 0 0 0 0 0 695
0 f5/2 −319 336 484 0 0 0 0 0 0 −306
1p3/2 −363 −484 0 0 0 0 0 0 0 −907
1p1/2 426 0 0 0 0 0 0 0 0 0
0g9/2 0 0 0 0 729 382 −644 −397 637 0
0g7/2 0 0 0 0 −382 621 452 −501 −570 0
1d5/2 0 0 0 0 −644 −452 583 820 0 0
1d3/2 0 0 0 0 397 −501 −820 0 0 0
2s1/2 0 0 0 0 637 570 0 0 0 0
0h11/2 695 306 −907 0 0 0 0 0 0 1111
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TABLE V. The single-particle matrix elements AM(0)
441 (fm4) for 113Cd for the relevant orbitals.

0 f7/2 0 f5/2 1p3/2 1p1/2 0g9/2 0g7/2 1d5/2 1d3/2 2s1/2 0h11/2

0 f7/2 0 500 −160 −475 0 0 0 0 0 −301
0 f5/2 500 0 −538 0 0 0 0 0 0 615
1p3/2 160 −538 0 0 0 0 0 0 0 794
1p1/2 −475 0 0 0 0 0 0 0 0 0
0g9/2 0 0 0 0 0 774 −283 −624 565 0
0g7/2 0 0 0 0 774 0 −704 222 632 0
1d5/2 0 0 0 0 283 −704 0 911 0 0
1d3/2 0 0 0 0 −624 −222 911 0 0 0
2s1/2 0 0 0 0 −565 632 0 0 0 0
0h11/2 301 615 −794 0 0 0 0 0 0 0

IV. SUMMARY AND PERSPECTIVES

In this work we have studied the normalization and shape
of the electron energy spectrum of the fourth-forbidden β

decay of 113Cd with a novel approach, coined the spectral-
moment method (SMM), based on a truncated set of spectral
moments μn. The zeroth moment is related to the normal-
ization, while the first and higher moments are related to
the shape. As in [19], we have assumed that the spectra
depend on two free parameters: An axial-vector coupling
parameter r = gA/gV (for gV = 1) and a small relativistic
vectorlike NME parameter s. We have shown that each mo-
ment is a quadratic form in (r, s); isomoment curves are
ellipses for μ0 and hyperbolas for μ1,2,3,...; and the intersec-
tions of a few moment curves are enough to derive interesting
constraints on (r, s), without detailed data fits (see also
Appendix B).

In particular, by equating the theoretical moments with
the experimental ones, as derived from the data in [28], the
following results emerge: The intersection of the μ0 and μ1

curves provides r ≈ 1 and |s| ≈ 1.6; the case s > 0 results in
a smaller spread of intersections with higher-moment curves
and is thus preferred, as also confirmed by visual inspection
of the spectra. Nuclear model considerations also suggest
s � 0, although s < 0 cannot be excluded a priori (see also
Appendix A). The spread of the (r, s) values in Table II, at
the level of a few percent at least, exceeds the purely ex-
perimental uncertainties and calls for (currently unquantified)
theoretical spectrum-shape uncertainties. In any case, our re-
sults are in the same ballpark as those obtained in [19] with
a different methodology and independent data. In general,
the derived (r, s) values provide evidence for a multiplicative
renormalization (quenching) of the axial coupling gA and
for an additive adjustment of vectorlike terms via the small
relativistic s-NME.

Since the main quantitative information (apart from indica-
tions about the sign of s) has been derived just from μ0 and μ1,
we surmise that the SMM can be quite powerful even when
the experimental data are less accurate than those used in this
work for 113Cd. In this context, it should be noted that 113Cd
is just one of several nuclei where forbidden β decays occur
with a significant spectral dependence on gA [15,24,34,35]
and possibly on other parameters such as the s-NME or similar
ones.

In cases where the available spectral data are scarce, it
should anyway be possible to derive, within a specified energy
window we ∈ [wmin

e , wmax
e ], at least the spectrum normal-

ization (μ0) and the average energy (μ1) with reasonable
approximation. By equating the experimental and theoreti-
cal values for these two moments, constraints on (r, s) or
equivalent parameters could be derived, without the need of
complicated data fits. Among the forbidden β-decay spectra
with significant gA dependence, of particular importance is
the 115In spectrum [15], that was experimentally observed
long ago in [36] and recently measured with a bolometric
detector in [25]. A first data analysis with the spectrum-shape
method (SSM), and using only gA as a free parameter, sug-
gests significant gA quenching [25] but does not account for
both normalization and shape at the same time. It remains
to be seen if allowance for an extra parameter such as the
s-NME can provide a match to all data. The presently in-
troduced SMM might allow a rapid check of this possibility,
and will be applied to, e.g., existing 115In data in a separate
work.
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APPENDIX A: ANALYSIS OF RELEVANT NME

