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Determination of meson fragmentation functions in the Field-Feynman model
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We study the fragmentation functions of both pions and kaons in the Field-Feynman recursive model with the
extended SU(2) flavor symmetry relations of fragmentation functions and fitting parameters. Parametrizations
are determined from a leading-order analysis of HERMES experimental multiplicity data of meson production in
semi-inclusive deep inelastic scattering, and uncertainties are estimated with the Hessian method. We compare
our results with the experimental data and the analysis results of other parametrizations. The SU(2) flavor
symmetry breaking effect of meson fragmentation functions of ud quarks is also discussed, and we show that the
fragmentation functions of kaons have a bigger SU(2) flavor symmetry breaking effect of ud quarks than these
of pions.
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I. INTRODUCTION

Hadronization is an important topic in the field of high
energy physics. Because hadronization is a nonperturbative
process, it is necessary to introduce the parton fragmenta-
tion functions to study how quarks and gluons hadronize.
In recent years, due to the progress of experiments, the in-
creasing data provide a new opportunity for more precise
determination of fragmentation functions. At present, there
already have been many parametrizations of the parton frag-
mentation functions such as the analysis of the de Florian,
Sassot, Stratmann group (DSS) [1–3] and the analysis of the
Hirai, Kumano, Nagai, Sudoh group (HKNS) [4], as well
as schemes using machine learning methods such as NNFF
[5] and MAPFF [6]. Although most fragmentation functions
are fitted based on functional forms or neural networks, the
methods based on phenomenological models are still instruc-
tive and helpful. Therefore, it is meaningful to seek for some
phenomenological but intuitive models to help us understand
the hadronization process, and even rely on these models to
obtain the fragmentation functions of mesons.

In the 1970s, Field and Feynman [7] proposed a model
based on the recursive principle to study the fragmentation
process of quarks to mesons. The model has a clear and simple
image, and can be simulated by the Monte Carlo method. It
also inspired some further models, such as the Lund model
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[8]. The Field-Feynman model allows one to parametrize
meson fragmentation functions in terms of only two param-
eters. Considering the flavor structure of incident quarks,
Hua and Ma [9] analyzed the fragmentation functions in the
Field-Feynman model with a significant modification. By ad-
justing the parameters from comparing with the parametrized
fragmentation functions by Kretzer, Leader, Christova (KLC)
[10], the fragmentation functions of the pion with different
Dπ+

u , Dπ+
d , and Dπ+

s were obtained [9] with compatible results
in comparison with other empirical studies. However, due to
the lack of experimental data of the kaon at that time, that
work could only extend the whole framework to the kaon
based on the parameters of fragmentation functions of the pion
and predict the fragmentation functions of the kaon case with
different DK+

u , DK+
d , DK+

s , and DK+
s̄ .

After HERMES collaboration [11] released the final semi-
inclusive deep inelastic scattering (SIDIS) data, it is time
to complete the unfinished previous work and get the frag-
mentation functions of the kaon independently. The SIDIS
process plays an important role in the determination of the
flavor-separated fragmentation functions. This is because, un-
like the equal amount of positive and negative charge hadrons
generated in the semi-inclusive annihilation (SIA) process, the
multiplicity is sensitive to the produced hadron charge and the
choice of the target hadron in deep inelastic scattering (DIS).
For proton targets, the multiplicity of π+ is greater than π−,
since there are more u quarks than d quarks in the proton.

This paper is organized as follows. In Sec. II we briefly
introduce the main aspects of the Field-Feynman model and
our extension based on the previous work [9], and give the
parametrized forms of the fragmentation functions of both
pions and kaons. In Sec. III, the experimental data are an-
alyzed and the fitting procedure is discussed, including the
observables in SIDIS, the selection of data sets, the estimation
of uncertainties, and the principle of the Hessian method. In
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FIG. 1. Illustration of the Field-Feynman model.

Sec. IV, the analyzed results of the fragmentation functions of
both pions and kaons are shown and compared with the ex-
perimental data and the results of other parametrizations, with
the estimated uncertainties. Finally, we briefly summarize our
main results in Sec. V.

