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Molecular dynamics simulations are performed for a finite nonrelativistic system of particles with Lennard-
Jones potential. We study the effect of liquid-gas mixed phase on particle number fluctuations in coordinate
subspace. A metastable region of the mixed phase, the so-called nucleation region, is analyzed in terms of a
noninteracting cluster model. Large fluctuations due to spinodal decomposition are observed. They arise due to
the interplay between the size of the acceptance region and that of the liquid phase. These effects are studied
with a simple geometric model. The model results for the scaled variance of particle number distribution are
compared with those obtained from the direct molecular dynamic simulations.
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I. INTRODUCTION

The endpoint of a first-order phase transition, noted as the
critical point (CP), occurs under different physical conditions,
including most molecular and ferromagnetic systems [1,2],
nuclear matter [3], and potentially the hot quantum chromo-
dynamics (QCD) matter at nonzero baryon density [4,5]. In
the thermodynamic limit, particle number fluctuations exhibit
singular behavior at the CP. These singularities are smeared
out in finite-size systems. Nevertheless, small systems also
demonstrate specific features of critical behavior such as en-
hancement of fluctuations [6,7].

Event-by-event fluctuations in nucleus-nucleus collisions
are used as an experimental tool to search for the QCD
CP at finite baryon density [4,5]. The presence of the
QCD CP should manifest itself in the enhanced fluctu-
ations of proton number [8] and possibly nonmonotonic
collision energy dependence of non-Gaussian fluctuation
measures [9,10]. Measurements of proton number fluctua-
tions in nucleus-nucleus collisions have been performed by
different experiments such as STAR [11,12], HADES [13],
and ALICE [14]. The measurements indicate a possible
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nonmonotonic collision energy dependence of the kurtosis
of proton number [11] as well as a possible enhancement
of two-proton correlations over noncritical baselines [15] but
conclusive evidence for the presence of QCD CP is still lack-
ing.

The grand canonical ensemble (GCE) of statistical me-
chanics is the most suitable framework to study statistical
fluctuations. Within this formulation, the cumulants of particle
number distribution are straightforwardly connected to the
chemical-potential derivatives of thermodynamic potential.
However, the GCE cannot be directly used for the condi-
tions realized in the experiment [16,17]. Several essential
restrictions should be taken into account: (i) finite size of
systems created in the experiment [18,19], (ii) influence of the
global conservation laws, for instance, baryon number con-
servation [20,21], and (iii) differences between coordinate-
and momentum-space acceptances. Recently the subensemble
acceptance method (SAM) to correct the fluctuation mea-
surements for global conservation laws has been developed
[19,21–25]. This method is applicable for statistical sys-
tems in the presence of interactions. In the limit of an ideal
Maxwell-Boltzmann gas, it reduces to the binomial accep-
tance correction procedure [20,26,27].

In the present work we continue our studies [7] of particle
number fluctuations within molecular dynamics (MD) simu-
lations of the Lennard-Jones (LJ) fluid. The model considered
here corresponds to an interacting system of nonrelativistic
particles. The presence of both attractive and repulsive in-
teractions leads to a first-order liquid-gas phase transition
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(LGPT). The MD simulations of the LJ fluid provide a mi-
croscopic approach to fluctuations in a system with a phase
transition. They also allow one to study deviations from
the baselines based on the GCE. This study thus comple-
ments earlier analyses of correlations and fluctuations in the
first-order phase transition region performed using hadronic
transport with mean fields [28,29] or fluid dynamics with
a finite-range term [30,31]. With regard to mean quantities
the molecular dynamics of nonequilibrium finite systems was
studied previously in the context of heavy ion collisions in
Refs. [32–36].

Our study is motivated by the measurements of baryon
number fluctuations in heavy-ion collisions to probe the QCD
phase structure. In particular, the LJ fluid can naturally model
the nuclear liquid-gas transition between a dilute gas of nucle-
ons and clusters and the dense nuclear liquid, if one regards
the LJ particles as nucleon degrees of freedom. This nuclear
LGPT is probed in nuclear collisions at low energies [37–39].
Experiments at higher collision energies, on the other hand,
study the confinement-deconfinement transition, which may
contain a critical point and a line of first-order phase tran-
sition at finite baryon density [4,5]. The relevance of the LJ
fluid to model the confinement-deconfinement transition may
seem less evident, given that it does not describe the expected
change of degrees of freedom from hadrons to quarks. Never-
theless, simulations of the LJ fluid do provide useful guidance
to understand the behavior of baryon number fluctuations near
the QCD CP for two reasons: (i) the behavior of baryon num-
ber fluctuations is universal near the QCD CP and governed
by the three-dimensional-Ising (3D-Ising) universality class
[5]—the same universality class that characterizes critical be-
havior in the LJ fluid [40]; and (ii) the LJ fluid simulations can
test the validity of the model-independent SAM procedure for
subtracting the canonical ensemble effects on baryon number
cumulants. This is particularly relevant given that the finite-
size effects, which hinder the accuracy of the SAM, can be
significant in the mixed-phase region.