In the Tables III–V we have listed the single-particle (s.p.)
matrix elements corresponding to all relevant transitions in
the vector and axial-vector NME of interest for our analy-
sis, namely, the small s = VM(0)

431 and the large (and largely
canceling) terms VM(0)

440 and AM(0)
441. The relevant prefactors

have been included so that these correspond to single-particle
model NME and are thus comparable to the numerical NME
values listed in [18] for 113Cd.
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Given that the initial and final states are ground states
with spin-parities 1/2+ and 9/2+, respectively, the tran-
sition is most likely dominated by a transition between
the neutron orbital 2s1/2 and the proton orbital 0g9/2. This
means VM(0)

431(s.p.) = 0 fm3, VM(0)
440(s.p.) = 637 fm4, and

AM(0)
441(s.p.) = 565 fm4. The nuclear models give VM(0)

440 =
317–827 fm4, and AM(0)

441 = 314–848 fm4, which are in rea-
sonable agreement with the single-particle NME with the
final values depending on contributions from other nearby
orbitals. For VM(0)

431 the situation is however very differ-
ent, as no orbitals near the Fermi-surface have nonzero
contributions. Furthermore, the CVC relation VM(0)

431 =
0.0678(R−1) VM(0)

440 mentioned in Sec. II D (which does not
apply exactly when multiple configurations are allowed for
the wave functions) suggests that VM(0)

431(MQPM, CVC) =
9.7 fm3, VM(0)

431(IBFM-2, CVC) = 3.7 fm3, and VM(0)
431(ISM)

= 8.4 fm3, while the models give the values 0.37 fm3,
0 fm3, and 0 fm3, respectively. For the CVC values for
the smallest NME to hold, the transition would need to
be basically a pure 0h11/2-1p3/2 which does not seem rea-
sonable based on the spin-parities, the facts that these
are ground states, and the proton and neutron numbers of
the nuclei.

For ISM and IBFM-2 the value of VM(0)
431 is systematically

zero, because in the ISM calculations the orbital 0h11/2 was
kept empty to reduce the large computational burden, and
in IBFM-2 the initial state with spin-parity 1/2+ cannot be
formed by pairing 0+ and 2+ bosons with a fermion with spin-
parity 11/2−. For MQPM the contributions between 0h11/2

and the lower proton orbitals are included, but the contri-
butions for the higher orbitals are not very reliable as the
parameter tuning can be reasonably done only for the lowest
orbitals.

Based on these arguments, we surmise that the s-NME
is not well described by the nuclear models while the other
NME do not suffer from the same problems. Therefore,
it makes sense to take the s-NME as a tuning parame-
ter instead of the large matrix elements. Concerning the
sign of s, the option s > 0 is theoretically regarded as
being more reasonable [19], since all the above estimates—
despite being largely uncertain—typically provide s � 0.
However, one cannot exclude a priori that s < 0, also be-
cause some single-particle contributions may be negative (see
Table III).

APPENDIX B: QUADRATIC FORMS IN THE (r, s)
PARAMETERS AND CONIC SECTIONS

As mentioned in Sec. II D and discussed in [19], in
the (r, s) region where theoretical and experimental spectra
match, subtle cancellations in St occur among large NME,
with residuals modulated by smaller terms. Despite the com-
plexity of the full St expression at next-to-leading order [18],
some insights can be gained by elaborating upon Eqs. (25) and
(26), and by recalling that the moments are associated with
quadratic forms in both r and s.

The leading NME cancellation operating in St , as well as in
its integral μt

0, takes the form of a square of a large linear term

FIG. 5. Qualitative expectations for the conic sections obtained
by equating the theoretical and experimental moments in the (r, s)
plane (in arbitrary scales). Upper panel: Ellipse associated with μ0,
together with the degenerate limit (straight parallel lines). Middle
panel: Hyperbola associated with μ1, together with it asymptotes
(roughly aligned along the vertical axis and the ellipse major axis);
the hyperbola crosses the ellipse in four points (solutions). Lower
panel: Bundle of hyperbolas associated with μ1 and higher moments,
crossing each other and the μ0 ellipse at a single point (marked with
a dot).

in r, modulated by a smaller term in s. In first approximation,
we thus expect the zeroth moment to take the form μt

0 � (a −
br − cs)2 + d , with a and b much larger than c and d . In the
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plane charted by the (r, s) parameters, the equation μt
0 = μe

0
is then solved by two parallel straight lines with a small slope
−c/b. In reality, due to subleading NME terms, the perfect
square is altered into a more general quadratic form in (r, s).
Correspondingly, the two straight lines are just the degenerate
limit of a conic section, which is actually an elongated and
slanted ellipse.