II. BRIEF REVIEW OF THE FIELD-FEYNMAN MODEL

The Field-Feynman model [7] is a concise and intuitive
phenomenological model based on the recursive principle and
scaling invariance. It is illustrated in Fig. 1. An initial quark i
creates a color field in which new quark-antiquark pairs such
as j j̄, kk̄, l l̄, . . . are produced. Then quark i combines with
j̄ to form a first rank primary meson and leaves j to combine
further antiquarks. The process goes on like a chain and pro-
duce a cascade of mesons with higher ranks. To describe this
process, Field and Feynman introduced a distribution function
f (η), which denotes the probability that the first rank primary
meson leaves a fractional momentum η to the remaining cas-
cade and is normalized so that∫ 1

0
f (η)dη = 1. (1)

Next they defined another distribution function F (z), which
means the probability of finding a meson (independent of
rank) with fractional momentum z in a quark jet. Then it can
be written as such an integral equation

F (z) = f (1 − z) +
∫ 1

z

dη

η
f (η)F

(
z

η

)
. (2)

The first term represents the first rank primary meson, and the
second term means the probability of the recursive production
of a higher rank meson. Field and Feynman solved this inte-
gral equation and gave a simple solution

zF (z) = f (1 − z), (3)

where

f (z) = (d + 1)zd . (4)

Let us define βi j as the probability of quark i exciting a pair
q jq̄ j in quark sea, with the matrix form

β =
⎛
⎝βuu βud βus

βdu βdd βds

βsu βsd βss

⎞
⎠, (5)

and the normalization condition can be written as
n f∑
j=1

βi j = 1. (6)

Here, we follow the modification of the previous work by Hua
and Ma [9]. The original Field-Feynman model has no i index
but they added it and got the result of

β =
⎛
⎝0.46 0.46 0.08

0.46 0.46 0.08
0.38 0.38 0.24

⎞
⎠, (7)

and this matrix is general for both the pion and the kaon.
Obviously, there exists SU(2) flavor symmetry of ud quarks
between the parameters, which means that βiu = βid and
βu j = βd j , and now we abandon such relations at least for the
favored quark fragmentation functions in this work. For differ-
ent quarks, the distributions f (z) and F (z) are also different:

fq(z) = (dq + 1)zdq , (8)

zFq(z) = fq(1 − z). (9)

Hence, in analogy with Eq. (2), we can get the mean number
of fragmented mesons composed by ab̄ with an initial quark q
and momentum fraction z:

Pab̄
q (z) = δaqβqb fq(1 − z) +

∫ 1

z

dη

η
fq(η)βqcPab̄

c (z/η). (10)

The mean number of mesons of all quark states is

Pab̄
〈q〉(z) =

∑
c

βqcPab̄
c (z), (11)

then we get

Pab̄
〈q〉(z) = βqaβqb fq(1 − z) +

∫ 1

z

dη

η
fq(η)βqcPab̄

〈c〉(z/η). (12)

Comparing with Eq. (2), we can see that

Pab̄
〈q〉(z) = βqaβqbFq(z). (13)

We can substitute it in Eq. (12), which yields

Pab̄
q (z) = δqaβqb fq(1 − z) + βqaβqbF q(z), (14)

where

F q(z) = Fq(z) − fq(1 − z)

=
(

1

z
− 1

)
fq(1 − z)

= (dq + 1)z−1(1 − z)dq+1. (15)

The fragmentation function is

Dh
q(z) =

∑
ab

�h
ab̄Pab̄

q (z), (16)

where �h
ab̄

represents the probability of a meson composed

by ab̄, such as �π+
ud̄

= 1 and �π0

uū = �π0

dd̄
= 1/2. Combining

Eqs. (10) and (12), we get

Dh
q(z) = Ah

q f h
q (1 − z) + Bh

qF
h
q(z), (17)
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where

Ah
q =

∑
b

�h
qb̄β

h
qb, (18)

Bh
q =

∑
ab

βh
qa�

h
ab̄β

h
qb. (19)

Here, we add a superscript h to βi j , which means the prob-
ability of a quark (an antiquark) with flavor i exciting a pair
q jq̄ j in quark sea during the generation of hadron h. In other
words, it becomes a conditional probability whose condition
is the generation of hadron h. Due to the charge conjugation,
we have βh+

i j = βh−
i j = βh

i j .
Then the parametrized form of π+ fragmentation functions

can be written as

Dπ+
u (z) = βπ

ud f π
u (1 − z) + βπ

uuβ
π
ud F

π

u (z), (20)

