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Form factors of the nucleon by using the t dependence of parton distribution functions
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This paper calculates the elastic form factors for nucleons based on generalized parton distributions using
an extended new ansatz introduced in Phys. Rev. C 105, 025202 (2022). Different parton distribution functions
(PDFs) are considered, and modifications are made to the free parameters of the new ansatz. The obtained
results are systematically compared among the combinations of different PDFs and ansatzes for high ranges of
momentum transfer, with −t < 35 GeV−2. The minimum suitable parameters are used to parametrize the model.
After obtaining the form factors, we proceed to compute the electric radius and the transversely unpolarized
densities for the nucleon. In addition, we derive the PDFs that depend on the impact parameter. Finally, we
analyze the results by comparing them with the findings from other research and experimental data.
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I. INTRODUCTION

Nucleons can be studied through measuring their elastic
form factors, which can be obtained using unique techniques
such as proton and neutron elastic scattering tests based on
Rosenbluth methods [1–8]. Hadron’s quark distributions are
revealed through generalized parton distributions (GPDs).
GPDs and the Dirac and Pauli form factors are connected
and are used to study the structure of nucleons. Generally,
GPDs depend on the momentum transfer t = Q2, the av-
erage longitudinal momentum fraction x of the partons in
the hard scattering, and the skewness parameter ξ which
measures the longitudinal momentum transfer [9–12]. The
electromagnetic form factors in GPDs can be calculated using
a variety of techniques and parametrizations [13–24]. Several
investigations have been made into the dependence of GPDs
on x and t , with suggested ansatzes for the t dependence,
while the x dependence is considered to be used for parton
distribution functions. This section is based on selecting an
appropriate parton distribution function (PDF) and an ansatz
that considers the x and t dependencies of GPDs. By mod-
ifying the ansatz parameters and combining the ansatz with
the appropriate PDFs, the calculation results of form factors
have a suitable agreement with experimental data. We have
used the MRST2002 [25], JR09 [26], and CT18 [21] par-
ton distribution functions and applied the modified Gaussian
ansatz [22], the extended ER [14], and HS22 ansatz [19] for
high momentum transfer ranges to systematically compare the
electromagnetic form factors generated from all the analyzed
ansatzes using various PDFs. This article is structured as fol-
lows. In Sec. II, a review of generalized parton distribution
theoretical features, elastic form factors, and electric mean
squared for the nucleon is studied. In Sec. III, the theoreti-
cal framework of transverse charge and magnetic densities is
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reviewed. The GPDs in the space of impact parameters are
covered in Sec. IV. Finally, our conclusions are presented in
Sec. V.

II. GENERALIZED PARTON DISTRIBUTIONS
AND ELASTIC FORM FACTORS

GPDs are considered one of the essential techniques for
studying the structure of nucleons [27–31]. In order to calcu-
late the spatial distribution of partons in the transverse plane
and create a three-dimensional representation of the nucleon,
it is necessary to perform deep virtual Compton scattering
experiments and apply a Fourier transform to the t dependence
of GPDs [32–36].

The elastic form factors, which are also known as the Dirac
and Pauli form factors, can be described in terms of GPDs for
valence quarks Hq(x, ξ , t ) and Eq(x, ξ , t ) by using the quark
sum rules of the u and d flavors [14,15,37]:

F1(t ) =
∑

q

eq

∫ 1

−1
dxHq(x, ξ , t ), (1)

F2(t ) =
∑

q

eq

∫ 1

−1
dxEq(x, ξ , t ). (2)

When the momentum is transverse and located in the space-
like region, the value of ξ is equal to zero. In the range of
0 < x < 1 the integration region can be reduced. By revising
the elastic form factors, we can obtain [14,22]

F1(t ) =
∑

q

eq

∫ 1

0
dxHq(x, t ), (3)

F2(t ) =
∑

q

eq

∫ 1

0
dxεq(x, t ), (4)

In any model, there are differences between the functions
H(x) and ε(x). The x → 1 limit of ε(x) should include more
powers of (1 − x) than H(x) to produce a quicker reduction
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(c)

FIG. 1. The form factors of u and d quarks multiplied by t as a function of −t using the M-HS22 ansatz and CT18 PDF [21], JR09
PDF [26], MRST2002 PDF [25]. The points shown are extractions based on experimental data from [38] (triangle up), [39] (circle), and [40]
(square).

with t [14,22]. Therefore, it can be concluded that

εu(x) = κu

Nu
(1 − x)ηu uv (x),

εd (x) = κd

Nd
(1 − x)ηd dv (x), (5)