Figure 5 (upper panel) reports graphically the above qual-
itative considerations in the plane charted by the r and s
parameters. The elongated solid ellipse is the locus of points
where μt

0 = μe
0, i.e., where the normalization (event rate

above threshold) of the experimental and theoretical spectra
match, irrespective of their shapes that may be quite different.
The dashed straight lines are a degenerate approximation of
the ellipse.

While the spectrum normalization is associated with μ0,
the spectrum shape is associated with higher moments, start-
ing from μ1. Considering that μ1 is a ratio of quadratic forms,
the constraint μt

1(r, s) = μe
1 leads to a quadratic equation as

well, identifying another conic section that turns out to be
a hyperbola. The appearance of a hyperbola for μ1 can be
qualitatively understood as follows.

Since the denominator and numerator of μ1 differ only
by a we integrand of O(1) in the latter [see Eq. (8)], the
associated quadratic forms turn out to have nearly propor-
tional coefficients (as confirmed by numerical inspection of
Table I), corresponding to geometrically similar ellipses upon
rescaling. The scaling factor turns out to be slightly more
pronounced along the abscissa r, that governs the main NME
cancellation term. Roughly speaking, the equation μt

1(r, s) =
μe

1 imposes that the ratio between two very similar elliptic
forms (slightly differing along the abscissa) is close to unity.
If one form is written as x2 + y2 − 2ρxy (where x and y are
generic coordinates), the other is thus obtained by scaling x
as (1 + δ)x, where δ � 1. It is easy to check that, at first
order in δ, the ratio of these two forms is unity for either
x = 0 (corresponding to a vertical line) or for x = ρy (a
slanted line, roughly along the ellipse major axis). These two
lines define a degenerate hyperbola, coincident with its two
asymptotes: A vertical one and a slanted one. In general, the
equation μt

1(r, s) = μe
1 entails a less simplistic situation: The

hyperbola defined by this equation is not exactly degenerate,
and its asymptotes may be slightly tilted with respect to the
above expectations.

Figure 5 (middle panel) reports graphically the typical
locus of points where μt

1(r, s) = μe
1, i.e., where the average

energies of the experimental and theoretical spectra do match.
The locus is a hyperbola (blue solid curve), whose branches
are relatively close to the degenerate limit (asymptotes, dashed
lines). The hyperbola and the ellipse will cross at four points,
i.e., there will be four different (r, s) solutions to the coupled
equations μt

0 = μe
0 and μt

1 = μe
1. In general, the extreme so-

lutions in r (red dots) correspond to unphysically low or high
values of gA, and can be discarded a priori; the remaining
two solutions (blue dots) typically correspond to negative and
positive values of s.

With a reasoning similar to μ1, also the conic sections de-
fined by the second or higher moments are expected to be
hyperbolas. One then gets an ellipse for n = 0 (related to
the event rate) and a bundle of hyperbolas for n � 1 (related
to the spectrum shape). If a perfect match between theory
and data can be achieved, all these conic sections must in-
tersect in just one of the four previous points, and diverge to
some extent in the others. This case is shown in the lower
panel of Fig. 5, assuming the solution marked by a dot. In
reality, the theory-data match is never perfect, and the inter-
sections will be slightly separated even in the best possible
case.

The above discussion allows one to understand some
features of previous results reported in [19] by using the so-
called revised SSM. This approach conflates the half-life and
spectrum-shape methods (previously conflicting when using
only r as a free parameter; see, e.g., [18]), by treating s as
an additional degree of freedom. In particular, let us consider
Fig. 2 of [19], showing the results of fits to an independent
113Cd β-decay data set [17] in the plane charted by gA and
the s-NMA, for the same three nuclear models considered
in our work. In that figure, while the half-life fit leads to an
elliptical solution (akin to the ellipse determined by μ0 in our
formalism), the spectrum shape fit leads to a band that crosses
the ellipse. We can interpret such a band as the path taken by
the fit algorithm in [19] to follow (and to fuzzily jump across)
two half-branches of the bundle of higher-moment hyperbo-
las, the other two halves (leading to unphysical values of gA)
being discarded by construction (the fit was also restricted to
s > 0 therein). With the spectral moment method discussed
herein, the fit results in [19] can be understood in a unified
picture.
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