This work focuses on fluctuations in the mixed-phase
region of a first-order phase transition. While significant atten-
tion has been given to higher-order measures of fluctuations of
conserved charges at supercritical temperatures and in pure
phases (see, e.g., Refs. [4,9,10,41–45]), less attention has
been paid to the mixed phase. However, it is possible for
a system created in relativistic nucleus-nucleus collisions to
enter the mixed phase of a first-order phase transition under
certain conditions. This is particularly relevant because of
the ongoing program of the HADES collaboration at the GSI
Helmholtzzentrum für Schwerionenforschung mbH to mea-
sure higher-order net-proton and net-charge fluctuations in
central Au + Au collisions at collision energies of 0.2A–1.0A
GeV. The system created in these collisions may undergo
freeze-out in the mixed phase of the nuclear LGPT.

In our previous work [7], we studied a supercritical
isotherm, T = 1.06Tc, observing a sizable increase of par-
ticle number fluctuations near the critical particle number
density n ≈ nc. In the present work, we study particle num-
ber fluctuations along a subcritical temperature T = 0.76Tc

inside the liquid-gas mixed phase. First, we look at the
metastable part of the mixed phase—the so-called nucleation

region. The simulation results are compared with a sim-
ple model of noninteracting particle clusters. Another part
of the liquid-gas mixed phase—the spinodal decomposition
region—demonstrates anomalous large particle number fluc-
tuations. This happens at temperature T and particle number
density n also far away from the CP. A simple analytical toy
model is constructed to clarify these effects.

The paper is organized as follows. The details of MD with
LJ potential and the results of the simulations for particle
number fluctuations are presented in Sec. II. A brief descrip-
tion of the mixed phase structure is described in Sec. III.
A simple model of noninteracting clusters in Sec. IV and a
geometrical toy model in Sec. V are developed to interpret the
MD results in the nucleation and spinodal decomposition re-
gions, respectively. The summary in Sec. VI closes the article.

II. MOLECULAR DYNAMICS WITH
LENNARD-JONES POTENTIAL

We use molecular dynamics simulations of the classical
nonrelativistic system of particles interacting via the Lennard-
Jones (LJ) potential,

VLJ(r) = 4ε

[(
σ

r

)12

−
(

σ

r

)6]
. (1)

The first term in Eq. (1) corresponds to the repulsive forces at
short distances whereas the second one describes the attractive
interactions. The parameter ε describes the depth of the attrac-
tive well, and σ corresponds to the size of the particle, which
also defines the distance scale. It is convenient to introduce
dimensionless reduced variables,

V ∗
LJ(r

∗) = VLJ(r)/ε = 4[(r∗)−12 − (r∗)−6], (2)

with r∗ = r/σ being the reduced distance. The reduced ther-
modynamic variables are the temperature T ∗ = T/ε, particle
number density n∗ = nσ 3, and pressure p∗ = pσ 3/ε. The par-
ticle’s mass can be utilized to define the dimensionless time
variable, t∗ = t[ε/(mσ 2)]1/2.

The LJ system possesses a rich phase diagram (see, e.g.,
Ref. [46] for an overview). At present, there are no direct an-
alytical tools to compute the phase diagram in the LJ system.
Nevertheless, numerical methods (see, e.g., Ref. [47]) allow
one to compute the approximate locations of the LGPT bin-
odal and spinodal lines, as well as the CP location. This part
of the phase diagram is of primary interest in the present work
and is shown in Fig. 1 in terms of the reduced temperature and
density. The CP location has been estimated from numerous
MD simulations [48]:

T ∗
c = 1.321 ± 0.007,

n∗
c = 0.316 ± 0.005,

p∗
c = 0.129 ± 0.005. (3)

In what follows, we use a set of dimensionless variables scaled
by the critical values

T̃ ≡ T

Tc
= T ∗

T ∗
c

, ñ ≡ n

nc
= n∗

n∗
c

, p̃ ≡ p

pc
= p∗

p∗
c

. (4)
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FIG. 1. The liquid-gas region of the Lennard-Jones fluid-phase
diagram. Horizontal dashed lines show the subcritical isotherm T̃ =
0.76 studied in this work and the supercritical isotherm T̃ = 1.06
explored in Ref. [7]. Solid and dashed lines show the binodal and
spinodal lines, respectively. The blue and green regions correspond to
the nucleation and cavitation metastable parts of the mixed phase, re-
spectively. The gray area denotes the spinodal decomposition region.
The black star represents the CP. The squares denote the (ñ, T̃ ) points
where the MD simulations in the mixed phase have been performed.

