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Charmonium production in a thermalizing heat bath
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Using the Remler formalism for the creation of composed particles, we study charmonium production both in
thermalized and thermalizing boxes, which contain charm and anticharm quarks. The thermalizing box studies
include the lowering of the box temperature, the spatial diffusion of charm and anticharm quarks, which are
initially confined in the central region, as well as the combination of both, what imitates heavy-ion collisions.
Comparing numerical and analytical results we demonstrate that the rate of the original Remler formalism
has to be supplemented by two rates to obtain, for t → ∞, results which are consistent with the statistical
model predictions: i) a rate, which takes into account the temperature dependence of the Wigner density of the
quarkonium during the expansion and, in the case that a heavy quark potential is not implemented in the Monte
Carlo approach, ii) a rate which comes from the change of the relative distance between the heavy quark and
antiquark. These results provide the basis for future applications of the Remler formalism to heavy-ion collisions.
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I. INTRODUCTION

Quarkonium is a bound state of a heavy quark and its
antiquark. Since the object is flavorless, it is often called
the hidden heavy flavor meson. Several decades ago Matsui
and Satz suggested the suppression of quarkonium production
in heavy-ion collisions as a signature for the formation of
a quark-gluon plasma (QGP), because the color screening,
which exists only in a deconfined phase, prevents the heavy
quark pair from forming a bound state [1].

Quarkonium suppression was indeed later observed at the
CERN Super Proton Synchrotron (SPS) and the BNL Rel-
ativistic Heavy-Ion Collider (RHIC) [2,3]. As the collision
energy increases, however, more and more heavy quarks are
produced and the possibility of regeneration of quarkonia
emerges also because the c and c̄ from different primary ver-
tices may form a quarkonium. In fact, the nuclear modification
factor of J/ψ , which measures the normalized ratio of J/ψ
produced in heavy-ion reactions as compared to pp collisions,
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is larger at the CERN Large Hadron Collider (LHC) than at
RHIC and larger in midrapidity than in forward and backward
rapidities, though the temperature is higher at LHC and in
the midrapidity region [4]. Therefore the study of quarkonium
production in heavy-ion collisions is not simply focused on
the dissociation in a hot dense nuclear matter but also on
regeneration in a QGP [5–8] or when the QGP hadronizes.

In the 1970s Remler devised a formalism to study the
production of composite particles in heavy-ion collisions by
using the Wigner representation of density operators [9–11],
which was successfully applied to deuteron production in
heavy-ion collisions [9,12].

Recently an attempt has been made to use the Rem-
ler formalism to study quarkonium production in heavy-ion
collisions [13,14] as well as in p + p collisions [15]. A dis-
tinguished feature of this approach is that the temperature and
therefore in a QGP time dependence of the Wigner density of
the quarkonium is taken into account. Such a dependence is
predicted by lattice gauge calculations [16], which show that
below the dissociation temperature (above which a J/ψ is not
stable anymore) the root-mean-square (rms) radius of a J/ψ
depends on the temperature.

In this study we apply the Remler formalism for quarko-
nium production in a thermal box by using Monte Carlo
methods. Contrary to simulations of heavy-ion collisions, box
simulations have the advantages that everything is control-
lable and analytic solutions are available. The equilibration of
the quarkonia in the box is achieved by scattering with virtual
particles at a given temperature. The asymptotic distribution
can then be compared with statistical model predictions. The
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statistical model, which has successfully described the particle
production in heavy-ion collisions, provides reliable solutions
for the quarkonium production [17,18].

We first briefly review the Remler formalism in Sec. II and
present the solutions for quarkonium production in a thermal-
ized box in Sec. III. In the next section we carry out box
simulations for four different initial conditions and present our
results. In Sec. V the necessity of an additional term, which
is responsible for spatial diffusion, is explained. Finally, a
summary is given in Sec. VI.

II. REMLER FORMALISM

In the Remler formalism the multiplicity of a quarko-
nium state �, P�, in a N-body system, composed of heavy
(anti)quarks, is asymptotically (for t → ∞) obtained by

P�(t → ∞) = Tr[ρ�ρN (t → ∞)], (1)

where ρ� (which is assumed to be time independent) and ρN

are, respectively, the density operator of the quarkonium and
of the N heavy (anti)quarks.

