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Toward a unified treatment of �S = 0 parity violation in low-energy nuclear processes
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We revisit the unified treatment of low-energy hadronic parity violation espoused by Desplanques, Donoghue,
and Holstein to the end of an ab initio treatment of parity violation in low-energy nuclear processes within
the standard model. We use our improved effective Hamiltonian and precise nonperturbative assessments of
the quark charges of the nucleon within lattice quantum chromodynamics (QCD) to make new assessments of the
parity-violating meson-nucleon coupling constants. Comparing with recent, precise measurements of hadronic
parity violation in few-body nuclear reactions, we find improved agreement with these experimental results,
though some tensions remain. We thus note the broader problem of comparing low-energy constants from nuclear
and few-nucleon systems, considering, too, unresolved theoretical issues in connecting an ab initio, effective
Hamiltonian approach to chiral effective theories. We note how future experiments and lattice QCD studies
could sharpen the emerging picture, promoting the study of hadronic parity violation as a laboratory for testing
“end-to-end” theoretical descriptions of weak processes in hadrons and nuclei at low energies.
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I. INTRODUCTION

In spite of decades of research, hadronic parity violation
in flavor nonchanging processes remains poorly understood
[1–6]. The pertinent body of experimental work involves the
low-energy interactions of hadrons and nuclei, so that we
are compelled to address the interplay of the physics of the
weak interaction and of nonperturbative strong dynamics. Ul-
timately we hope that this problem can be largely conquered
once the direct computation of two-nucleon matrix elements
of a suitable effective Hamiltonian within lattice quantum
chromodynamics (LQCD) becomes possible [7], though, as
we shall see, there are further issues to address. As an in-
terim step, we revisit the unified treatment of hadronic parity
violation by Desplanques, Donoghue, and Holstein (DDH)
[1]. There, the description of low-energy hadronic parity vi-
olation is framed within an one-meson-exchange model, and
DDH show that it is possible to compute the appropriate
meson-nucleon coupling constants starting from the standard
model (SM) Lagrangian. Since that early work, powerful field
theoretic treatments exploiting the low-energy symmetries of
QCD have been developed and applied to the analysis of
hadronic parity violation [4,6,8–13]. Yet in these chiral effec-
tive field theory treatments, organized in terms of hadronic
degrees of freedom, the effective couplings are determined
from experiment, and the underlying theoretical connection to
QCD and the SM is lost. We note, however, nascent work that
would compute the parity-violating pion-nucleon constant in
an ab initio way [14–16]. Here, we assess the current status
of this problem by revisiting and updating the treatment of
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DDH. Namely, we employ our improved effective Hamil-
tonian [17] to compute the parity-violating meson-nucleon
coupling constants, using the factorization approximation (as
it is now employed [18]) and LQCD assessments of the quark
flavor charges of the nucleon [19]. Our particular purpose is
to see how these updated assessments combine to confront
the constraints on these parameters from precise experimental
measurements of hadronic parity violation in few-body nu-
clear systems, namely, from the NPDGamma [20] and n3He
[21] collaborations that measure the parity-violating asymme-
try from neutron-spin reversal in the �n + p → d + γ and in
�n +3He → t + p reactions, respectively.

The NPDGamma measurement is particularly sensitive
to the parity-violating pion-nucleon coupling, whereas that
made by the n3He collaboration also probes four-nucleon con-
tact interactions of isoscalar and isovector character, which
we interpret in terms of contributions from vector-meson
exchanges between nucleons. Much of the past theoretical
effort has concentrated on studying charged pion-nucleon
interactions, due to a longstanding notion of its dominance
in hadronic-parity-violating observables [1]. However, noting
the nonobservation of parity violation in 18F radiative decay
[22–24], and thus finding no clear sign of this dominance,
and with the direct theoretical analysis of nucleon-nucleon
(NN) amplitudes in pionless effective field theory (EFT) in the
large number of colors (Nc) limit showing that isoscalar and
isotensor interactions should play driving phenomenological
roles [5,20,21,25,26], we believe the contributions from all
isosectors should be computed. Earlier studies of QCD evo-
lution effects have either made calculational approximations
[1,27,28], or focused on the isovector case [29–31]. We note,
for example, that the original estimates of parity-violating
meson-nucleon couplings were performed with a low-energy
Hamiltonian built using phenomenological K factors to
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account for QCD evolution effects on weak processes [1]. In
this work, we employ our low-energy effective Hamiltonian
[17], which makes a complete renormalization group evolu-
tion in leading-order QCD, with matching across heavy-flavor
thresholds, to give a unified treatment of all three isosectors in
order to compare their contributions to recent experimental
measurements.

Powerful searches for physics beyond the SM can be made
through low-energy, precision measurements of symmetry-
breaking effects in nucleons and nuclei [32,33]. For example,
in the case of searches for permanent electric dipole moments,
for neutrinoless double β decay, or for μ → e conversion
on nuclear targets, the expected SM contribution is either
negligibly small with respect to current experimental sensitiv-
ities or altogether absent. Thus the discovery of significantly
nonzero results in these systems would signal the existence
of physics beyond the SM. Here, theory is key to assessing
the relative sensitivity of different nuclear systems to the
effects of interest. Theory is also essential to the interpre-
tation of a nonzero experimental result or limit in terms of
the parameters of an underlying new physics model—and,
more broadly, to using the experimental limit to estimate a
lower bound on the energy scale of new physics, assuming
that it lies beyond the weak scale. A theoretical analysis that
connects the scale of new physics to that of the pertinent
low-energy experiments requires the consideration of mul-
tiple physical scales, and “end-to-end” effective-field-theory
treatments are being developed to accomplish that [34–36].
In this context, we believe QCD studies of hadronic parity
violation have a crucial role to play in the benchmarking of
these treatments, because its observables are not only nonzero
within the SM but also, given the success of the SM in
describing ultralow energy, parity-violating electron-nucleon
interactions [37], new-physics effects presumably play a sub-
dominant role. Thus the comparison of theory and experiment
in hadronic parity violation provides a welcome test of the
overall theoretical framework, as such tests possess aspects
common to new-physics searches as well.

In this paper, we embark on this program by determin-
ing the parity-violating meson-nucleon coupling constants at
a renormalization scale of 2 GeV, and, as we shall detail,
we find improved agreement with the experimental results.
Although better agreement speaks to progress, our longer-
term goals are to refine our results to higher precision and also
to evolve our description to still smaller scales. We note that
the parity-violating meson-nucleon couplings, and, generally,
the low-energy constants associated with the operators of an
effective field theory are not in themselves observables and
can be expected to depend on the renormalization scale. In this
paper we discuss various assessments of the parity-violating
pion-nucleon coupling constant from this perspective, as it
is the most precisely determined. Generally, we anticipate
difficulties can arise both from the gap between the lowest
scale to which we can potentially apply perturbative QCD ac-
curately and the highest scale to which we can employ chiral
perturbation theory, as well as from the effects of the massive
charm quark. The latter affects the splay of operators that can
appear, even if the charm quark is still active [38], as we have
developed explicitly in the �S = 0 case [17]. Moreover, the

truncation error from matching a four to three-flavor theory,
at a fixed order of perturbation theory, at charm threshold can
be significant, as studied in K → ππ decay [39,40], where
we refer to Ref. [41] for a broader discussion. In this paper
we comment on how some of these effects can impact our
results.