The quantities (3) correspond to the thermodynamic limit
when the system’s volume V → ∞. For finite systems, the
physical meaning of the LGPT and its CP should be treated
with caution because they are only rigorously defined for
infinite systems.

The MD simulations are performed by numerically in-
tegrating Newton’s equations of motion using the velocity
Verlet integration method. The simulations are done for a
system of N0 = 400 interacting particles in a cubic box of
volume V0 with periodic boundary conditions with minimum
image convention.

In the mixed phase, the time of reaching the thermal
equilibrium can be rather large (see Ref. [49]). After the
equilibration time, t̃eq = 50, the LJ system reaches a state
with a stable temperature1 (see Ref. [7]). The time of all sim-
ulations is τ = 106. This large time interval guarantees small
deviations (less than 1%) of the scaled variance in independent
simulations.

The total particle number N0 in the entire volume is fixed.
To study the fluctuations of particle number one thus needs
to choose a subvolume V = αV0 (0 < α < 1) of the whole
volume. We choose a cubic subvolume placed in the geo-
metrical center of the system. From the MD simulations, we
obtain the normalized probability distribution P(N ) to observe
N particles in the subvolume V .

1During all system evolution some temperature fluctuations can be
seen, but they are relatively small, so the mean value of temperature
differs from the desired by no more than 0.4%.

A useful measure of particle number fluctuations is the
scaled variance:

ω = 〈N2〉 − 〈N〉2

〈N〉 . (5)

In MD simulations, the values 〈N〉 and 〈N2〉 can be calculated
as time averages. In Fig. 2 we present the P(N ) distribution
at the subcritical temperature T̃ = 0.76 for several different
particle number densities ñ inside the mixed phase. The total
number of particles is fixed as N0 = 400 and the subvol-
ume fraction is taken as α = 0.2. From Fig. 2, one observes
substantial deviations of the resulting distributions from the
Poisson distribution baseline. For ñ ≈ 1, a double-hump dis-
tribution is clearly observed.

Note that, for any finite α, fluctuations of N in the sub-
volume V will be influenced by the exact global conservation
of the total particle number N0 in the full volume V0. In the
large-volume limit, these effects can be taken into account an-
alytically [21]. One can defined a scaled variance ω̃ corrected
for exact N0 conservation as

ω̃ = ω

1 − α
. (6)

The results for the corrected scaled variance ω̃ as a function
of ñ are presented in Figs. 3(a) and 3(b) for both the subcritical
and the supercritical isotherms T̃ = 0.76 and T̃ = 1.06, re-
spectively. All results are obtained for N0 = 400 and α = 0.2,
as in Fig. 2.

One can immediately observe that fluctuations are much
larger in the mixed phase at T̃ = 0.76 compared with those
along the temperature T̃ = 1.06, slightly above the critical
point. This indicates that, although the fluctuations exhibit
singular behavior in the vicinity of the CP, they can be even
larger in the mixed phase region away from the critical point.

In the following sections, we provide a brief overlook of
the structure of the liquid-gas mixed phase and analyze the
observed large values of ω̃ in the mixed phase in terms of
simple analytical models.

III. MIXED-PHASE STRUCTURE

One can specify three different regions inside the mixed
phase: nucleation, spinodal decomposition, and cavitation
(see, e.g., Refs. [50,51]). They are shown in Fig. 1 by blue,
gray, and green, respectively. Their microscopic structures
are symbolically illustrated in Fig. 4. The nucleation region
includes a mixture of particles and small clusters (liquid
droplets), whereas the cavitation region is represented by
the liquid with small bubbles of the gaseous phase. In the
context of heavy ion collision clusters correspond to nuclear
fragments whose distributions were previously studied using
MD in the case of expanding system in Refs. [32–35,52].
Experimental measurements of nuclear fragment mass distri-
butions were used to probe the nuclear LGPT and the CP (see,
e.g., Refs. [37,53–55]). The nucleation and cavitation regions
of the mixed phase correspond to the metastable states. In
the MD simulations one expects to achieve an equilibrated
steady state in these regions after a sufficiently long time. In
most cases, however, the time to reach complete equilibrium
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FIG. 2. The particle number distributions in a subvolume V = αV0 for the system with N0 = 400 particles. The distributions P(N ) obtained
from the MD simulations at T̃ = 0.76 and different values of ñ inside the mixed phase.

appears very long. Note also that a strict physical meaning and
location of the bounds of different regions are dependent on
the size of the system (see, e.g., Refs. [56–58]) and can be
sensitive to the collective motion [59–61].