In practice we cannot solve the time evolution of the quan-
tal N-body density matrix without approximations. In the
past it turned out that very satisfying results are obtained, if
one does not study the time evolution of the density matrix
itself but that of the Wigner density distribution, the Fourier
transform of the density matrix, and approximates, guided
by the mathematical work on the solution of the quantal
Vlasov equation, the quantal Wigner density distribution by
an ensemble of classical phase space distributions of point
like particles. Averaging over this ensemble, one can cal-
culate observables, which agree remarkable well with the
experimental results. This procedure is the background of the
Boltzmann-Uehling-Uhlenbeck (BUU) (cf. [19,20]) and the
Vlasov-Uehling-Uhlenbeck (VUU) [21] approach, which are
widely used to describe the results of heavy-ion collisions
with center of mass energies between few GeV and several
TeV (cf. [7,22,23]).

In these approaches the particles scatter and move on
curved trajectories due to a mean potential, created by the fel-
low particles. If this potential is absent or neglected one talks
about a cascade approach. If heavy (anti)quarks are described
in the cascade mode, where only scattering and free streaming
but no potential interaction is present, they will have diverging
trajectories. Therefore, even if the heavy (anti)quarks are ini-
tially confined to a space region, asymptotically we will find

lim
t→0

P� = 0, (2)

because two and more body correlations are lost in this ap-
proach. To overcome this problem one introduces a rate

� = dP�

dt
= Tr

(
dρ�

dt
ρN

)
+ Tr

(
ρ�

dρN

dt

)

= Tr

(
dρ�

dt
ρN

)
− iTr(ρ�[H, ρN ]) ≡ �local + �coll. (3)

The Hamiltonian is decomposed into

H =
∑

i

Ki +
∑
i< j

Vi j

= H1,2 + HN−2 +
∑
i�3

(V1i + V2i ), (4)

where Ki and Vi j are, respectively, the kinetic and interaction
terms and

H1,2 = K1 + K2 + V12,

HN−2 =
∑
i�3

Ki +
∑

i> j�3

Vi j . (5)

Using the cyclic property of traces,

�coll = −iTr(ρ�[H, ρN ]) = iTr(ρN [H, ρ�]), (6)

and supposing for simplicity that � contains particles 1 and 2
we obtain

[HN−2, ρ�] = 0, [H1,2, ρ�] = 0, (7)

because HN−2 does not affect ρ� and ρ� is a eigenfunction of
H1,2. The collision term in Eq. (3) is then simplified to [12,13]

�coll = −i
∑
i�3

Tr(ρ�[V1i + V2i, ρN ]). (8)

For an S state the density operator of the quarkonium,
expressed in Wigner representation, is approximated by

ρ� → WS (r, p) = 8 exp

[
− r2

σ 2
− σ 2 p2

]
, (9)

where r and p are, respectively, relative distance and relative
momentum in the center-of-mass frame. The width σ is given
by the rms radius of the quarkonium.

The classical phase space distribution of point like particles
can be expressed as

ρN ≈
N∏

i=1

h3Nδ(ri − r∗
i (t ))δ(pi − p∗

i (t )), (10)

where r∗
i (t ) and p∗

i (t ) is the phase space trajectory of particle
i. The time derivative of the density matrix is then given by

dρN

dt
≈

∑
i

vi · ∇rρN

+
∑
i> j

∑
ν

δ(t − ti j (ν)){ρN (t + ε) − ρN (t − ε)}, (11)

where ti j (ν) is the time for the νth collision between the
particles i and j. The first term implies free streaming between
instant scatterings, which are described by the second term.
The second term in Eq. (11) is equivalent to Eq. (8). Therefore,

�coll(t ) ≈
∑
i=1,2

∑
j�3

∑
ν

δ(t − ti j (ν))

×
∫

d3r1d3 p1...d
3rN d3 pN (2π )3N

×ρ�(r1, p1; r2, p2){ρN (t + ε) − ρN (t − ε)}, (12)
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and we obtain, for the multiplicity at time t ′,

Pφ (t ′) − Pφ (0) ≈
∫ t ′

0
dt{�local(t ) + �coll(t )}. (13)

We note that �local(t ) contributes only if σ in Eq. (9) changes
with time [13].