Dπ+
d̄ (z) = βπ

du f π
d (1 − z) + βπ

duβ
π
dd F

π

d (z), (21)

Dπ+
d (z) = βπ

duβ
π
dd F

π

d (z), (22)

Dπ+
ū (z) = βπ

uuβ
π
ud F

π

u (z), (23)

Dπ+
s (z) = Dπ+

s̄ (z) = βπ
suβ

π
sd F

π

s (z). (24)

In the same way, the fragmentation functions of K+ can also
be obtained:

DK+
u (z) = βK

us f K
u (1 − z) + βK

uuβ
K
usF

K
u (z), (25)

DK+
s̄ (z) = βK

su f K
s (1 − z) + βK

suβ
K
ssF

K
s (z), (26)

DK+
s (z) = βK

suβ
K
ssF

K
s (z), (27)

DK+
ū (z) = βK

uuβ
K
usF

K
u (z), (28)

DK+
d (z) = DK+

d̄ (z) = βK
duβ

K
dsF

K
d (z). (29)

It can be derived that the corresponding fragmentation func-
tions of negatively charged mesons can be obtained by charge
conjugation Dh+

q (z) = Dh−
q̄ (z) in the Field-Feynman model.

But for neutral mesons, the relation is not simply Dh0

q (z) =
[Dh+

q (z) + Dh−
q (z)]/2. For brevity, we put the derivations in

Appendix A.
Since the parameters βπ

su and βπ
sd only appear in Dπ+

s (z) in
the form of a product βπ

suβ
π
sd , they cannot be completely de-

termined in the fitting procedure, so we assume that βπ
su = βπ

sd
to constrain them. Similarly, there exists the same problem
with the parameters βK

du and βK
ds in DK+

d (z), but the constraint
becomes βK

ds = 1 − 2βK
du (equivalent to βK

du = βK
dd ). Actually,

the assumptions and constraints of these parameters in the
original Field-Feynman model are exactly the same, and we
just follow them here.

In total we have eight free parameters to describe the frag-
mentation functions of each meson, which are

π : dπ
u , dπ

d , dπ
s , βπ

uu, β
π
ud , β

π
du, β

π
dd , β

π
su;

K : dK
u , dK

d , dK
s , βK

uu, β
K
us, β

K
du, β

K
su, β

K
ss .

In this work, the parameters du �= dd , which leads to the
breaking of SU(2) flavor symmetry of ud quarks between
fragmentation functions [such as Dπ+

u (z) �= Dπ+
d̄

(z)]. In fact,
the mass difference between u and d quarks could inevitably

TABLE I. HERMES [11] multiplicity data used in our LO anal-
ysis, with the mean value of Q2 = 2.5 GeV2.

Process Data in fit χ 2 per data

ep → π+X 10 1.446
ep → π−X 10 1.843
ed → π+X 10 1.886
ed → π−X 10 1.240
ep → K+X 10 1.168
ep → K−X 10 0.988
ed → K+X 10 1.486
ed → K−X 10 1.034
total 80 1.387

make the SU(2) flavor symmetry of ud quarks no longer be
maintained in the process of hadronization.

III. ANALYSIS OF EXPERIMENTAL DATA

A. Observables in SIDIS and data selection

In the hadronization of SIDIS, the relevant observable is
multiplicity for hadrons of a specific type h, and such ob-
servable is defined as the differential cross section for hadron
production normalized to the differential inclusive DIS cross
section. With leading order (LO) quantum chromodynamics
(QCD) analysis, multiplicity can be expressed as

1

σ DIS
tot

dσ h

dz
=

∑
f e2

f

∫ xmax

xmin
dxBq f (xB, Q2)Dh

f (z, Q2)∑
f e2

f

∫ xmax

xmin
dxBq f (xB, Q2)

, (30)

where the sum is over quarks and antiquarks of flavor
f , and e f is the charge of quark in units of elementary
charge. q f (xB, Q2) is the quark parton distribution function
(PDF) with Bjorken variable xB = −q2/(2P · q) and negative
square of the four-momentum transfer Q2 = −q2. Dh

f (z, Q2)
is the fragmentation function with momentum fraction z =
(P · ph)/(P · q). Due to the scaling invariance of the Field-
Feynman model [12], we have Dh

f (z, Q2) = Dh
f (z).