We conclude this section with an outline of the rest of the
paper. In Sec. II, we recapitulate the outcomes of our effective
weak Hamiltonian computation [17] that are pertinent here.
In Sec. III we discuss the factorization approximation and
its validity. In Sec. IV we employ these results to compute
the parity-violating meson-NN coupling constants. In Sec. V
we compare our results with the parameters extracted from
experiments and discuss the perspectives they offer, and we
offer a concluding summary and outlook in Sec. VI.

II. EFFECTIVE HAMILTONIAN AND WILSON
COEFFICIENTS

The effective Hamiltonian for hadronic parity violation at
a particular energy scale is defined in terms of four-quark
operators and corresponding Wilson coefficients. In evolving
the theory from one energy scale to another, such as from
the W mass to scale μ, the Wilson coefficients follow the
relation

�C(μ) = exp

[∫ gs (μ)

gs (MW )
dg

γ T (μ)

β(gs)

]
�C(MW ) with

β(gs) = − g3
s

48π2
(33 − 2n f ), (1)

where we work in leading-order (LO) QCD, noting that the
anomalous dimension matrix γ arises from the LO QCD
mixing of the operators. We refer to Ref. [17] for all details.
Allowing the effective theory to flow from the W mass scale
to hadronic energy scales, with μ = 2 GeV, results in the
Hamiltonian

HPV
eff (2 GeV) = GF s2

w

3
√

2

12∑
i=1

Ci(2 GeV) �i, (2)

where �i are four-quark operators. Twelve such operators
form a closed set under LO QCD mixing and thus describe
the theory of hadronic parity nonconservation, for all
three isosectors, where we refer to the Appendix for a
complete list. Moreover, we use the weak-mixing angle θW

with sin2 θW ≡ s2
w = 0.231 and the Fermi constant GF =

1.166 × 10−5 GeV−2 [42]. Just below the W mass scale, the
effects of QCD are negligible, and we can collect the Wilson
coefficients by summing the tree-level W and Z0 exchange
contributions in �S = 0 quark interactions, giving �C(MW ) =
(1, 0, 0, 0,−3.49, 0, 0, 0,−13.0 cos2θc, 0,−13.0 sin2θc, 0),
with the Cabibbo angle given by sin θc = 0.2253.

055501-2



TOWARD A UNIFIED TREATMENT OF �S = 0 … PHYSICAL REVIEW C 107, 055501 (2023)

Upon performing the RG flow to 2 GeV using Eq. (1), we have [17]

�C(2 GeV) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.09 [1.17 . . . 1.06][1.08 . . . 1.04] [1.07][1.06]

0.018 [0.014 . . . 0.021][0.033 . . . 0.006] [−0.006][−0.006]

0.199 [0.321 . . . 0.133][0.193 . . . 0.127] [0.158][0.153]

−0.583 [−0.990 · · · − 0.385][−0.571 · · · − 0.374] [−0.460][−0.456]

−4.36 [−4.99 · · · − 4.05][−4.34 · · · − 4.03] [−4.16][−4.14]

1.72 [2.63 . . . 1.19][1.67 . . . 1.16] [1.40][1.36]

−0.170 [−0.288 · · · − 0.110][−0.165 · · · − 0.105] [−0.134][−0.129]

0.332 [0.496 . . . 0.235][0.322 . . . 0.225] [0.275][0.268]

−16.2 [−18.6 · · · − 15.0][−16.1 · · · − 15.0] [−15.48][−15.4]

6.38 [9.76 . . . 4.44][6.22 . . . 4.30] [5.19][5.05]

−16.2 [−18.6 · · · − 15.0][−16.1 · · · − 15.0] [−15.48][−15.4]

6.38 [9.76 . . . 4.44][6.22 . . . 4.30] [5.19][5.05]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3)

where the last four entries should be multiplied by factors of cos2 θc, cos2 θc, sin2 θc, and sin2 θc, respectively. The primary result
is given by the leftmost column of numbers. The other columns illustrate the uncertainties in the computation. In the central
column, the left set shows the ranges of Wilson coefficients that result in the Nf = 2 + 1 theory for renormalization scales
of μ = 1–4 GeV and the right set shows them in the Nf = 2 + 1 + 1 theory with μ = 2–4 GeV. The rightmost column gives
Wilson coefficients if the αs running and matching is computed at NLO (left) and NNLO (right).

For the present work, it is useful to make the different isosector contributions explicit and separated as

HPV
eff (2 GeV) = H I=1

eff (2 GeV) +H I=0⊕2
eff (2 GeV). (4)

Isovector (I = 1) Wilson coefficients at high and low energies are: �CI=1(MW ) = (1, 0, 0, 0, 3.49, 0, 3.49, 0,−13.0 cos2 θc, 0)
and

�CI=1(2 GeV) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.09 [1.17 . . . 1.06][1.08 . . . 1.04] [1.07][1.06]

0.018 [0.014 . . . 0.021][0.033 . . . 0.006] [−0.006][−0.006]

0.199 [0.321 . . . 0.133][0.193 . . . 0.127] [0.158][0.153]

−0.583 [−0.990 · · · − 0.385][−0.571 · · · − 0.374] [−0.460][−0.456]

4.36 [4.99 . . . 4.05][4.34 . . . 4.03] [4.16][4.14]

−1.72 [−2.63 · · · − 1.19][−1.67 · · · − 1.16] [−1.40][−1.36]

4.36 [4.99 . . . 4.05][4.34 . . . 4.03] [4.16][4.14]

−1.72 [−2.63 · · · − 1.19][−1.67 · · · − 1.16] [−1.40][−1.36]

−16.2 [−18.6 · · · − 15.0][−16.1 · · · − 15.0] [−15.48][−15.4]

6.38 [9.76 . . . 4.44][6.22 . . . 4.30] [5.19][5.05]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5)

where the last two entries should be multiplied by a factor sin2 θc and the error estimates are defined as in Eq. (3). Wilson
coefficients for the I = 0 ⊕ 2 sector at high and low energies are: �CI=0⊕2(MW ) = (−1, 0, 0, 0,−3.49, 0, 0, 0,−13.0 cos2 θc, 0)
and

�CI=0⊕2(2 GeV) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1.09 [−1.17 · · · − 1.06][−1.08 · · · − 1.04] [−1.07][−1.06]

−0.018 [−0.014 · · · − 0.021][−0.033 · · · − 0.006] [0.006][0.006]

−0.199 [−0.321 · · · − 0.133][−0.193 · · · − 0.127] [−0.158][−0.153]

0.583 [0.990 . . . 0.385][0.571 . . . 0.374] [0.460][0.456]

−4.36 [−4.99 · · · − 4.05][−4.34 · · · − 4.03] [−4.16][−4.14]

1.72 [2.63 . . . 1.19][1.67 . . . 1.16] [1.40][1.36]

−0.170 [−0.288 · · · − 0.110][−0.165 · · · − 0.105] [−0.134][−0.129]

0.332 [0.496 . . . 0.235][0.322 . . . 0.225] [0.275][0.268]

−16.2 [−18.6 · · · − 15.0][−16.1 · · · − 15.0] [−15.48][−15.4]

6.38 [9.76 . . . 4.44][6.22 . . . 4.30] [5.19][5.05]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (6)
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where the last two entries should be multiplied by a factor
cos2 θc and the error estimates are defined as in Eq. (3). Al-
though Eqs. (3), (5), (6) appeared in our earlier paper [17],
we have included them here to make our presentation self-
contained.