III. QUARKONIUM IN THERMAL BOX

The multiplicity of a quarkonium � can be obtained in the
coalescence approach by projecting the phase space distribu-
tion of the charmed quarks onto the Wigner density of the �

state [24,25]

N� = d

d1d2

∫
d3 p1d3 p2d3r1d3r2

(2π )6

× fQ(r1, p1) fQ̄(r2, p2)WS (r, p)

= d

d1d2

∫
d3Pd3 pd3Rd3r

(2π )6

× fQ(r1, p1) fQ̄(r2, p2)WS (r, p), (14)

where fQ(r1, p1) and fQ̄(r2, p2) are, respectively, the heavy
quark (Q) and heavy antiquark (Q̄) distribution functions, r =
r1 − r2, R = (r1 + r2)/2, p = (p1 − p2)/2, and P = p1 + p2,
and d1, d2, and d are, respectively, the spin-color degeneracy
of Q, Q̄, and quarkonium. r and p in the Wigner functions are
the distance and the relative momentum of the heavy quark
pair in their center-of-mass frame. Since we are studying
heavy quarks with a mass much larger than the temperature,
we can safely use the Galilean transformation instead of the
Lorentz transformation.

We assume a uniform distribution of Q and Q̄ in space,

(2π )3 dNS

V d3P
= d

π3d1d2

∫
d3 pd3r fQ(p1) fQ̄(p2)e− r2

σ2 −σ 2 p2

=
(

σ 2

π

)3/2 d

d1d2

∫
d3 p fQ(p1) fQ̄(p2)e−σ 2 p2

,

(15)

because ∫
d3re−r2/σ 2 = 2πσ 3�(3/2) = (πσ 2)3/2. (16)

In the nonrelativistic (or heavy quark) limit one can take a
Boltzmann distribution for fQ(p1) and fQ̄(p2)

1

d1d2
fQ(p1) fQ̄(p2)e−σ 2 p2 ≈ e−E1/T −E2/T −σ 2 p2

≈ exp

[
−

(
2mQ + p2

1

2mQ
+ p2

2

2mQ

)/
T − σ 2 p2

]

= exp

[
−

(
2mQ + P2/2 + 2p2

2mQ

)/
T − σ 2 p2

]
.

(17)

Substituting Eq. (17) into Eq. (15) we obtain

(2π )3 dNS

V d3P
= d exp

[
−

(
M + P2

2M

)/
T

]

×
(

σ 2

π

)3/2 ∫
d3 pe−{σ 2+1/(mQT )}p2

= d e−E/T

(
σ 2

σ 2 + 1/(mQT )

)3/2

, (18)

where M = 2mQ. Assuming mQ 	 1/(σ 2T ) we find

(2π )3 dNS

V d3P
≈ d e−E/T . (19)

Since σ 2 = 8/3〈r2〉 with r being the quarkonium radius
[24,25], the assumption is justified if

mQ 	 3

8〈r2〉T . (20)

It is hence valid even close to the critical temperature Tc,
supposing

√
〈r2〉 ∼ 0.5 fm. We note that from Eq. (18) that

the charmonium abundance at T = 200 MeV is about 77% of
the statistical model abundance for mQ = 1.5 GeV.

Therefore we expect that in a heat bath the statistical model
and the coalescence approach yield a similar multiplicity.
Strictly speaking, there must be an attractive force between
the heavy quark and the heavy antiquark to form a quarkonium
and the mass of the quarkonium is therefore less than twice the
heavy quark mass. In this study, however, we assume that the
binding energy is small and therefore the J/ψ is weakly bound
in a QGP [26–28]. The inclusion of heavy quark potential
in the Remler formalism [13] will be discussed in a future
publication.

The coalescence model of Eq. (14) is closely related to
Eq. (1) [24], since

P� = Tr[ρ�ρN ] = Tr(|�〉〈�||Q1Q̄2 . . . QN−1Q̄N 〉iρi j

×〈Q1Q̄2 . . . QN−1Q̄N | j )

= |〈�|Q1Q̄2 . . . QN−1Q̄N 〉i|2ρii, (21)

where ρi j is the density matrix element of the N-body density
matrix ρN and the eigenstates |�〉 are taken for a basis of the
cc̄ states.

The Remler formalism starts from the same equation (1).
Therefore we can test this formula in a thermal box, which is
completely controllable and for which explicit and analytical
solutions of Eq. (19) can be obtained. That the numerical
realization of the Remler formalism gives the correct result
in a box is a prerequisite for its application in numerical
simulation of heavy-ion collisions.

IV. BOX SIMULATIONS

In this section the Remler formalism is tested in a box in
which the heavy (anti)quarks are in thermal equilibrium as
well as for three scenarios in which their initial momentum
distribution and/or their initial spatial distribution does not
correspond to the equilibrium distribution.