We choose the z presentation of the final HERMES data
[11] on pion and kaon multiplicities for both proton and
deuteron targets to present this LO analysis. There are a total
of eight groups of data (see Fig. 8 in Ref. [11]) from different
scattering processes, with ten data points in each group fully
used in this analysis. The information of data is listed in
Table I. The determination of fragmentation functions re-
quires knowledge of PDFs of the proton and deuteron targets,
for which we use MSTW08 LO [13] parametrization scheme
with the accepted integral range 0.023 < xB < 0.600.

B. Fitting procedure and uncertainty analysis

By comparing HERMES [11] experimental multiplicity
data and the theoretical values calculated with Eq. (30), we
determine the optimal values of the eight independent fit pa-
rameters by minimizing the χ2 function

χ2 = N
∑

i

(
Mdata

i − M theory
i

)2

σ 2
i

, (31)
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(a) (b)

FIG. 2. Comparison of the analysis result with HERMES pion multiplicity data, the red line is our fit results and the green dashed line is
refitted results of the previous work [9]. (a) and (b) are identical but the y axis of (b) is logarithmic. We can see that there is no significant
difference between them.

where the sum on i is over the number of data points,
N = ∑

i σ
2
i is a rescaling factor to avoid the distortion of

χ2 caused by too small σi, and Mdata
i and M theory

i are exper-
imental and theoretical values of multiplicity, respectively.
The experimental errors are calculated from systematic and
statistical errors by σ 2

i = (σ sys
i )2 + (σ stat

i )2, and the bins of
z are treated as horizontal systematic errors and calculated
by effective variance method [14] with the built-in function
of ROOT [15]. Because we only select the z presentation of
the HERMES data, the bin correlations between z and other
kinematic variables are neglected.

In addition to accurately determining each parameter, it is
also important to estimate their uncertainties. In this study,
we apply the Hessian method [16] to evaluate the uncertainty
band of fragmentation functions. The Hessian method is based
on a quadratic expansion of the χ2 function around its global
minimum point α̂:


χ2(α̂) = χ2(α̂ + δα) − χ2(α̂) =
∑
i, j

Hi jδαiδα j, (32)

where the sum of i and j is over the eight free fit parameters,
and 
χ2(α̂) is the deviation from the minimum, δαi are the
parameter errors around the minimum.

The Hessian matrix is constructed by the second deriva-
tives of χ2 function at the minimum and its definition is
Hi j = 1

2
∂χ2

∂αi∂α j
|α̂ . It is a symmetric d × d matrix where d is

the number of free fit parameters (or degrees of freedom). The
uncertainties of fragmentation functions are obtained by

[
δDh

f (z)
]2 = 
χ2

∑
i, j

(
∂Dh

f (z, α̂)

∂αi

)
H−1

i j

(
∂Dh

f (z, α̂)

∂α j

)
.

(33)

The derivation of Eq. (33) can be found in Ref. [17]. We set
the tolerance parameter T 2 = 
χ2 = 9.3028 in this fitting for
68% confidence level by solving the integral equation of the
χ2 distribution function

P =
∫ 
χ2

0

1

2�(n/2)

(
x

2

) n−2
2

exp

(
x

2

)
dx = 0.6826, (34)

where �(n/2) is the Gamma function and n = 8 is the degree
of freedom (the number of fitting parameters). This calcula-
tion method is referred to Ref. [4]. The minimization of χ2

function and calculation of Hessian matrix are evaluated by
CERN subroutine ROOT [15] and MINUIT2 [18].

TABLE II. Parameters determined for the pion, with the po-
sitions of parameters selected according to their corresponding
relations after extension. The definitions of refitted parameters can
be referred to Ref. [9].

This fit HM refit

Parameters Value Parameters Value

dπ
u 1.724 ± 0.523 d 1.653 ± 0.247

dπ
d 2.205 ± 0.479

dπ
s 1.777 ± 0.586

βπ
uu 0.487 ± 0.022 βu 0.469 ± 0.012

βπ
ud 0.470 ± 0.014

βπ
du 0.491 ± 0.011

βπ
dd 0.404 ± 0.041

βπ
su 0.430 ± 0.018 βs 0.472 ± 0.014
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TABLE III. Same as Table II but for the kaon.