The spinodal decomposition region is fundamentally dif-
ferent from the metastable nucleation and cavitation ones
(see, e.g., Refs. [62,63]). The LGPT manifests itself here as
a fast system separation into the gaseous and liquid phases.
The equilibrium states in this region (see, e.g., Ref. [64])
are achievable in the MD simulations. The heterogeneous
structure of the spinodal decomposition phase is illustrated
in Fig. 5, showing a strong influence on the particle number
fluctuations obtained in the MD simulations. This is discussed
in more detail in Sec. V. One can note a principal difference
between the heterogeneous two-phase states in the spinodal
decomposition region and the homogeneous mixtures of par-
ticles plus clusters in the nucleation region and liquid with
gaseous bubbles in the cavitation region.

IV. MIXTURE OF PARTICLES AND CLUSTERS

To clarify some general features of the nucleation re-
gion, let us consider a noninteracting multicomponent gas of

k-particle clusters (k = 1, 2, . . .). The GCE partition function
reads

ZGCE =
∏
k�1

∞∑
Nk=0

[V g(k)eμk/T ]Nk

Nk!
(2πkmT )3Nk/2

=
∏
k�1

exp

[
V (2πkmT )3/2g(k) exp

(
μk

T

)]
, (7)

where V , T , and μ are, respectively, the system volume,
temperature, and chemical potential that corresponds to the
total conserved number N of particles over all clusters; g(k) is
the “degeneracy” factor (number of internal states of the kth
cluster), and m is the mass of a single particle, such that the
mass of a k-particle cluster equals Mk = km). The system is
considered to be in chemical equilibrium, thus μk = kμ. The
CE partition function ZCE(V, T, N ) of the cluster model (7) is
considered in Appendix, where it is shown that the moments
〈kl〉 of the cluster distribution are identical between the CE
and the GCE in the thermodynamic limit.

The cluster distribution (i.e., the normalized probability to
find the kth cluster in the cluster system) can be written in a

FIG. 3. The scaled variance ω̃ (6) as a function of the particle number density ñ for N0 = 400, α = 0.2 at (a) T̃ = 0.76 and (b) T̃ = 1.06.
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FIG. 4. Different regions along the supercritical isotherm of the liquid-gas transition: (a) gaseous phase, (b) nucleation, (c) spinodal
decomposition, and (d) cavitation.

form

Pk (T, μ) ≡ 〈Nk〉∑
l�1 〈Nl〉 = k3/2g(k) exp

(
μk
T

)
∑

l�1 l3/2g(l ) exp
(

μl
T

) , (8)

where

k〈Nk〉 = ∂ ln[ZGCE(k)]

∂μ
(9)

is the GCE average number of the kth clusters. The clusters
pressure p and particle number density n can be found as

p = (2πm)3/2T 5/2
∑
k�1

k3/2g(k) exp

(
μk

T

)
, (10)

n = (2πmT )3/2
∑
k�1

k5/2g(k) exp

(
μk

T

)
. (11)

Using Eqs. (8) and (10) one can rewrite the pressure as

p = nT

〈k〉 , (12)

and the scaled variance ωgce

ωgce = T

[
d p

dn

]−1

= T

n

(
∂n

∂μ

)
T

= 〈k2〉
〈k〉 , (13)

where we defined 〈kl〉 ≡ ∑
k�1 klPk . Therefore, the first two

moments of the cluster probability distribution Pk define both

FIG. 5. Possible position of the liquid phase in the spinodal de-
composition region relative to the acceptance subvolume (red dashed
square).

the system pressure (11) and scaled variance (12). Due to
the evident inequalities, 〈k〉 � 1 and 〈k2〉 � 〈k〉, the results
(11) and (12) demonstrate that in the mixture of noninteract-
ing kth clusters (k = 1, 2, . . .) the system pressure becomes
smaller and the scaled variance larger than the correspond-
ing ideal-gas values pid = nT and ωid = 1 with no cluster
formation, i.e., when g(k = 1) = 1, g(k > 1) = 0. A gen-
eral expression for cumulants κn[N] of any order n can be
obtained:

κn[N] = ∂n ln[ZGCE]

∂
(

μ

T

)n = 〈kn〉
∑
k�1

〈Nk〉. (14)

The model of noninteracting clusters discussed above can
be considered as an approximation for the LJ fluid in the
nucleation region. The attractive part of the LJ potential is
responsible for the kth cluster formation. On the other hand,
the particle number density is still sufficiently small to jus-
tify the absence of the repulsive interaction effects between
clusters.