κq =
∫ 1

0
dxεq(x). (6)

The limitations on κq are such that the value for the proton
must be equal to F P

2 (0) = κp = 1.793, and the value for the
neutron must be equal to F n

2 (0) = κn = −1.913:

κu = 2κp + κn,

κd = κp + 2κn, (7)

this gives κu = 1.673 and κd = −2.033. Additionally, the nor-
malization integral for the mathematical constant

∫ 1
0 Hq(x, 0)

is equal to F P
1 (0) = 1 for the proton, and F n

1 (0) = 0 for the
neutron. The proton’s valence quark number for u and d deter-

mines the normalization integrals for the Hu(x) = uv (x) and
Hd (x) = dv (x) distributions, which are 2 and 1, respectively.
The calculated normalization factors Nu and Nd are [14]

Nu =
∫ 1

0
dx(1 − x)ηu uv (x),

Nd =
∫ 1

0
dx(1 − x)ηd dv (x), (8)

To satisfy the conditions in Eq. (5), the values of ηu and
ηd need to be determined by fitting the nucleon form factor
data. We will now introduce several ansatzes that incorporate t
dependence, including the extended ER ansatz [14], modified
Gaussian (MG) ansatz [22], and HS22 ansatz [19], which will
be used in this paper.

The extended Regge ansatz (ER) is presented by address-
ing the t dependency of GPDs [14,15]:

Hq(x, t ) = qv (x)x−α′(1−x)t , (9)

εq(x, t ) = εq(x)x−α′(1−x)t . (10)
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FIG. 2. The form factors of u and d quarks multiplied by t as a function of −t using the CT18 pdf [21] and HS22 ansatz [19], ER ansatz
[14], MG ansatz [22], and M-HS22 ansatz. The points shown are extractions based on experimental data from [38] (triangle up), [39] (circle),
and [40] (square).

The modified Gaussian ansatz (MG) is also presented, which
is [22–24]

Hq(x, t ) = qv (x) exp

[
α

(1 − x)2

xm
t

]
, (11)

εq(x, t ) = εq(x) exp

[
α

(1 − x)2

xm
t

]
, (12)

where the Drell-Yan-West equation is solved by using Eqs. (9)
and (11) [41,42]. The values of the free parameters for ER and
MG are α′ = 1.15 and α = 1.09 and m = 0.45, respectively.

And the HS22 ansatz is presented as [19]

Hq(x, t ) = qv exp[−α′′t (1 − x) ln(x) + βx ln(1 − bt )],

(13)

εq(x, t ) = εq(x) exp[−α′′t (1 − x) ln(x) + βx ln(1 − bt )],

(14)

in which α′′, b, and β are free parameters that are taken,
respectively, as 1.15, 0.5, and 2.

By changing the parameters in the last ansatz to α′′ =
1.125, β = 0.185, and b = 1.82, that have been taken to re-
produce the experimental data of [38–40], we introduce it as
a modified HS22 ansatz (M-HS22) in this paper.

Nevertheless, we use three distinct parton distributions in
our study to calculate the results, i.e.,

The MRST2002 global fit at Q2
0 = 1 GeV2 in the NNLO

approximation [25]

uv

(
x, Q2

0

) = 0.262x−0.69(1 − x)3.5(1 + 3.83
√

x + 37.65x),

(15)

dv

(
x, Q2

0

) = 0.061x−0.65(1 − x)4.03(1 + 49.05
√

x + 8.65x).

(16)

The JR09 parton distribution functions in the NNLO ap-
proximation are mentioned below for a range of input Q2

0 =
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FIG. 3. The F p,n
1 and F p,n

2 as a function of −t using the CT18 pdf [21] and HS22 ansatz [19], ER ansatz [14], MG ansatz [22], and M-HS22
ansatz. The points shown are extractions based on experimental data from [38] (triangle up).

0.55GeV 2 [26]:

uv

(
x, Q2

0

) = 4.4049x−0.2125(1 − x)3.6857

× (1 − 1.1483
√

x + 4.5921x), (17)

dv

(
x, Q2

0

) = 13.824x−0.1778(1 − x)5.6754

× (1 − 2.2415
√

x + 3.5917x). (18)

The CT18 parton distribution functions in the NNLO ap-
proximation are discussed below for a range of input Q0 =
1.3 GeV [21]:

xuv

(
x, Q2

0

) = 3.385x0.763(1 − x)3.036 puv;

puv = sinh(1.502)(1 − y)4 + sinh(−0.147)4y(1 − y)3

× sinh(1.671)6y2(1 − y)2

+(
1 + 1

2 0.763
)
4y3(1 − y) + y4, (19)

xdv

(
x, Q2

0

) = 0.49x0.763(1 − x)3.036 pdv;

pdv = sinh(2.615)(1 − y)4 + sinh(1.828)4y(1 − y)3

+ sinh(2.721)6y2(1 − y)2

+ (
1 + 1

2 0.763
)
4y3(1 − y) + y4. (20)

In Eqs. (19),(20) set y = √
x.