054906-3



SONG, AICHELIN, AND BRATKOVSKAYA PHYSICAL REVIEW C 107, 054906 (2023)

0 100 200 300 400 500 600
0

1

2

3

4

5

6

7

8

P Φ

time [fm/c]

statistical model
Wigner density
time integration of Γ

thermalized box at T=200 MeV

FIG. 1. Charmonium multiplicity as a function of time in a box
of 1003 fm3 at T = 200 MeV calculated in the statistical model, from
Eq. (14) and from Eq. (13). Charm quark mass and charmonium
radius are taken as 1.5 GeV and 0.5 fm, respectively.

A. Static thermal box

We prepare a box of size 1003 fm3 in which we place
charm quarks and charm antiquarks in thermal equilibrium at
T = 200 MeV. Charm (anti)quarks scatter off artificial par-
tons which have a thermal momentum of T = 200 MeV and
are not affected by the scattering. The interaction rate is fixed
to 1.0 c/fm. To remove boundary effects, we extended the box
by 3 fm in each direction but for the analysis we exclude the
extended volume.

Figure 1 compares the charmonium multiplicity as a func-
tion of time from statistical model calculations, assuming that
the quarkonium mass is twice the heavy quark mass, as in
Eq. (19), from Eqs. (14) and (13), which are named in the
figure “statistical model”, “Wigner density”, and “time inte-
gration of �”, respectively. The charm quark mass is assumed
to be 1.5 GeV and and we take a charmonium radius of 0.5
fm. The results are an ensemble average of 200 events. The
colored band indicates the statistical error. One can see a slight
difference between the statistical model and the Wigner pro-
jection, which originates from the approximations in Eqs. (17)
and (19).

One can see that the time integration of �coll does not devi-
ate from the dashed and solid blue lines within the statistical
error. The reason for which we will explain now.

We define the Wigner projection at t ,

W (r∗
1 , r∗

2 , p∗
1, p∗

2; t ) ≡
∑
i=1,2

∑
j�3

∫
d3r1d3 p1...d

3rN d3 pN

× (2π )3Nρ�(r1, p1; r2, p2)ρN (t ), (22)

where r∗
1 , r∗

2 , p∗
1, p∗

2 characterize trajectories of (anti)charm
quarks in Eq. (10) projected to quarkonium state.

Since the projection is carried out in a homogeneous box,
one can separate the spatial dependence, which will be a

constant in time, such that

W (r∗
1 , r∗

2 , p∗
1, p∗

2; t ) = Wp(p∗
1, p∗

2; t )Wr . (23)

Then Eq. (13) is expressed as

Pφ (t ′) = Wp(p∗
1, p∗

2; 0)Wr

+Wp(p∗
1, p∗

2; t1 + ε)Wr − Wp(p∗
1, p∗

2; t1 − ε)Wr

+Wp(p∗
1, p∗

2; t2 + ε)Wr − Wp(p∗
1, p∗

2; t2 − ε)Wr

...

+Wp(p∗
1, p∗

2; t ′ + ε)Wr − Wp(p∗
1, p∗

2; t ′ − ε)Wr,

(24)

where t = 0 is the initial projection time where only the pro-
duction term appears, which corresponds to Pφ (0) in Eq. (12).
We number the scatterings of heavy quarks or antiquarks by
“i”. ti is the time of the ith scattering in which either the
charm quark or the anticharm quark is involved and both
the production and destruction terms appear. We note that
Wp(p∗

1, p∗
2; t ) in the above equation means Wp(p∗

1(t ), p∗
2(t )).

Since there is no scattering of charm quarks with a light
quark between t = 0 and t = t1 − ε,

Wp(p∗
1, p∗

2; 0) = Wp(p∗
1, p∗

2; t1 − ε). (25)

The same applies to each following time interval between
collisions:

Wp(p∗
1, p∗

2; ti + ε) = Wp(p∗
1, p∗

2; ti+1 − ε). (26)

Thus, most of the terms cancel and only the Wigner projection
at the end of the last collision remains

Pφ (t ′) = Wp(p∗
1, p∗

2; t ′ + ε)Wr, (27)

where p∗
1 and p∗

2 are still the thermal momenta of the charm
quark and anticharm quark. The time integration of �coll fluc-
tuates around the Wigner projection for a system in thermal
equilibrium at T = 200 MeV.