III. FACTORIZATION APPROXIMATION

The effective Hamiltonian presented in the previous sec-
tion can be used in the computation of various parity-violating
meson-nucleon coupling constants of isospin I: hI

M . These
parameters are introduced to quantify the observable ef-
fects of hadronic parity violation via the phenomenological
Hamiltonian of Ref. [1], HDDH. By matching the quark-
level and hadron-level matrix elements via 〈MN ′|H I

eff |N〉 =
〈MN ′|HDDH|N〉, these couplings can be estimated. The
main challenge in this is determining the quark-level ma-
trix elements 〈MN ′|H I

eff |N〉 involving hadrons. This task is
significantly simplified within the factorization, or vacuum
saturation, approximation, in which the hadronic matrix ele-
ment of the four-quark operator is computed as the product of
the hadron matrix elements of each current. The factorization
approximation is heuristic, though its use can be justified a
posteriori with experimental data, if not a priori on theoret-
ical grounds, except in special cases. The difference in the
matrix-element computation of the full four-quark operator
and that of its two-quark pieces is termed a nonfactorizable
contribution. This difference is not well known in general, and
its outcome depends on the matrix element chosen.

To our knowledge, the factorization approximation was
first studied in the context of hadronic parity violation [43,44];
in particular, the matrix element of a parity-violating four-
quark operator to yield a neutral vector meson from a nucleon
state is thus written in the form

〈V N ′|(q̄1q2)V (q̄3q4)A|N〉 = 〈V |(q̄1q2)V |0〉 〈N ′|(q̄3q4)A|N〉.
(7)

Factorization has also been broadly employed in analyses of
hadronic weak decays, with the first application being to the
computation of so-called tree graphs, arising from partially
disconnected intermediate states, and their contribution to
the |�I| = 1/2 rule in K → 2π and K → 3π decay [45,46].
With further developments, the factorization approximation
has been used to yield predictions for the exclusive decays
of charmed mesons [47,48], compared against experimental
data [18,49], and applied to the B-meson system, in which
extensive tests become possible through the rich selection of
possible hadronic final states [50–52]. Under certain condi-
tions, factorization has been shown to work extremely well. To
that end we consider the specific example of B-meson decays
to heavy-light final states, for which factorization has been
shown to exist in QCD in leading inverse power in the heavy
quark mass [53,54]—assuming that both b and c quarks are
heavy. Tests of these predictions, and of factorization more
generally, come from the study of B → D(∗)

(s) (π, K ) decays
[55], particularly the comparison of the theoretical decay
rates with experiment, yielding excellent agreement. These
decays include both vector and pseudoscalar final states and

probe the color-suppressed (C) and exchange (E) topologies,
in addition to the color-allowed tree (T) contribution. For
example, a test derived from B̄0

d → D+ρ− and B̄0
d → D+π−

branching ratio data, which is sensitive to both the T and E
topologies, probes factorization to a precision of 10%, and
the authors note that they could not resolve any nonfactoriz-
able effects within the current experimental precision, which
could be as small as 5% in some cases [55]. In contrast,
in meson decays to light final states, the energy release is
generally much larger, admitting the possibility of rescattering
with intermediate-state hadronic resonances and thus yielding
contributions beyond the factorization approach. Empirical
uncertainties in B → ππ, πK decays are still large enough
to preclude such precise tests [56]. In this class of decays,
an outstanding problem has been that of understanding the
pattern of amplitudes in K → ππ decay, for which a marked
dominance of the I = 0 final state amplitude over the I = 2
amplitude is observed, with roughly only a factor of 2 of
the empirical ratio ReA0/ReA2 � 22.5 in the isospin limit
[57] coming from the perturbative Wilson coefficients and
a simple factorization of the hadronic matrix elements. Al-
though the problem has long been attributed to an unidentified
enhancement of the I = 0 amplitude [58,59], to which a role
for the σ (500) resonance has been argued [60,61], LQCD
studies have now shown that a numerical resolution of the
|�I| = 1/2 puzzle [62] includes a significant cancellation of
two tree-level operators that contribute to the I = 2 amplitude
in K → ππ decay [62–64]. In the factorization treatment the
two contributions have the same sign, showing it to be incon-
sistent. We note that an opposite relative sign also emerged
in earlier non-lattice work using chiral perturbation theory
and a large Nc analysis [65,66]. The analysis of K → ππ

decays reveals features that do not occur in our analysis of
the parity-violating meson-nucleon couplings. In particular,
since QCD dynamics are flavor-blind, we believe that the
existing factorization tests in heavy to heavy-light transitions
do have bearing on our N → NM analysis, supporting our
results because the kinematics of the process does not support
the existence of factorization-violating resonances. We would
like to emphasize that we employ the factorization approxi-
mation specifically for the computation of the parity-violating
meson-nucleon coupling constants. The issue of nonperturba-
tive effects beyond the DDH model, which could be studied
within the framework of 2N matrix elements within LQCD re-
mains. Moreover, the theoretical improvements we have made
are specific to the computation of the meson-nucleon coupling
constants. To put this in context we now turn to the analysis of
DDH [1].