By definition, a cluster is a bound system of particles.
There are several ways to define clusters in molecular dynam-
ics simulations [65,66]. In the following, we will use the Hill
algorithm [67]. A pair of particles i and j is assumed to be
bound if their rest-frame energy is negative,

(ṽi − ṽ j )
2 + ṼLJ (|r̃i − r̃ j |) < 0. (15)

A given particle is assumed to belong to a cluster if it is
bound to at least one other particle in that cluster. Finding
clusters is thus equivalent to finding connected components
in an undirected graph, whose vertices correspond to particles
and where all bound pairs of particles [i.e., the condition (14)
is satisfied] are connected by edges. We use depth-first search
(DFS) to find the connected components of the graph and thus
identify all the clusters.

Utilizing the above procedure, one obtains the probability
distribution Pk in a Lennard-Jones fluid for given ñ and T̃ from
MD simulations. Examples of the extracted Pk distributions
for T̃ = 0.76 and T̃ = 1.06 are shown in Figs. 6(a) and 6(b)
for ñ = 0.16 and ñ = 0.35, respectively. The results indicate
that cluster formation becomes more significant when either
temperature T̃ is decreased or particle number density ñ is
increased.
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FIG. 6. Cluster probability distributions Pk extracted from the MD of Lennard-Jones fluid for N0 = 400 and T̃ = 0.76 at (a) gaseous binodal
ñ = 0.16 and (b) gaseous spinodal ñ = 0.35. For comparison, Pk distributions are also presented for supercritical temperature T̃ = 1.06.

We then use the extracted Pk distributions to evaluate
〈k〉 and 〈k2〉 which we then plug into (12) to estimate the
GCE scaled variance in the cluster model. These results are
compared with ω̃ calculated in a subvolume V = αV0 directly
from MD simulations. The cluster model results for T̃ = 0.76
are shown in Fig. 7 by the orange line. These results agree
qualitatively with direct MD simulations data (black line) in
the range of densities 0.16 � ñ � 0.35 corresponding to the
nucleation region. In particular, cluster formation explains the
strong rise (approximately by a factor of 20) of the scaled
variance with ñ in the nucleation region. The cluster model,
however, fails to describe the peak in ω̃ seen in MD sim-
ulations at higher densities, indicating its breakdown in the
spinodal region.

FIG. 7. The points connected by the solid line correspond to
the MD results for N0 = 400 and α = 0.2 at T̃ = 0.76. The orange
line demonstrates the cluster model results in the nucleation region
0.16 � ñ � 0.35. The dashed line shows the results of the Minecraft
model in the spinodal region 0.35 � ñ � 1.75, and the dash-dotted
line is its extension to the nucleation region.

V. FLUCTUATIONS IN THE SPINODAL REGION

In Ref. [68], the GCE particle number fluctuations were
calculated in the mixed-phase region. It was assumed that
both the liquid and gas phases are entirely inside the system
volume V0 that tends to infinity. In MD simulations here, we
instead study fluctuations in a subvolume V = αV0, which
corresponds to a different scenario. We thus develop new
models to understand qualitative features of the behavior ob-
served in MD simulations.

In the spinodal region, one assumes that the volume V
is partitioned into volumes Vl = xV and Vg = yV occupied
by the liquid and gaseous phases, respectively (0 < x <

1, y ≡ 1 − x). The corresponding particle number densities
in the liquid and gaseous phases are ρl ≡ Nl/Vl and ρg =
Ng/Vg. The rth moment of the particle number distribution
in the subvolume V = αV0 can then be presented as the
following:

〈Nr〉 = 〈(Nl + Ng)r〉 = V r〈(xρl + yρg)r〉. (16)