This fit HM refit

Parameters Value Parameters Value

dK
u 1.709 ± 0.307 d 1.279 ± 0.195

dK
d 2.126 ± 0.116

dK
s 2.757 ± 0.281

βK
uu 0.102 ± 0.056 βu 0.464 ± 0.015

βK
us 0.153 ± 0.131

βK
du 0.471 ± 0.036

βK
su 0.863 ± 0.016 βs 0.481 ± 0.031

βK
ss 0.050 ± 0.013

IV. RESULTS

We get the following results. At the same time, we refit
the model used in the previous work [9] according to the
HERMES [11] multiplicity data for comparison.

A. Optimum parameters and comparisons
with experimental data

Obtained parameters in the LO analysis are listed in Ta-
bles II and III for both the pion and the kaon. In Figs. 2 and
3 we present a detailed comparison of the results of our fit
with HERMES [11] experimental multiplicity data and the
refitted result of previous work [9], respectively. In general,
the agreement of the fit with multiplicity data is excellent in
the entire z range covered by the experiments. However, in
Fig. 3 the refitted results are not in good agreement with the
experimental data of the kaon, while their performance is very
good in terms of the pion in Fig. 2.

For the pion, the refitted results are almost the same as the
results of our fit. This can be observed not only from Fig. 2,
but also from the comparison of matrices Eq. (7) and

βπ =

⎛
⎜⎝

0.487 0.470 0.043

0.491 0.404 0.105

0.430 0.430 0.139

⎞
⎟⎠. (35)

Since the difference between the two models (ours and the
previous one) is whether the SU(2) flavor symmetry of ud
quarks is maintained, it shows that the SU(2) flavor sym-
metry breaking effect of ud quarks is not significant for
the pion.

But for the kaon, the situation is different. The refitted
results deviate more severely from the experimental data than
our fit results for the kaon in Fig. 3. Comparing the matrix

βK =

⎛
⎜⎝

0.102 0.745 0.153

0.471 0.471 0.059

0.863 0.087 0.050

⎞
⎟⎠ (36)

with Eq. (7), we can see that some of their elements are
also very different. It can be inferred that the SU(2) flavor
symmetry breaking effect of the kaon fragmentation functions
of ud quarks is relatively large. Apparently, it is inappropriate
to continue assuming SU(2) flavor symmetry of ud quarks
for the kaon in the model. In addition, from the matrix we
can notice that the matrix element βK

su is much larger than
other matrix elements in the same row (as a probability). It
shows that the first rank processes, i.e., the excitation of uū
from s̄ (or s) and the combination of us̄ (or ūs), are dominant
in the hadronization of the kaon. This is consistent with the
definition of βK

su as a conditional probability and reflects the
posterior nature given by the analysis of the experimental
data of the kaon, which means when the detector observes a

(a) (b)

FIG. 3. The same as in Fig. 2, but now for the kaon. We can see that there are significant differences between our fit results and refitted
results, and the fitting of refitted results is not as good as our fit results.
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i

j j̄k̄ k

i i

j
k̄ j̄

k

(a) (b)

FIG. 4. Such a process is ignored in the Field-Feynman model, but it is possible to contribute to the generation of mesons. (a) is the
illustration and (b) is the corresponding Feynman diagram. Obviously, gluons play a major role in this process.

charged kaon event, it is probably the result of the excitation
of uū from s̄ (or s) and the subsequent combination of us̄ (or
ūs). There is a similar problem with βK

ud , but we should not
regard it in the same way. In fact, the large value of βK

ud is not a
physical result. According to Eq. (25), only parameters βK

uu
and βK

us can be determined in the fitting procedure, where
βK

us is determined by the second term and the product of βK
us

and βK
uu is determined by the first term. The parameter βK

ud is
obtained by the relation βK

ud = 1 − βK
uu − βK

us. This leads to a
problem that βK

uu is not determined independently and would
depend on the value of βK

us. The parameter βK
us means the

probability of a u quark exciting an ss̄ pair in the generation
of the kaon. From the perspective of quantum field theory,
because the mass of s quarks is much larger than that of u
quarks, the probability of a u quark exciting an ss̄ pair is
extremely low (approximately less than 10−3). But if we take
the generation of the kaon as a condition, this probability
would become quite considerable. This would depress the
value of the parameter βK