The early landmark study of hadronic parity violation by
DDH [1] is critical of the use of factorization, and that assess-
ment has appeared to hold sway despite later work suggesting
that non-factorizable effects are subdominant [27]. In regards
to the comparative study of DDH [1], both the factorization
approximation computations and the quark model estimates
to which they were compared employed uncontrolled ap-
proximations, and poorly known inputs, so that inferring
a deficiency in the factorization approximation itself from
differences in such predictions is not a reliable conclusion.
Moreover, what DDH term “factorization” is not the same

055501-4



TOWARD A UNIFIED TREATMENT OF �S = 0 … PHYSICAL REVIEW C 107, 055501 (2023)

FIG. 1. Constraints on the parity-violating coupling constants
hρ−ω and h1

π , after Ref. [21]. The couplings are not direct phys-
ical observables and thus can be sensitive to the energy scale of
the system under consideration, see the text for further discussion.
Combining statistical and systematic errors in quadrature and work-
ing at 68% CL, we show the value h1

π = (2.6 ± 1.2) × 10−7 from
the measured parity-violating asymmetry in �n + p → d + γ [20]
as the vertical band bounded by a solid line, and its determination
h1

π = (2.7 ± 1.8) × 10−7 in chiral perturbation theory as the vertical
band bounded by a dotted line [6,13], and the diagonal constraint
from the measured parity-violating asymmetry in �n + 3He → p + t
[21], with the combined fit of the two experiments yielding the
ellipse shown. The analysis of 18F radiative decay from its 1.081
MeV excited state yields the bound |h1

π | < 1.3 × 10−7 [3], shown
as the leftmost vertical band. Our ab initio result at a scale of 2 GeV
is represented by the star with the associated error from its inputs
roughly by its size. The tension with the 18F result at a nominal scale
of less than 100 MeV, may also be reflective of an extraction in a
different physical setting.

procedure as has been employed in the literature since the
late 1980s [18]. In their Fig. 1 they present three different
quark flow topologies for the parity-violating meson-nucleon
couplings and note that “factorization” is associated with the
production of a color-singlet meson emerging as the result
of Z0 exchange at tree level exclusively. Moreover, different
paths to computing factorized hadronic matrix elements are
employed [1]. We, rather, have followed the now standard
practice of applying a Fierz transformation to a four-quark
operator to expose the quark currents with the flavor content
needed to realize a particular hadronic final state, so that we
factorize the matrix elements of the four-quark operators into
products of the matrix elements of the associated quark-level
currents. In so doing the matrix elements of our LO weak
Hamiltonian can generate all the pictorial contributions in
Fig. 1 of [1], depending on the meson to be produced. For
example, their Fig. 1(b) can follow from multiquark (in excess
of three) Fock states of the nucleon, as associated with the
strange quark axial charge of the nucleon, which is pertinent
to the assessment of the vector-meson-nucleon couplings.

In making our assessments, we have employed the recent,
precision LQCD computations of the quark-flavor (scalar, ax-
ial) charges of the nucleon [19], and we regard that as a great
improvement over the poorly controlled flavor-symmetry-
based estimates used throughout the literature in the past, as
we discuss in Sec. IV. This is key to a sharpened picture
of the role of strange quarks, which have been a source of
great uncertainty [29,67]. Thus greatly improved assessments
of the factorized matrix elements in the nucleon sector are now
possible. Turning to the parity-violating n → p(π±, ρ±, ω)
transition matrix elements, we note these processes, though
now mediated by Z0 exchange, also contain quark flow
topologies of the same forms studied by Ref. [55], and the
kinematics of these transition matrix elements is also compat-
ible with that of the heavy-quark/hadron limit they employ.
Thus we regard those tests of factorization in hadronic B
meson decays, which speak to its success in that context,
as also acting in support of our own analysis. In the next
section we use the factorization approximation with input
from state-of-the-art LQCD results to determine the parity-
violating meson-nucleon coupling constants.

IV. ESTIMATES OF THE PARITY-VIOLATING
MESON-NUCLEON COUPLING CONSTANTS

In this section, first we flesh out the calculation of h1
π in

Ref. [17], particularly emphasizing and discussing the differ-
ent input choices made in arriving at this result. Then, we
turn to estimating the remaining meson-nucleon couplings.
Phenomenologically, the pion contribution to hadronic parity
violation with coupling h1

π is

Hπ
DDH = ih1

π (π+ p̄n − π−n̄p). (8)

Matching the quark and hadron-level matrix elements we have

−ih1
π ūnup = 〈

nπ+∣∣H I=1
eff

∣∣p
〉
, (9)

where uN with N ∈ p, n is a Dirac spinor. Employing the
Fierz identities, where we note the useful compilation of
Ref. [68], �I=1

i operators within the Hamiltonian are rear-
ranged to yield scalar-pseudoscalar contributions. Using the
definition 〈0|(d̄u)A(0)|π+(p)〉 = ipμ fπ and the result

〈π+| (ūγ5d ) |0〉 = m2
π fπ

i(mu + md )
, (10)

we obtain the equation connecting the pion-nucleon coupling
to the Wilson coefficients inH I=1

eff :

h1
π ūnup = 2GF s2

w

3
√

2

(
CI=1

1

3
+ CI=1

2 − CI=1
3

3
− CI=1

4

)

× m2
π fπ

(mu + md )
〈n| d̄u|p〉. (11)

In its numerical evaluation, we use the isovector scalar
charge gu−d

s computed within LQCD [19], where 〈n| d̄u |p〉 ≡
gu−d

s ūnup. Modern LQCD calculations are “unquenched” so
that the effects of the light sea quarks are allowed to appear,
noting that these are characterized by Nf , the number of
dynamical quark flavors in the simulation. As per Ref. [19],
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we suppose simulations with Nf = 2 + 1 + 1 are more re-
alistic but that Nf = 2 + 1 simulations are typically more
precise. The evaluation of Eq. (11) is sensitive to the precise
value of m2

π/(mu + md ), where the light quark masses are
evaluated in LQCD. This ratio gives a large enhancement,
and its assessment should be made with care. Here, mπ =
135 MeV, because the LQCD simulations used do not in-
clude electromagnetism, and the charged-pion decay constant
fπ = 130 MeV. As for the light quark masses, it is appropriate
to use the renormalization-group-invariant (RGI) mass (mu +
md ) = 2(4.695(56)m(54)� MeV) for Nf = 2 + 1 [19], an ap-
pealing choice because it is scale and scheme independent,
thus avoiding extreme sensitivity to the choice of scale. In
this case, combining errors in quadrature implies m2

π/(mu +
md ) = 1941(32) MeV, whereas using the result from a Nf =
2 + 1 simulation in the MS scheme at a scale of 2 GeV, (mu +
md ) = 2(3.381(40) MeV) [19] we find 2695(32) MeV for this
ratio. (We note in this scheme at this scale that the PDG com-
pilation recommends (mu + md ) = 2(3.45+0.55

−0.15 MeV) [42];
we note, too, (mu + md ) = 2(3.75(0.45) MeV) using scalar
sum rules and chiral perturbation theory [69].) We can also
assess it through the use of the Gell-Mann–Oakes–Renner
(GOR) relation [70–72]. The GOR relation captures the pion
mass with a correction of within a few percent [73–76], where
the concomitant quark condensate B ≡ |
|/F 2, with 
 =
|〈0|ūu|0〉| and F the pion decay constant in the chiral limit,
can all be computed in LQCD. Using Ref. [19] to compute B

from 
 and F , in the SU(2) chiral limit and Nf = 2 + 1 we
have, assuming the errors are uncorrelated, 2560(240) MeV,
whereas in the SU(3) chiral limit we have 2280(280) MeV,
a difference reflecting the role of the strange sea quarks in
its numerical evaluation. The result with the RGI quark mass
has been employed in what follows. Turning to the isovector
quark scalar charge of the nucleon, Nf = 2 + 1 result: we
use gu−d

s = 1.06(10)(06)sys [77], noting that this compares
favorably with the result gu−d

s = 1.02(11) determined from
strong-isospin breaking in the nucleon mass from LQCD [78],
whereas the SU(3) estimate in Ref. [30] yields 0.6. Finally,

h1
π = (

3.06 ± 0.34 + ( +1.29
−0.64

) + 0.42 + (1.00)
) × 10−7,

(12)

where the error estimates come, respectively, from the LQCD
inputs employed, the change in the Wilson coefficients over (i)
a scale variation of 1–4 GeV and (ii) higher-order corrections
in αs as per Eq. (5), and, finally, the estimates of the accuracy
of Eq. (11) through the contribution to it from O(1/Nc) terms,
which are noted in parentheses.