The fluctuating quantities are the densities ρl , ρg, and the
volume fraction x, whereas the volume V is fixed. Following
Refs. [69,70] we assume that the fluctuations of all these
quantities are independent in the thermodynamic limit, i.e.,
〈ρk

l ρ
m
g xn〉 = 〈ρk

l 〉〈ρm
g 〉〈xn〉 for any non-negative integers k, m,

and n.
The first moment (r = 1), reduces via Eq. (15) to

〈N〉 = x0V nl + y0V ng = V n, (17)

where x0 = 〈x〉 is the mean volume fraction occupied by
the liquid phase, y0 ≡ 1 − x0, and nl = 〈ρl〉 and ng = 〈ρg〉
are the mean densities in the liquid and gaseous phases,
respectively. The particle number density is equal to n ≡
〈N〉/V = N0/V0. Equation (16) defines x0 in terms of the mean
densities:

x0 ≡ 〈x〉 = n − ng

nl − ng
. (18)

At fixed temperature T < Tc the mean densities of the liquid
nl and gaseous ng phases are assumed to remain constant
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with respect to system’s particle number density n in the
spinodal region in the thermodynamic limit. These quantities
coincide with the corresponding values on the liquid (right)
and gaseous (left) binodals.

Using Eq. (16) one finds the variance of particle number
distribution (see Ref. [68] for details):

Var[N] ≡ 〈N2〉 − 〈N2〉

= Varx[Nl ]

(
1 + Var[x]

x2
0

)
+ Varx[Ng]

(
1 + Var[x]

y2
0

)

+ V 2(nl − ng)2Var[x]. (19)

Here Varx[Nl,g] is the variance of Nl,g at fixed volume fraction
x and Var[x] is the variance of the x distribution.

Suppose that there are several blobs of the liquid and
gaseous phases, and all of them are much smaller than
the subvolume V . This would correspond to a spatially
homogeneous mixed phase. In this case, Var[x] is ex-
pressed in terms of cumulants of Vl distribution as Var[x] ≡
V −2Var[Vl ]. In the thermodynamic limit, V → ∞, all cumu-
lants of extensive quantities are proportional to the system
volume, Varx[Nl,g] ∼ V and Varx[Vl,g] ∼ V . Equation (19)
reduces to

Var[N] = Varx[Nl ] + Varx[Ng] + V 2(nl − ng)2Var[x], (20)

where all terms are linear in V . The result (20) coincides with
that obtained for the GCE in Ref. [68], and it corresponds
to the finite values of the scaled variance at T < Tc in the
thermodynamic limit.

Note that the above derivation is based on the assumption
of homogeneity. This assumption is valid for pure phases.
In the mixed-phase region, however, this assumption may
only be reasonable when applied to long-lived metastable
phases. Such a configuration of the system, however, cannot
be viewed as an equilibrium configuration in a region of spin-
odal decomposition. There, the sizes of the liquid and gaseous
blobs are both of the order of the total volume V0, and their
volumes are comparable to the subvolume V . Thus, the whole
picture is strongly heterogeneous [see Figs. 4(c) and 5]. As a
consequence, Var[x] becomes volume-independent, thus, the
last term in Eq. (18) is quadratic in V and makes the dominant
contribution to fluctuations. Leaving only this last term, one
obtains

Var[N] = V 2(nl − ng)2Var[x], (21)

and

ω̃[N] = Var[N]

(1 − α)〈N〉 = α(1 − α)N0
(nl − ng)2

n2
Var[x]. (22)

This result indicates that ω̃[N] scales with N0, i.e., the
scaled variance diverges in the thermodynamic limit. We
checked that for N0 
 400 the substantial increase of ω̃

is observed within MD simulations, however the scal-
ing behavior for fluctuations is out of the scope of the
present paper. In the following, we present estimates for
Var[x].

Small-α limit. At α � 1 one has Vl 
 V and Vg 
 V . This
means that one can neglect the events when both phases are

FIG. 8. The illustration of the Minecraft toy model of an equi-
librium system in the unstable region of the mixed phase. The
subsystem is shown by the gray cube in the center while the green
cube represents the liquid. The remaining space of the system is
occupied by gas.

simultaneously present inside the subvolume V , and the whole
subvolume is entirely inside either the gaseous or liquid phase.
The probability distribution P[x] thus reads

P[x] = x0δ(1 − x) + y0δ(x). (23)

This means that one can neglect the events when both phases
are simultaneously present inside the subvolume V . From
Eq. (22) one finds

Var[x] = x0y0. (24)

The maximal value of Var[x] = 0.25 is reached at x0 = 3
√

0.5.
Using Eqs. (17) and (20) one obtains

Var[N] = V 2(n − ng)(nl − n). (25)

One sees that the scaled variance of particle number dis-
tribution is indeed divergent inside the mixed phase in the
thermodynamic limit, scaling with the subvolume ω̃ ∼ V .