uu in the fitting procedure, and leads
to the high value of parameter βK

ud . However, this explanation
is only mathematical. Here we propose a possible physical
explanation. In the meson generation process, gluons also
have independent contributions, but there are no gluons in the
Field-Feynman model. This leads to the contributions from
gluons being counted into quarks. As shown in Fig. 4, a
process like this will produce one positive and one negative
mesons with the same momentum, but the Field-Feynman
model does not take such a process into consideration. For the
pion, this neglect will not have many effects, but for the kaon,
it is not the same because there is no s or s̄ quarks (valence) in
protons (or deuterons) and it is difficult for sea quarks alone
to provide enough s or s̄ quarks to generate kaons. There are
more kaons to come from ss̄ quark pairs produced by gluons.
The gluons are mainly excited by u quarks since there are two
u quarks (valence) in one proton (and three in one deuteron).
The model does not consider the contribution of u quarks
through gluons, and the parameter βK

ud is not directly obtained
by fitting, so this part of the contribution is considered to be
generated through d quarks in the calculation. Nevertheless,
we still have the opportunity to analyze the contribution of

gluons in the future. As long as the multiplicity data of the
neutral kaons K0 and K̄0 are obtained experimentally, the frag-
mentation functions of the neutral kaon in Appendix A can be
fitted. Then the parameter βK

ud can be determined, so that the
contribution of gluons would be known after deducting the
contribution of d quarks.

The COMPASS experimental data [19,20] can verify the
validity of our fragmentation functions. The observable of

FIG. 5. Comparison of the analysis result with COMPASS
pion differential multiplicity data [19] with range 1 GeV2 < Q2 <

4 GeV2, the red and green dots are positively and negatively charged
pion data, and the red and green lines are our analysis results corre-
spondingly (with MSTW08 LO [13] PDFs).
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FIG. 6. Same as Fig. 5, but for kaons.

COMPASS experiment is differential multiplicity. With LO
QCD analysis, it can be expressed as

dMh(x, z, Q2)

dz
=

∑
f e2

f q f (x, Q2)Dh
f (z, Q2)∑2

f e2
f q f (x, Q2)

. (37)

We select a part of COMPASS experimental data with range
1 GeV2 < Q2 < 4 GeV2 (close to 2.5 GeV2 of HERMES).
Figures 5 and 6 show the experimental and theoretical values
of differential multiplicities of pions and kaons, respectively.
It can be seen that there is some inconsistency between the ex-
perimental and theoretical values. We think it is caused by the
differences between the two experiments. In Refs. [19,20], the
sum of integrated meson multiplicities M h+ + M h−

is intro-
duced to compare the data, with M h± = ∫ 〈Mh±

(x, y, z)〉ydz.
In this paper, for pions, the experimental values are lower than
the theoretical values. This is consistent with the conclusion
in Ref. [19]. The sum of integrated pion multiplicities of
COMPASS is lower than that of HERMES. For kaons, the
experimental values are higher than the theoretical values,
which is consistent with the conclusion in Ref. [20]. The sum
of integrated kaon multiplicity of COMPASS is higher than
HERMES. From comparing the conditions of COMPASS and
HERMES, the inconsistency is mainly caused by different

√
s

of the two experiments.
It should be noted that the fit parameters βπ

su and βπ
sd could

not be determined in the fitting procedure since they appear
in the fragmentation functions of the pion as a product βπ

suβ
π
sd

(βK
du and βK

ds are the same). We have adopted a compromise
approach, that is, assuming that they are still in accordance
with the relation βπ

su = βπ
sd in the original Field-Feynman

model (for the kaon which is βK
ds = 1 − 2βK

du), but this may
not be the realistic case. This makes these parameters have
greater uncertainties and a discussion for the value ranges of
these parameters is given in Appendix B.

B. Uncertainties and comparison with other parametrizations

The obtained fragmentation functions and their uncertain-
ties are shown for the positively charged pion in Fig. 7.
The shaded areas indicate their 1-σ uncertainty (68% confi-
dence level) regions estimated by the Hessian method. The
comparison with other parametrizations is also shown in the
same figure. In order to avoid the confusion caused by the
superposition of more than three kinds of shaded areas, their
uncertainties are shown in Figs. 8 and 9, respectively.