We now turn to the assessment of other meson-
nucleon coupling constants, starting with the remaining I =
1 couplings. For the ρ0 meson, e.g., 〈ρ0N |H I=1

eff |N〉 =
h1

ρε
∗μ
ρ (ūN uN )A. With 〈ρ0| (ūu)V − (d̄d )V |0〉 ≡ √

2ε∗μ
ρ fρmρ ,

mρ = 775.4 MeV [42], and fρ = 210 MeV [50] and using the
quark axial charges of the nucleon from LQCD [19]

〈p| (ūu)A |p〉 = gu
A(ūpup)A ; gu

A = 0.777(25)(30) [0.847(18)(32)],

〈p| (d̄d )A |p〉 = gd
A(ūpup)A ; gd

A = −0.438(18)(30) [−0.407(16)(18)],

〈p| (s̄s)A |p〉 = gs
A(ūpup)A ; gs

A = −0.053(8) [−0.035(6)(7)],

(13)

in the MS scheme at μ = 2 GeV from Nf = 2 + 1 + 1 [79] [Nf = 2 + 1 [80]] flavor simulations, we have

h1
ρ = GF s2

w

3
fρmρ

((
CI=1

3 + CI=1
4

3

)(
gu

A + gd
A

) +
(

CI=1
3 + CI=1

4

3
+ CI=1

7 + CI=1
8

3
+ CI=1

9 + CI=1
10

3

)
gs

A

)
, (14)

and with Eq. (13) this yields

h1
ρ = ( − 0.294 ± 0.045 + ( 0.014

−0.036
) + 0.009 + (0.026)

) × 10−7, (15)

For the ω meson, 〈ωN |H I=1
eff |N〉 = h1

ω Nε∗μ
ω (ūN uN )A. With 〈ω| (ūu)V + (d̄d )V |0〉 ≡ √

2ε∗μ
ω fωmω, mω = 782.65 MeV [42], and

fω = 195 MeV [50], we have

h1
ω N = GF s2

w

3
fωmω

((
CI=1

1 + CI=1
2

3

)
ηN

(
gu

A − gd
A

) +
(

CI=1
9 + CI=1

10

3

)
gs

A

)
, (16)

where η = ±1 for a proton or neutron state, respectively. With Eqs. (13)

h1
ω p = ( + 1.825 ± 0.111 + (−0.047

0.125
) − 0.040 + (−0.020)

) × 10−7;

h1
ω n = ( − 1.828 ± 0.112 +

(
0.053

−0.134

)
+ 0.043 + (0.000)

) × 10−7, (17)

where the difference in their magnitudes speaks to the role of charged-current effects. Similarly we can make use of HI=0⊕2
eff to

determine 〈ωN |H I=0⊕2 |N〉 = h0
ωε∗μ

ω (ūN uN )A. Thus

h0
ω = GF s2

w

3
fωmω

((
C0+2

7 + C0+2
8

3
+ C0+2

9 + C0+2
10

3

)(
gu

A + gd
A

) +
(

C0+2
1 + C0+2

2

3
+ C0+2

7 + C0+2
8

3

)
gs

A

)
, (18)
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and with Eqs. (13) this gives

h0
ω = ( + 0.270 ± 0.015 + (−0.32

0.55
) − 0.202 + (1.148)

) × 10−7. (19)

To determine the isocalar and isotensor ρ couplings fromH I=0⊕2
eff we note fromHDDH [1] that

h0
ρ + 1√

6
h2

ρ = h0⊕2
ρ0 ;

√
2h0

ρ − 1√
12

h2
ρ = h0⊕2

ρ− . (20)

Computing h0⊕2
ρ0 , with 〈ρ0N |H I=0⊕2

eff |N〉 = h0⊕2
ρ0 ηNε∗μ

ρ (ūN uN )A,

h0⊕2
ρ0 = GF s2

w

3
fρmρ

(
CI=0+2

5 + CI=0+2
6

3
− CI=0+2

9

6
− CI=0+2

10

2

)(
gu

A − gd
A

)
, (21)

which, with Eqs. (13), implies

h0⊕2
ρ0 = ( − 7.55 ± 0.46 + ( 1.54

−2.76
) + 1.00 + (−5.57)

) × 10−7. (22)

Computing h0⊕2
ρ− , with 〈ρ− p|H I=0

⊕
2

eff |n〉 = h0⊕2
ρ− ε∗μ

ρ (ūN uN )A, noting 〈ρ−| (d̄u)v |0〉 = ε∗μ
ρ fρmρ , and using the quark isovector

axial charge in LQCD in MS at 2 GeV from a Nf = 2 + 1 [77] (Nf = 2 + 1 + 1 [81]) flavor simulation, namely,

〈p| (ūd )A |n〉 = gu−d
A (ūpun)A; gu−d

A = 1.31(06)(05)sys [1.218(25)(30)sys], (23)

we have

h0⊕2
ρ− = GF s2

w

3
√

2
fρmρ

(
−CI=0+2

5

3
− CI=0+2

6 + CI=0+2
7

3
+ CI=0+2

8 + CI=0+2
9 + CI=0+2

10

3

)
gu−d

A . (24)

With Eqs. (23), this implies

h0+2
ρ− = ( − 18.10 ± 1.1 + ( 1.2

−2.4
) + 0.72 + (−4.63)

) × 10−7. (25)

Solving Eq. (20) we find

h0
ρ = ( − 11.05 ± 0.672 + ( 1.079

−2.051
) + 0.673 + (−4.039)

) × 10−7;

h2
ρ = ( + 8.57 ± 0.519 + ( 1.129

−1.736
) + 0.802 + (−3.749)

) × 10−7. (26)

Although our determinations have been made at a scale of
2 GeV, we follow the spirit of DDH [1] and compare our
results with the constraints on the coupling constants that
emerge from experiments at much lower energies. In this way
we hope to discern the driving theoretical limitations in our
approach.