Minecraft2 model. Now let us calculate Var[x] when the
sizes of the volume, subvolume, and blobs are all compa-
rable. For that we consider a simple “geometric” toy model
of the cubic system with unit volume which contains both
liquid and gaseous phases (see Fig. 8). The cubic subvolume
V = α is located in the center of the system with coordinates
(ax, ay, az) = (0, 0, 0). The edge length of the subvolume is
a = 3

√
α. All liquid is condensed into a single blob which

2This name is inspired by the popular 3D video game.
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freely moves within the system. Here we neglect the effects
of a geometric form and assume that this blob has a shape
of a perfect cube. The volume of the cube of liquid is Vl =
x0. Correspondingly its edge length is b = 3

√
x0. The system

has periodic boundary conditions, therefore, the coordinates
(bx, by, bz ) of the center of the cube of liquid are limited by
− 1

2 < bx, by, bz < 1
2 . The fraction x of the subvolume occu-

pied by the liquid phase is the overlap volume between the
cubic subvolume and the cubic liquid divided by the subvol-
ume V = α.

The system has three degrees of freedom—the coordi-
nates of the liquid cube (bx, by, bz ). Since the cube center
is uniformly distributed over − 1

2 < bx, by, bz < 1
2 , the three

coordinates are independent. The fraction x as a function of
these three coordinates and can be written as

x = f (bx) f (by) f (bz)

α
. (26)

Here f (bi ) is the overlap of liquid blob with subvolume along
the coordinate i as a function of bi.

The mean value 〈x〉 can be found as

〈x〉 = 1

αv

(∫ 1/2

−1/2
f (bi )dbi

)3

= x0, (27)

where v = 1 is the volume of the system. Similarly, one can
calculate the variance of x:

Var[x]

= −b6

+
[

b2(3a−b) + a+b−1(a + b − 1)3+b−a(b−a)3

3a2

]3

,

(28)

where ... ≡ [. . .] is the step function and, as before, a =
3
√

α and b = 3
√

x0. One sees that Eq. (27) reduces to Eq. (23)
when α → 0. In other limiting cases Var[x] → 0 when α → 1
or x0 → 1 or x0 → 0. Var[x] as a function of x0 and α is shown
in Fig. 9.

The scaled variance ω̃[N] given by Eq. (21), with Var[x]
estimated using the Minecraft model, Eq. (27), is shown in
Fig. 7 in spinodal and nucleation regions by dashed and dotted
lines, respectively.

VI. SUMMARY

We studied particle number fluctuations inside the mixed
phase of a liquid-gas phase transition by utilizing molecular
dynamics simulations of a Lennard-Jones fluid. The simu-
lations were performed for N0 = 400 particles in a cubic
box with periodic boundary conditions. The fluctuations are
studied inside a cubic subvolume V = 0.2V0 located in the
geometrical center of the system.

First, we briefly explore the supercritical temperature,
where one observes the approximate Gaussian shape of the
P(N ) distribution. The scaled variance ω̃ characterizes the
width of the P(N ) distribution. It first increases with density
from ω̃ ≈ 1 at small ñ to its maximum above unity around the

α

FIG. 9. The variance of the volume fraction occupied by the
liquid phase, Var[x], as a function of 〈x〉 ≡ x0 and α calculated in
the Minecraft model [Eq. (27)]. The dashed line corresponds to the
maximum value of Var[x] at fixed α.

critical density ñ = 1, and then it decreases with ñ to small
values ω̃ < 1. This is illustrated in Fig. 3(b).

The situation differs in the mixed phase, T̃ < 1. The struc-
ture of the P(N ) distribution is significantly more intricate.
For ñ ≈ 1, the distribution is bimodal, as shown in Fig. 2.
The corresponding variance of particle number is much more
significant compared with pure phases [Fig. 3(a)].

To understand the qualitative features of the observed be-
havior, we formulate two phenomenological toy models.

The first model describes the system as noninteracting
multicomponent gas of k-particle clusters, taking the cluster
probability distribution Pk directly from the MD simulations
as input. The model describes semiquantitatively the rapid
increase of ω̃ with density in the nucleation region of the
mixed phase, i.e., the region between the gaseous binodal and
spinodal (Fig. 7).

The second model—the Minecraft model—is formulated
for the spinodal region of the mixed phase. The particles
are separated into two phases, namely, the liquid blob with
volume Vl surrounded by gas. The size of the blob Vl can
be expressed through the total density of the system ñ and
densities on the binodals. The Minecraft model considers
the geometrical effects that become important when the
volumes Vl,g and V are of comparable size. With this con-
sideration, the model indicates that ω̃ ∼ N0 → ∞, thus the
variance is divergent in the thermodynamic limit inside the
spinodal region.