Since the functions we adopt are monotonically decreas-
ing and the forms are relatively simple, the behaviors of
fragmentation functions of other parametrizations are more
complex than ours, especially in the region 0 < z < 0.2. But
in the region 0.2 < z < 0.6, the trends of our fragmentation
functions are consistent with other parametrizations. There
are no peaks for either favored or unfavored fragmentation
functions, according to Eqs. (20) and (21), which means that
the contribution of higher rank primary meson accounts more
than first rank primary meson in the generation of the pion.
The obtained fragmentation functions and their uncertainties
are shown for the positively charged kaon in Fig. 10. To avoid
confusion caused by superposition of shaded area, uncertain-
ties of other parametrizations are shown in Figs. 11 and 12.
Different from the pion results, the fragmentation functions of
the kaon show relatively greater uncertainty and more com-
plex behaviors, especially for the favored functions DK+

u (z)
and DK+

s̄ (z). We can see that they have peaks in the region
0.2 < z < 0.4. According to Eqs. (25) and (26), it shows that
the contribution of the first rank primary mesons accounts
for a large proportion in the generation of the kaon, which
is consistent with the analysis of the parameters of the kaon in
Sec. IV A.

There are significant discrepancies between our fragmen-
tation functions and DSS schemes in shape and uncertainty
especially for the kaon. We guess this is caused by two rea-
sons. On the one hand, the fragmentation function form of
DSS is D(z) ∝ Nzα (1 − z)β[1 + γ (1 − z)δ], which has more
free parameters. On the other hand, DSS fit has adopted a
wider range of experimental data sources (include both SIA
and SIDIS).

V. SUMMARY AND CONCLUSION

In this paper, the fragmentation functions of both pions
and kaons are determined by fitting the HERMES [11] ex-
perimental multiplicity data with the extended Field-Feynman
recursive model, and their uncertainties are also estimated by
the Hessian method. Compared with the previous work [9],
the SU(2) flavor symmetry breaking properties of ud quarks
of different meson fragmentation functions are discussed, and
we show that the fragmentation functions of kaons have a big-
ger SU(2) flavor symmetry breaking effect of ud quarks than
these of pions. The results obtained are generally compatible
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FIG. 7. The individual fragmentation functions for the positively charged pion zDπ+
i (z) along with uncertainty indicated by the shaded

bands. Also shown is a comparison to the refitted results, the previous analysis of HM[9] and other parametrizations by DSS [1,2] and
HKNS [4].

FIG. 8. The same as in Fig. 7 without the parametrization by DSS [1,2], and the uncertainty of HKNS [4] is shown with shaded bands.
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FIG. 9. The same as in Fig. 7 without the parametrization by HKNS [4], and the uncertainty of DSS [2] is shown with shaded bands.

FIG. 10. The individual fragmentation functions for the positively charged kaon zDK+
i (z) along with uncertainty indicated by the shaded

bands. Also shown is a comparison to the refitted results, the previous analysis of HM[9] and other parametrizations by DSS [1,3] and HKNS
[4].
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FIG. 11. The same as in Fig. 10 without the parametrization by DSS [1,3], and the uncertainty of HKNS [4] is shown with shaded bands.

FIG. 12. The same as in Fig. 10 without the parametrization by HKNS [4], and the uncertainty of DSS [3] is shown with shaded bands.
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with existing parametrizations of fragmentation functions of
pions and kaons.
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APPENDIX A

It can be easily derived that the negatively charged meson
fragmentation functions observe charge conjugation in the
Field-Feynman model. With the help of Eq. (17), we can get
the fragmentation functions of the negatively charged pion:

Dπ−
ū (z) = βπ

ud f π
u (1 − z) + βπ

uuβ
π
ud F

π

u (z), (A1)

Dπ−
d (z) = βπ

du f π
d (1 − z) + βπ

duβ
π
dd F

π

d (z), (A2)

Dπ−
d̄ (z) = βπ

duβ
π
dd F

π

d (z), (A3)

Dπ−
u (z) = βπ

uuβ
π
ud F

π

u (z), (A4)

Dπ−
s (z) = Dπ−

s̄ (z) = βπ
suβ

π
sd F

π

s (z); (A5)

and those of the negatively charged kaon:

DK−
ū (z) = βK

us f K
u (1 − z) + βK

uuβ
K
usF

K
u (z), (A6)

DK−
s (z) = βK

su f K
s (1 − z) + βK

suβ
K
ssF

K
s (z), (A7)