V. PERSPECTIVES FROM COMPARISONS
WITH EXPERIMENT

In what follows we consider how the results of Sec. IV
compare with the outcomes of hadronic parity violation ex-
periments with nucleons and nuclei. We anticipate that our
results may be most closely suited to studies of hadronic parity
violation in few-body systems, though we also consider more
complex nuclear systems, comparing, in particular, our h1

π

result to a precise limit extracted from a search for parity vio-
lation in the radiative decay of excited-state 18F [24]. Finally,
following earlier work [3,5], we use the DDH potential [1],
based on one-meson exchange, to evaluate the Danilov pa-
rameters and compare them with the outcomes of low-energy
experiments, particularly those from parity-violating proton-
proton scattering. We regard these computations as crude
estimates, to be checked against the predictions of a large Nc

analysis and that may serve as guidance in determining the
limitations of the DDH potential.

Comparing with the constraints on the parity-violating
vector-meson-nucleon coupling constants that emerge from
the combined analysis of the �np → dγ [20] and �n 3He →
p 3H [21] experiments, within the theoretical framework
of Ref. [82], we have h1

π = (2.6 ± 1.2stat ± 0.2sys) × 10−7

[20], and hρ−ω ≡ h0
ρ + 0.605h0

ω − 0.605h1
ρ − 1.316h1

ω +
0.026h2

ρ = (−17.0 ± 6.56) × 10−7 [21], for which we
compute

hρ−ω = ( − 12.9 ± 0.52 + ( 0.97
−1.9

) + 0.62 + (−3.4)
) × 10−7,

(27)

so that both this and our h1
π , Eq. (12), are within ±1σ of the

experimentally determined parameters. We note, moreover,
that analyzing the result of the �np → dγ [20] experiment
within chiral perturbation theory yields h1

π = (2.7 ± 1.8)
× 10−7 [6,13]. Using our results, we evaluate the asymme-
try in �n 3He → p 3H as −0.69 × 10−8 in the framework of
Ref. [82] but as 1.6 × 10−8 in the framework of Ref. [83], as
per Eqs. (8),(9) of Ref. [21], to compare with the experimental
result (1.55 ± 0.97stat ± 0.24sys) × 10−8 [21]. Evidently the
value of the asymmetry is sensitive to a partial cancellation of
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the various contributions [21]. The h1
π determination from the

�np → dγ experiment, h1
π = (2.6 ± 1.2stat ± 0.2sys) × 10−7

[20] is in slight tension with the value determined by the
non-observation of the photon circular polarization in 18F
radiative decay from the 1.081 MeV JPT = 0−0 state, reflect-
ing an absence of mixing with the nearby 1.042 MeV 0+1
state, yielding the bound |h1

π | < 1.3 × 10−7 at 68% CL [3].
The 18F system is special in that the theoretical uncertainties
can be largely controlled through the experimental assess-
ment of the pertinent nuclear matrix element, after an isospin
rotation, from a well-measured β+-decay transition in 18Ne
[2,22,23]. Thus the error in each h1

π assessment is thought
to be statistics dominated. Other reliably calculated, parity-
violating observables that depend on the couplings probed in
the few-body reactions include the longitudinal asymmetry in
elastic �p − α scattering at 46 MeV, AL[ �pα], and the gamma
asymmetry in 19F decay, Aγ [19F]. Using the expressions in
Ref. [3] we find −2.6 × 10−7, to compare with AL[ �pα]expt =
−(3.3 ± 0.9) × 10−7 [84,85], and −6.7 × 10−5, to compare
with Aγ [19F]expt = −(7.4 ± 1.9) × 10−5 [23,86]. Therefore
only the 18F study is precise enough to challenge the determi-
nation of h1

π in few-body systems, and we show these results
in Fig. 1, along with the value of h1

π determined from the
parity-violating γ asymmetry in �np → dγ [20] using chiral
perturbation theory [6,13], as well as our own determination
of that and of hρ−ω. Our assessment of these couplings at a
renormalization scale of μ = 2 GeV is compatible with the
determinations from the few-body results, but both it and the
experiment values are in tension with the 18F result. Of course
it is possible that the disagreement between the experiments
could be experimental in origin, though the procedures used in
the NPDGamma experiment have been validated through the
experimental study of parity-violating �n capture on 35Cl [87],
or be the result of an underestimated theoretical systematic
error, yet we emphasize that these couplings are not directly
observable. Thus they can be expected to vary with the renor-
malization scale of the system in which they are determined,
which is typically bounded from above by the cutoff scale
that determines the active degrees of freedom in a particular
EFT. In the current context we contrast chiral perturbation
theory, a NN EFT with active pion degrees of freedom and
a cutoff scale of about 1 GeV [72,74], with chiral effective
theory, an EFT in which pion degrees of freedom are absent
and thus with a cutoff scale of about 100 MeV. In settings
where the scale variation is set by perturbative physics, such
as in the case of the running of sin2 θW in the SM, noting
Fig. 5 of Ref. [37], in which the natural scale choice is the
typical momentum transfer Q of the experiment, the computed
variations are numerically very small, a few percent at most.
However, in low-energy QCD, the scale variation is no longer
controlled by weakly coupled effects, and it need not be very
small. To illustrate, we turn to a NN effective theory without
pions, so-called pionless effective theory [88–90]. The large
S-wave scattering lengths aJ

0, with J = 0, 1, associated with
the low-energy NN system reflect the possibility of nearly or
weakly bound states, and to address the incompatibility of that
large length scale in an effective theory with a break-down
scale of �π/ [91–94], where aJ

0 
 1/�π/, a power-divergence

subtraction (PDS) scheme can be employed at a subtraction
point of μ ≈ Q [92]. In this scheme the LECs that result vary
with μ as a ratio of simple polynomials, and we note that the
μ variation in ratios of LECs can vary by a factor of a few
over scales μ ranging from 80 to 180 MeV [95]. Although
the PDS scheme enlarges the range of momenta for which
the EFT is valid, other, longstanding approaches to the sys-
tematic organization of a chiral EFT continue to be followed
[96]. We note Ref. [97] for a detailed comparative study of
the PDS renormalization and the Wilsonian renormalization
group schemes in an analytically solvable NN EFT; here we
consider the implications of their conjecture that fitting LECs
to a data set implicitly selects a renormalization scheme. To
us, this means the particular parity-violating couplings shown
in Fig. 1 can intrinsically depend on the physical momentum
scale of the studies in which they are extracted. Here, we note
that a cutoff scale of the EFT that would describe the radiative
decay of an excited state of 18F, which is pertinent even if the
existing extraction is regarded as semiempirical [2,22,23], is
much lower than the one associated with chiral perturbation
theory for �n + p → d + γ . The extracted couplings could
be discernibly different in the two settings, and we consider
further probes of this possibility in what follows.