Using the M-HS22 ansatz and three parton distribution
functions, we obtained the form factors of u and d quarks
based on the above formalism and plotted them in Fig. 1. The
M-HS22 ansatz, particularly in combination with the CT18
PDF, obviously provides a better fit to the experimental data
taken from Refs. [38–40]. Additionally, by combining four
different types of ansatz with the CT18 PDF and performing
calculations, we exhibit the form factors of u and d quarks,
the proton and neutron, as well as t2F1 and t2F2 for the proton
and neutron as functions of −t in Figs. 2–4, respectively.

The combination of the M-HS22 ansatz and CT18 PDF
for proton and, especially, neutron form factors can provide
better agreement with the experimental data than the other
combinations mentioned above.
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FIG. 4. The t2F p,n
1 and t2F p,n

2 form factors as a function of −t using the CT18 pdf [21] and HS22 ansatz [19], ER ansatz [14], MG ansatz
[22], and M-HS22 ansatz. The points shown are extractions based on experimental data from [38] (triangle up), [39] (circle), and [40] (square).

The Sachs electric and magnetic form factors are expressed
from F N

1 and F N
2 combination as [38,43]

GN
E (t ) = F1(t ) + t

4M2
F2(t ), GN

M (t ) = F1(t ) + F2(t ). (21)

The nucleon’s charge and magnetic moment are represented
by the variables GE and GM in the limit t → 0. Although the
neutron electric form factor, Gn

E , is almost zero, it has been
shown that Gp

E , Gp
M , and Gn

M roughly follow the dipole form
[44].

This discovery is in agreement with the simple, nonrela-
tivistic interpretation in which the charge and magnetization
of the nucleon are carried by the quarks, and the up and
down quarks have similar spatial distributions. For all form
factors, the contributions of the up- and down-quark charge
distributions are similar, except for Gn

E , where there is a
nearly complete cancellation between the up- and down-quark
charge distributions. The measurements of Gn

E were impor-
tant in proving that the up-quark distribution differs from the
down-quark distribution.

We can explain how the up and down quarks contribute to
the form factors of the nucleon [45]:

Gp
E ,M = 2

3 Gu
E ,M − 1

3 Gd
E ,M ,

Gn
E ,M = 2

3 Gd
E ,M − 1

3 Gu
E ,M . (22)

The expression for the up- and down-quark contributions to
the proton form factors is as follows:

Gu
E ,M = Gn

E ,M + 2Gp
E ,M ,

Gd
E ,M = 2Gn

E ,M + Gp
E ,M . (23)

In this convention, Gu
E ,M reflects the contribution of up quarks

in the proton and down quarks in the neutron to the form
factors, with analogous formulas for F1 and F2. It is assumed
that the quark magnetic moments are the limit of the mag-
netic form factors as Q2 approaches zero, with μu = (2μp +
μn) = 3.67μN and μd = (μp + 2μn) = −1.03μN , respec-
tively. Note that the up- and down-quark contributions, as
defined here, include both quark and antiquark contributions
and represent the difference between the quark and antiquark
distributions due to the charge weighting of the quark and
antiquark contributions to the form factors [1].
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FIG. 5. The Gp,n
E and Gp,n

M as a function of −t . Combination of the M-HS22-CT18 [21] compare with MG-JR09 [22,26] and ER-MRST2002
[14,25]. The points shown are extractions based on experimental data from [38] (triangle up).

In Fig. 5, we presented the electric and magnetic form
factors of the proton and neutron obtained by employing var-
ious combinations of ansatz models and parton distribution
functions (PDFs). We have then plotted these form factors as
a function of −t .