DK−
s̄ (z) = βK

suβ
K
ssF

K
s (z), (A8)

DK−
u (z) = βK

uuβ
K
usF

K
u (z), (A9)

DK−
d (z) = DK−

d̄ (z) = βK
duβ

K
dsF

K
d (z). (A10)

Obviously, there exist charge conjugation relations
Dh+

q = Dh−
q̄ . But for the neutral meson, the relations are

complex. With Eq. (17), we can derive the neutral pion
fragmentation functions

Dπ0

u (z) = Dπ0

ū (z)

= 1
2βπ

uu f π (1 − z) + 1
2

[(
βπ

uu

)2 + (
βπ

ud

)2]
F

π
(z),

(A11)

Dπ0

d (z) = Dπ0

d̄ (z)

= 1
2βπ

dd f π (1 − z) + 1
2

[(
βπ

dd

)2 + (
βπ

du

)2]
F

π
(z),

(A12)

Dπ0

s (z) = Dπ0

s̄ = 1
2

[(
βπ

su

)2 + (
βπ

sd

)2]
F

π
(z). (A13)

It is shown that Dπ0

q = Dπ0

q̄ since π0 is the antiparticle of

itself. But there is no relation Dπ0

q = 1
2 [Dπ+

q + Dπ−
q ] since the

SU(2) flavor symmetry breaking of u and d quarks. Unlike the
neutral pion, there are two kinds of neutral kaons, K0 and K̄0,
with constituents ds̄ and d̄s. With the same steps, we can get
the fragmentation functions of K0:

DK0

d (z) = βK
ds f K

d (1 − z) + βK
ddβ

K
dsF

K
d (z), (A14)

DK0

s̄ (z) = βK
sd f K

s (1 − z) + βK
sdβ

K
ssF

K
s (z), (A15)

DK0

s (z) = βK
sdβ

K
ssF

K
s (z), (A16)

DK0

d̄ (z) = βK
ddβ

K
dsF

K
d (z), (A17)

DK0

u (z) = DK0

ū (z) = βK
udβ

K
usF

K
u (z); (A18)

and those of K̄0:

DK̄0

d̄ (z) = βK
ds f K

d (1 − z) + βK
ddβ

K
dsF

K
d (z), (A19)

DK̄0

s (z) = βK
sd f K

s (1 − z) + βK
sdβ

K
ssF

K
s (z), (A20)

DK̄0

s̄ (z) = βK
sdβ

K
ssF

K
s (z), (A21)

DK̄0

d (z) = βK
ddβ

K
dsF

K
d (z), (A22)

DK̄0

u (z) = DK̄0

ū (z) = βK
udβ

K
usF

K
u (z). (A23)

Apparently there exist relations DK0

q = DK̄0

q̄ since K0 and K̄0

are antiparticles to each other. But there are also no relations
DK+

u = DK0

d and DK−
ū = DK̄0

d̄
due to the SU(2) flavor symmetry

breaking of u and d quarks.

APPENDIX B

Because we made assumptions about the relationship be-
tween parameters βπ

su and βπ
sd for the pion in the fitting

procedure (for the kaon, the parameters are βK
du and βK

ds),
the results obtained may not be physical. However, we can
still get the value ranges of these parameters through some
mathematical analysis.

For the pion, we assume that the relationship between
these two parameters is βπ

su = βπ
sd . But in fact, the fitting of

experimental data can only ensure that their product is certain.
Combined with the conditions given by the model and their
products determined in the fitting, we can get the following
equations:

βπ
suβ

π
sd = 0.4302 = 0.1849, (B1)

βπ
su + βπ

sd < 1. (B2)

By solving the equations, we get the range of two parameters:
0.245 < βπ

su(or βπ
sd ) < 0.755.

Similar to the pion, but the relationship between two pa-
rameters is βK

ds = 1 − 2βK
du for the kaon. Correspondingly, the

equations are

βK
duβ

K
ds = 0.471 × 0.058 = 0.027318, (B3)

βK
du + βK

ds < 1. (B4)

Because the mass of s quark is much larger than that of u and
d quarks, there should be two additional constraints:

βK
ds < βK

du, (B5)

βK
ds < βK

dd = 1 − βK
du − βK

ds. (B6)

Solving the equations with constraints, we get the range
0.058 < βK

ds < 0.165 < βK
du(or βK

dd ) < 0.942.
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