Recent analyses have suggested that matrix elements of a
quark-based effective Hamiltonian can be matched to chiral
perturbation theory at a renormalization scale of μ = 2 GeV
[34,36]. Conventionally, however, the cutoff scale of chiral
perturbation theory is taken to be 1 GeV [71,74], or the ρ

mass [19]. If we were to try to evolve our description to still
lower scales, we expect to encounter the charm quark scale
at μ = mc [98]. For μ 
 mc ≈ 1.3 GeV, the effects of the
charm-quark mass are negligible, allowing u-like quark pen-
guin contributions from the charged-current contributions in
the weak effective Hamiltonian to cancel. However, at scales
for which μ � mc, this cancellation is no longer efficient, and
if μ � mc, it no longer operates. Thus for μ < 2 GeV the
effects of these additional operators, all of I = 0 character,
can exist [17], along with the possibility of nonperturbative
matching [39] that we have already noted. These effects are
presumably small with respect to the precision of the h1

π

extraction from chiral perturbation theory [6,13], nominally
at a scale of μ = 1 GeV, shown in Fig. 1. Nevertheless, to
begin to assess the possible numerical implications of these
effects, we use the coupling constants we have computed as
they stand to estimate the LECs of very-low-energy, parity-
violating observables in the NN system, which are essentially
the Danilov parameters [8], to compare more broadly with
existing experiments. Working within the context of the DDH
potential, with parameters g2

πNN/4π = 14.4, g2
ρ/4π = 0.62,

g2
ω/4π = 9g2

ρ/4π , χρ = 3.70, and χω = −0.12, we compute
the Danilov parameters to find

�
1S0−3P0
0 = −gρ (2 + χρ )h0

ρ − gω(2 + χω )h0
ω → 176 [210],

�
3S1−1P1
0 = −3gρχρh0

ρ + gωχωh0
ω → 343 [360],

�
1S0−3P0
1 = −gρ (2 + χρ )h1

ρ − gω(2 + χω )h1
ω → 4.67 [21],
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�
3S1−3P1
1 = gπNN√

2

(
mρ

mπ

)2

h1
π + gρ (h1

ρ − h1
ρ

′
) − gωh1

ω

→ 859 [1340],

�
1S0−3P0
2 = −gρ (2 + χρ )h2

ρ → −137 [160], (28)

where we neglect h1
ρ

′ [3,99] and provide our numerical values,
with the DDH “best values” [1] given in brackets—and all in
units of 10−7. Following the large Nc analysis of Ref. [5], we
compute

�+
0 ≡ 1

4�
1S0−3P0
0 + 3

4�
3S1−1P1
0 → 301;

�−
0 ≡ 1

4�
3S1−1P1
0 − 3

4�
1S0−3P0
0 → −46, (29)

and recall the scaling predictions �+
0 ∼ Nc, �

1S0−3P0
2 ∼ Nc

sin2 θw, �−
0 ∼ 1/Nc, �

1S0−3P0
1 ∼ sin2 θw, �

3S1−3P1
1 ∼ sin2 θw

[5,25,26]. Certainly the value of h1
π we compute yields a value

of �
3S1−3P1
1 at odds with the large Nc expectation, though

�
3S1−3P1
1 |h1

π=0 = −31. We note, too, that in this we have ig-
nored the possibility of scale dependence entirely, though an
explicit study [95] in the parity-conserving case shows that
only certain ranges of μ are compatible with large Nc expec-
tations for partial waves beyond the S-wave channels.

We now turn to other observables, starting with the parity-
violating longitudinal asymmetry in low-energy �pp scattering,
AL( �pp), for which the Danilov parameters associated with S −
P interference should suffice. Fixed target �pp experiments at
beam energies of 13.6 MeV, 15 MeV, and 45 MeV can be
analyzed within a DDH framework [100] to yield [3]

2

5
�+

0 + 1√
6
�

1S0−3P0
2 +

[
�

1S0−3P0
1 − 6

5
�−

0

]
= 419 ± 43,

(30)

which we evaluate as 120 − 56 + 60 = 124. Thus our results
in this case do not compare favorably. For context, we note
that an analysis of this observable in chiral effective theory
shows that correlated two-pion exchange (TPE) also plays an
important role [11,12,83], bringing in an interaction largely
controlled by h1

π as well, although TPE is not present in
the DDH framework. As for the other observables we have
considered, the value of h1

π plays an important numerical role,
with the subleading contributions, which are largely isovector,
and the leading ones, which are isoscalar, playing comparable
numerical roles. Thus although our original assessment of the
Danilov parameters, with the exception of the one in which
h1

π appears, are crudely consistent with large Nc scaling, it
appears that the large Nc relationships are not effective in
predicting the aggregate size of the various contributions. In
this the parameter h1

π drives this conclusion, making its com-
putation within LQCD [15,16], noting the pioneering work
of Ref. [14], or an improved experimental assessment of it,
possibly through a next-generation �np → dγ experiment, ex-
tremely welcome. Another interesting possibility would be a
neutron spin rotation experiment in liquid 4He; the existing
limit is consistent with zero but is statistics limited [101], and
a new experiment with a planned factor of 10 improvement
in sensitivity is being developed [102]. With our Danilov

parameter estimates that experiment should be able to mea-
sure a nonzero result. As for our suggestion that the extraction
of h1

π , and possibly other couplings, could vary with the cutoff
scale of the physical description, we hope that further studies
of hadronic parity violation in complex systems could be
made and be of sufficient precision to reveal this effect in
other isosectors as well. Since we have noted that additional
penguin contributions, of purely isoscalar character, emerge
once the charm quark is no longer an active degree of freedom,
we think that precision experimental studies of hadronic parity
violation in the isoscalar sector, as detailed in Ref. [5], both
in few-body and complex nuclei, would be needed to assess
the quantitative importance of these long-neglected effects.
A particularly appealing example would be the measurement
of the parity-violating asymmetry in �n + d → t + γ , because
the asymmetry is expected to be somewhat larger than those of
other measured reactions, with little sensitivity to the isotensor
sector—and it would be interesting to compare that outcome
to the measured γ -ray asymmetry in 19F decay [3,5] and even
more so if the precision of the latter experiment could be
improved.

VI. SUMMARY

We have used the LO QCD effective weak Hamiltonian for
parity-violating, �S = 0 hadronic processes to determine the
parity-violating meson-nucleon coupling constants, h1

π , h0,1,2
ρ ,

h0,1
ω , familiar from the DDH framework. We have achieved

this by employing the factorization ansatz and assessments of
the pertinent quark charges of the nucleon in LQCD at the
2 GeV scale. Working further, we have found that our assess-
ment of h1

π and hρ−ω agree within 1σ of their experimental
determinations in few-body nuclear systems [20,21], though
both our h1

π result and the size of the asymmetry in �np → dγ

[20] are in slight tension with the null result from the study
of Pγ [18F] [2,22,23], and we have noted the possibility that
the extracted coupling could depend on the cutoff scale of the
EFT description that would describe it.

Turning to the study of the parity-violating asymmetries
in low-energy �pp scattering, which is sensitive to the I = 2
Davilov parameter �

1S0−3P0
2 as well, we do not find agreement

with experiment. The analysis of this process within chiral
effective theory, however, suggests that TPE, an effect not in-
cluded in the DDH potential, plays an important role [83], and
this can also modify the I = 1 Danilov parameters, though it
may be that our factorization assessment of h2

ρ , or of neglected

higher order effects in αs, and thus of �
1S0−3P0
2 that is to blame.