The following is a calculation of the nucleon Dirac mean
squared radii based on the ER [14]:

r2
1,p = −6α′

∫ 1

0
dx[euuv (x) + ed dv (x)](1 − x) ln(x), (24)

r2
1,n = −6α′

∫ 1

0
dx[eudv (x) + ed uv (x)](1 − x) ln(x). (25)

Additionally, the electric radii of the proton and neutron are
calculated based on the MG model:

r2
1,p = 6α

∫ 1

0
dx[euuv (x) + ed dv (x)]

(1 − x)2

xm
, (26)

r2
1,n = 6α

∫ 1

0
dx[eudv (x) + ed uv (x)]

(1 − x)2

xm
. (27)

In Table I, we have calculated nucleon electric radii by
using different GPDs and comparing them with experimental
data taken from [46].

TABLE I. The electric radii of the proton and neutron were
calculated using different PDFs based on the extended (ER) [14] and
(MG) [22] models. The data used in this study are obtained from
[46].

PDFs rE ,p r2
E ,n

Exprimental data 0.877 fm −0.1161 fm2

MG-JR09 0.942 fm −0.1559 fm2

MG-MRST2002 0.900 fm −0.1004 fm2

MG-CT18 0.880 fm −0.1152 fm2

ER-JR09 0.857 fm −0.1401 fm2

ER-MRST2002 0.839 fm −0.1055 fm2

ER-CT18 0.882 fm −0.1159 fm2
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FIG. 6. Transverse charge and magnetization densities of the p. The M-HS22-CT18 [21] compare with the M-HS22-JR09 [26] and M-
HS22-MRST2002 [25]. The red dotted curve is calculated from the information in [49].

III. TRANSVERSE CHARGE AND
MAGNETIZATION DENSITIES

The impact parameter distribution of unpolarized quarks
inside a nucleon is related to the generalized parton distribu-
tion H . However, in the case of a nucleon with transverse
polarization, the distortion of the quark distribution in the
transverse plane is described by E [18].

The distribution of partons in the transverse plane is
explained by the two-dimensional Fourier transform of gen-
eralized parton distribution functions [14,20,47,48]:

ρch(b) =
∫

d2q⊥
(2π )2

F1(q2)eiq⊥·b⊥

=
∫ ∞

0

dQ

2π
QJ0(Qb)F1(Q2), (28)

where b specifies the impact parameter and J0 represents
the order zero cylindrical Bessel function. The magnetization
density can be obtained from the Fourier transform of the
Pauli form factor

ρ̃M (b) =
∫ ∞

0

d2q⊥
(2π )2

F2(q2)eiq⊥·b⊥

=
∫ ∞

0

dQ

2π
QJ1(Qb)F2(Q2), (29)

whereas

ρm(b) = −b
∂ρ̃M (b)

∂b
= b

∫ ∞

0

dQ

2π
Q2J1(Qb)F2(Q2), (30)

where the anomalous magnetization density is represented by
ρm(b). Experimental data for transverse densities are not avail-
able. However, estimates have been made for the charge and
magnetization densities of the proton based on experimental
data for electromagnetic form factors [49,50].

In this section, we have calculated the charge and mag-
netization densities of protons using the M-HS22 ansatz and
three types of PDFs, the results are presented in Fig. 6, which
shows the densities as a function of b. We have also used the
equations for GE and GM from Ref. [49], which were obtained
from experimental data to compute the transverse charge and
magnetization density.

IV. IMPACT PARAMETER SPACE AND POSITIVE
CONSTRAINTS FOR GPDs

When the skewness parameter ξ is set to zero, parton dis-
tributions in impact parameter space can be related to GPDs
through a simple Fourier transform in transverse momentum
q⊥ [51,52]:

Hq(x, b⊥) =
∫

d2q⊥
(2π )2

eib⊥·q⊥Hq(x,−q2
⊥), (31)

Eq(x, b⊥) =
∫

d2q⊥
(2π )2

eib⊥·q⊥εq(x,−q2
⊥). (32)

This function calculates the probability of detecting a quark
in a nucleon with a longitudinal momentum fraction of x at a
transverse location of b⊥. Based on the positivity constraints,
the E and H GPDs in the impact parameter space can be
related as follows [53–55]:

1

2MN
|∇b⊥Eq(x, b⊥)| � Hq(x, b⊥). (33)

We can obtain PDFs in the impact parameter space for u
and d quarks based on the ER model [14]:

Hq(x, b⊥) = qv (x)
e−b2

⊥/[−4α′(1−x) ln(x)]

4π [−4α′(1 − x) ln(x)]
, (34)

Eq(x, b⊥) = κq

Nq
(1 − x)ηq qv (x)

e−b2
⊥/[−4α′(1−x) ln(x)]

4π [−4α′(1 − x) ln(x)]
. (35)
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FIG. 7. Hq(x, b⊥) and Eq(x, b⊥) for the quarks u and d by combining two different ansatzes, i.e., ER [14], MG [22] and PDFs of the JR09
[26], MRST2002 [25], and CT18 [21].