The present work is motivated by the study of event-by-
event fluctuations in nucleus-nucleus collisions to probe the
phase structure of QCD. Our MD simulations inside the mixed
phase were performed for 400 particles, while the fluctuations
were studied in the subvolume V = 0.2V0. These two param-
eters correspond to typical total numbers of nucleons and the
percentage of accepted final particles in heavy-ion collisions.
The results indicate that large fluctuations of particle num-
ber in coordinate space can be interpreted as a signal of the
spinodal region of the first-order phase transition. However,
there are significant differences between our calculations and
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heavy-ion collisions. One difference is that in heavy-ion colli-
sions, particles are not detected during the equilibrium phase
of the collision but only after they fly away to the detector.
Another difference is that particle momenta, not the coordi-
nates, are measured in the experiment. We plan to address
these issues by performing MD simulations of expanding
systems.

Our simulations provide a first microscopic model test of
the subensemble acceptance method (SAM) [21,22] in the
mixed phase region of a first-order phase transition. The SAM
is a method for correcting the baryon number cumulants in
heavy-ion collisions, which is model-independent in the ther-
modynamic limit, and it was previously tested in the crossover
region at supercritical temperatures in Ref. [7]. Our simu-
lations reveal that the SAM remains accurate in metastable
regions of the phase diagram but breaks down in the spinodal
decomposition region. The reason is that the finite-size effects
remain sizable even in large systems in this region of the phase
diagram. The treatment of the canonical effects in the spin-
odal region is thus more complex. It will require appropriate
generalizations of the SAM, such as including macroscopic
geometrical effects encompassed by the Minecraft model in-
troduced here.

Another future avenue is generalizing the presented analy-
sis to higher-order moments of particle number distributions,
such as skewness and kurtosis.
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APPENDIX: CLUSTER PARTITION FUNCTION
IN THE CANONICAL ENSEMBLE

For a system of noninteracting multicomponent gas of kth
particle clusters, the canonical ensemble (CE) partition func-
tion reads

ZCE(V, T, N ) =
N∏

k=1

∑
Nk�0

[V g(k)]Nk

Nk!
(2πkmT )3Nk/2

× δ

[
N −

N∑
k=1

kNk

]
. (A1)

Applying the integral form of the Kronecker symbol,

δ

[
N −

N∑
k=1

kNk

]
=

∫ 2π

0

dϕ

2π
exp

[
iϕ

(
N −

N∑
k=1

kNk

)]
,

(A2)

to Eq. (A1), one obtains

ZCE(V, T, N ) =
∫ 2π

0

dϕ

2π
e−iϕN exp

⎡
⎣∑

k�1

r(k)eiϕk

⎤
⎦. (A3)

Here r(k) ≡ V g(k)(2πkmT )3/2.
Using the Maclaurin expansion, one has

exp

⎡
⎣∑

k�1

r(k)eiϕk

⎤
⎦ =

∞∑
l=0

Bl (r(1), . . . , l!r(l ))
l!

eiϕl , (A4)

where Bl are Bell polynomials [71].
Substituting (A4) into (A3) gives

ZCE(V, T, N ) = BN (r(1), . . . , N!r(N ))
N!

. (A5)

From the above equations one finds the GCE partition
function,

ZGCE =
∞∑

N=0

ZCE exp

(
μN

T

)
=

N∏
k=1

exp
[
r(k)eμk/T

]
, (A6)

which coincides with Eq. (7). ZCE can be expressed in terms
of ZGCE through the Mellin transformation,

ZCE =
∫ c+i∞

c−i∞
ZGCEe−μN/T dμ. (A7)

The integral (A7) can be evaluated in the large-N limit
using the steepest descent method [72]. Therefore,

ZCE(V, T, N ) ≈
√

2πT 2∑N
k=1 k2r(k)eμ0k/T

× exp

(
N∑

k=1

r(k)eμ0k/T − μ0

T
N

)
, (A8)

where μ0(T, N ) can be found from the saddle-point equation

N∑
k=1

kr(k)eμ0k/T − N = 0. (A9)

Equation (A8) indicated that the jth moment of kth cluster
distribution in the large-N limit reads

〈k j〉CE = 〈k j〉GCE + O(N−1). (A10)

This result shows that all moments j = 1, 2, . . . of the kth
cluster distribution (k = 1, . . . , N ) are the same in the CE and
GCE in the thermodynamic limit N → ∞.

If N is large, this justifies the use of Pk probabilities from
MD simulations as input into the calculations of fluctuations
in the GCE using formulas (11) and (12).
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