We note that the parameter hρ−ω depends only very weakly on
the I = 2 sector.

Five independent parameters characterize low-energy
hadronic parity violation, and the use of pionless effective
theory in the large Nc limit gives insight into the relative
size of the contributions [5,25,26,103]. Yet these are scaling
relationships, rather than numerical predictions, and we have
noted that our numerical assessments in Eq. (28), save for
the I = 1 parameter containing h1

π , compare favorably with
those expectations. Thus the overall success of the large Nc
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predictions very much depends on the precise value of h1
π ,

with future input from either LQCD or experiment important
to a definitive test. Despite this, the application of our results,
within the DDH framework, to parity-violating observables
in A > 3 systems suggest that it is not effective, because
the subleading pieces are not only quite large, but they are
also needed for theoretical compatibility with the observed
effects. This outcome is nevertheless suggestive that the sys-
tematic study of hadronic parity violation in A > 3 systems,
for which studies in molecular systems [104] also show great
promise [105,106], is within reach. Precision experimental
studies, particularly in the isoscalar sector, can illuminate
the additional theoretical effects we have noted, providing an
important opportunity to bench-mark end-to-end EFT descrip-
tions of low-energy weak observables in nuclei, which play a
broad role in searches for physics beyond the SM.

The hints of success in our work of updating DDH come
from comparing our estimations of meson-nucleon couplings
with the outcomes of recent experiments, as discussed at
length in the current paper. We are careful not to claim any
such comparisons with our crude estimations of the Danilov
parameters. Yet, we are of the opinion that such estimations
can be checked against the predictions of large Nc analysis
and may serve as a supplement in assessing the limitations

of our approach. We would like to emphasize that our work
neither discounts the possibility of TPE nor of the importance
of additional nonperturbative effects in a complete picture
of hadronic parity violation at low energies. But, in striving
to refine the benchmark expectations of the parity-violating
meson-nucleon couplings, we have updated the work of DDH
[1] via the introduction of renormalization-group methods,
a modern definition of factorization, and LQCD inputs and
thus in so doing overcome many challenges in such theo-
retical computations starting in the 1980s. Future theoretical
work that would aspire to confront low-energy experiments
more directly would surely benefit from the realization of a
LQCD program for the computation of 2N matrix elements
for hadronic parity violation, which is under development
[107–109], though there are ongoing challenges [7].
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APPENDIX: FOUR-QUARK OPERATORS

The operators of the complete theory (HPV
eff ) with all three isosectors are

�1 = [(ūu)V + (d̄d )V + (s̄s)V ]αα[(ūu)A − (d̄d )A − (s̄s)A]ββ,

�2 = [(ūu)V + (d̄d )V + (s̄s)V ]αβ[(ūu)A − (d̄d )A − (s̄s)A]βα,

�3 = [(ūu)A + (d̄d )A + (s̄s)A]αα[(ūu)V − (d̄d )V − (s̄s)V ]ββ,

�4 = [(ūu)A + (d̄d )A + (s̄s)A]αβ[(ūu)V − (d̄d )V − (s̄s)V ]βα,

�5 = [(ūu)V − (d̄d )V − (s̄s)V ]αα[(ūu)A − (d̄d )A − (s̄s)A]ββ,

�6 = [(ūu)V − (d̄d )V − (s̄s)V ]αβ[(ūu)A − (d̄d )A − (s̄s)A]βα,

�7 = [(ūu)A + (d̄d )A + (s̄s)A]αα[(ūu)V + (d̄d )V + (s̄s)V ]ββ,

�8 = [(ūu)A + (d̄d )A + (s̄s)A]αβ[(ūu)V + (d̄d )V + (s̄s)V ]βα,

�9 = (ūd )αα
V (d̄u)ββ

A + (d̄u)αα
V (ūd )ββ

A ,

�10 = (ūd )αβ
V (d̄u)βα

A + (d̄u)αβ
V (ūd )βα

A ,

�11 = (ūs)αα
V (s̄u)ββ

A + (s̄u)αα
V (ūs)ββ

A ,

�12 = (ūs)αβ
V (s̄u)βα

A + (s̄u)αβ
V (ūs)βα

A . (A1)

Operators for isovector sector (H I=1
eff ) are

�1
I=1 = [(ūu)V + (d̄d )V + (s̄s)V ]αα[(ūu)A − (d̄d )A]ββ,

�2
I=1 = [(ūu)V + (d̄d )V + (s̄s)V ]αβ[(ūu)A − (d̄d )A]βα,

�3
I=1 = [(ūu)A + (d̄d )A + (s̄s)A]αα[(ūu)V − (d̄d )V ]ββ,

�4
I=1 = [(ūu)A + (d̄d )A + (s̄s)A]αβ[(ūu)V − (d̄d )V ]βα,
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�5
I=1 = (s̄s)αα

V [(ūu)A − (d̄d )A]ββ,

�6
I=1 = (s̄s)αβ

V [(ūu)A − (d̄d )A]βα,

�7
I=1 = (s̄s)αα

A [(ūu)V − (d̄d )V ]ββ,

�8
I=1 = (s̄s)αβ

A [(ūu)V − (d̄d )V ]βα,

�9
I=1 = (ūs)αα

V (s̄u)ββ
A + (s̄u)αα

V (ūs)ββ
A

�10
I=1 = (ūs)αβ

V (s̄u)βα
A + (s̄u)αβ

V (ūs)βα
A , (A2)

and the operators for I = 0 ⊕ 2 sector (H I=0⊕2
eff ) are

�I=0⊕2
1 = [(ūu)V + (d̄d )V + (s̄s)V ]αα[(s̄s)A]ββ,

�I=0⊕2
2 = [(ūu)V + (d̄d )V + (s̄s)V ]αβ[(s̄s)A]βα,

�I=0⊕2
3 = [(ūu)A + (d̄d )A + (s̄s)A]αα[(s̄s)V ]ββ,

�I=0⊕2
4 = [(ūu)A + (d̄d )A + (s̄s)A]αβ[(s̄s)V ]βα,

�I=0⊕2
5 = [(ūu)V − (d̄d )V ]αα[(ūu)A − (d̄d )A]ββ + (s̄s)αα

V (s̄s)ββ
A ,

�I=0⊕2
6 = [(ūu)V − (d̄d )V ]αβ[(ūu)A − (d̄d )A]βα + (s̄s)αβ

V (s̄s)βα
A ,

�I=0⊕2
7 = [(ūu)V + (d̄d )V + (s̄s)V ]αα[(ūu)A + (d̄d )A + (s̄s)A]ββ,

�I=0⊕2
8 = [(ūu)A + (d̄d )A + (s̄s)A]αβ[(ūu)V + (d̄d )V + (s̄s)V ]βα,

�I=0⊕2
9 = (ūd )αα

V (d̄u)ββ
A + (d̄u)αα

V (ūd )ββ
A ,

�I=0⊕2
10 = (ūd )αβ

V (d̄u)βα
A + (d̄u)αβ

V (ūd )βα
A . (A3)
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