The process of obtaining the PDFs in the impact parameter
space for the MG model is as follows:

Hq(x, b⊥) = qv (x)
e−b2

⊥/[4α(1−x)2/xm]

4π [4α(1 − x)2/xm]
, (36)

Eq(x, b⊥) = κq

Nq
(1 − x)ηq qv (x)

e−b2
⊥/[4α(1−x)2/xm]

4π [4α(1 − x)2/xm]
. (37)

Thus, for ER and MG ansatzes, respectively, we have

|∇b⊥Eq(x, b⊥)| = κq

Nq
(1 − x)ηq qv (x)

b⊥
2

× e−b2
⊥/[−4α′(1−x) ln(x)]

[−4α′(1 − x) ln(x)]2
, (38)

|∇b⊥Eq(x, b⊥)| = κq

Nq
(1 − x)ηq qv (x)

b⊥
2

× e−b2
⊥/[4α(1−x)2/xm]

[4α(1 − x)2/xm]2
. (39)

Figure 7 depicts the H and E GPDs for u and d quarks, ob-
tained using the JR09 PDF [26], MRST2002 [25], CT18 [21],
as well as two models: the ER [14] and MG [22] ansatzes. It
is evident from the figure that the ansatzes are more effective
in calculations compared to the PDFs.

V. CONCLUSION

In this paper, various ansatzes and PDFs were presented.
The Pauli, Dirac, and electromagnetic form factors were cal-
culated using three models of ansatzes (MG, ER, and HS22)
and three parton distribution functions (MRST2002, JR09,
and CT18) for high momentum transfer ranges. The results
obtained from all the considered ansatzes and PDFs were
systematically compared with each other to parametrize one
set of form factors.

The free parameters of the HS22 ansatz were modified
and introduced as the M-HS22 ansatz. After introducing the
formalism, we first selected the M-HS22 ansatz and paired
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it with different PDFs such as MRST2002, CT18, and JR09.
The Dirac and Pauli form factors of the u and d quarks are
displayed in Fig. 1, i.e., F u

1 , F d
1 , F u

2 , and F d
2 multiplied by t as

a function of −t . It can be observed that the M-HS22 ansatz,
particularly when used with the CT18 PDF, outperforms other
ansatzes and is more consistent with the experimental data
presented in [38–40]. In the next step, we set the CT18 PDF
and four ansatzes: HS22, ER, MG, and finally the M-HS22
ansatz, which is shown in Fig. 2. The proton and neutron’s
Dirac and Pauli form factors are seen in Fig. 3. It can be
seen that the M-HS22 ansatz is more consistent with exper-
imental data than other ansatzes, particularly for the neutron
form factor. Figure 4 illustrates the behavior of the t2F p,n

1
and t2F p,n

2 form factors as a function of −t . From the last
three figures, we can infer that the M-HS22 ansatz exhibits
proper behavior and is consistent with experimentally ob-
tained electromagnetic form factors using data from [38–40].
Furthermore, since the combination of CT18 PDF with the
MHS22 ansatz is suitable for both protons and neutrons, it
yields better results compared to the other combinations. Ta-
ble I shows the computed electric mean squared radius for
the nucleons using several ansatzes and PDFs. The result
obtained using the CT18 PDF is in agreement with the exper-

imental data reported in [46]. Figure 5 illustrates the electric
form factors of the neutron and proton. It is evident that the
parametrizations used for the M-HS22 ansatz agree fairly well
with the experimental results. We compared the last two charts
with data from [38], and it is easy to conclude from the plotted
figures that other combinations of the mentioned ansatzes
and PDFs do not have a better correlation with the experi-
mental data than the M-HS22-CT18 combination. In Fig. 6,
we display the proton charge and magnetization densities for
M-HS22 and various PDFs. These densities are computed by
considering different parametrizations and comparing them
with previous research. To calculate the transverse charge
and magnetization density, we employed the GE and GM

equations based on experimental data from Ref. [49]. We
have presented the GPDs for the ER and MG ansatzes in
the impact parameter space in Fig. 7, taking into account
three distinct PDFs. The chosen parametrizations provide a
suitable match for the nucleon form factors. This figure is
motivated by the fact that a change in ansatz parameters has
a greater effect on the results than the influence of PDF. The
proposed combination yields a more effective agreement with
the Dirac and Pauli form factors of the nucleon compared to
other combinations.
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