One can see that the statistical error in Fig. 1 increases with
time. The reason is as follows: Whenever scattering happens, a
new Wigner projection is added and the old Wigner projection
is subtracted as in Eq. (24). Since the box is already in thermal
equilibrium both the addition and the subtraction are random
fluctuations. As a result, like for all random walks, some
events deviate far away from the thermal average as time
passes. That is why the statistical error increases with time,
while the average value stays near the thermal equilibrium.

B. Cooling down of (anti)charm quarks

Now we apply the Remler formalism to charm and an-
ticharm quarks in a box of the same size in which the initial
temperature of (anti)charm quarks is 400 MeV, but their num-
ber is the same as in the previous subsection. In other words,
only their thermal momentum changes. Initially it is given
by a thermal distribution at T = 400 MeV and then cools
down to 200 MeV through the scattering with the artificial
partons, which are assumed to have a thermal distribution with
T = 200 MeV.

In this case Eq. (26) is still valid. The only difference is that
the initial momentum distributions of p∗

1 and p∗
2 correspond to
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the thermal distribution of T = 400 MeV. Then they gradu-
ally change with time, through scattering with the artificial
partons, to the distribution corresponding to T = 200 MeV.
Simply expressed, though it is not quite true, Eq. (24) will be
like

Pφ (t ′) = Wp(T = 400 MeV)Wr

+Wp(T = 399 MeV)Wr − Wp(T = 400 MeV)Wr

+Wp(T = 398 MeV)Wr − Wp(T = 399 MeV)Wr

...

+Wp(T = 200 MeV)Wr − Wp(T = 201 MeV)Wr .

(28)

However, if the radius or σ in the Wigner function of Eq. (9)
depends on the temperature, Eqs. (25) and (26) are not valid
any more:

Wp(p∗
1, p∗

2, T ; ti + ε) = Wp(p∗
1, p∗

2, T ; ti+1 − ε), (29)

because the temperature at t = ti + ε is different from that at
t = ti+1 − ε. Therefore, it is necessary to add the rate �local as
in Eqs. (3) and (13), which is expressed by [13,14]

�local(t ) = Tr

(
dρ�

dσ (T )

dσ (T )

dt
ρN

)
. (30)

Then Eq. (24) changes to

Pφ (t ′) = Wp(p∗
1, p∗

2, T ; 0)Wr

+Wr

∫ t1

0
dt (∂Wp(p∗

1, p∗
2; t )/∂σ )(∂σ/∂t )

+Wp(p∗
1, p∗

2, T ; t1 + ε)Wr − Wp(p∗
1, p∗

2, T ; t1 − ε)Wr

+Wr

∫ t2

t1

dt (∂Wp(p∗
1, p∗

2; t )/∂σ )(∂σ/∂t )

+Wp(p∗
1, p∗

2, T ; t2 + ε)Wr − Wp(p∗
1, p∗

2, T ; t2 − ε)Wr

...

+Wr

∫ t ′

dt (∂Wp(p∗
1, p∗

2; t )/∂σ )(∂σ/∂t )

+Wp(p∗
1, p∗

2, T ; t ′ + ε)Wr − Wp(p∗
1, p∗

2, T ; t ′ − ε)Wr .

(31)

Since nothing changes between t = 0 and t = t1 − ε ex-
cept of the temperature dependent σ ,∫ t1

0
dt (∂Wp(p∗

1, p∗
2; t )/∂σ )(∂σ/∂t )

= Wp(p∗
1, p∗

2, T ; t1 − ε) − Wp(p∗
1, p∗

2, T ; 0), (32)

ignoring the temperature change between t = t1 − ε and
t = t1. Therefore, one arrives at the same result as in Eq. (27):

Pφ (t ′) = Wp(p∗
1, p∗

2, T ; t ′ + ε)Wr . (33)

The upper panel of Fig. 2 shows the time evolution of the
effective temperature, which is defined by

Teff = 2
3 〈Ekin〉, (34)
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FIG. 2. (Upper) Effective temperature of (anti)charm quarks as a
function of time and (lower) the same as Fig. 1 but with and without
the contributions from �local.

where 〈Ekin〉 is the mean value of the (anti)charm kinetic
energy. We note that due to the approximation of Eq. (34) the
initial and the final effective temperatures are a bit higher than
the real initial and final temperatures, which are, respectively,
400 MeV and 200 MeV. One can see that the temperature
reaches its final value before t = 100 c/fm. The radius of
quarkonium is simply modeled as

√
〈r2〉 = 0.5

(
Teff

0.2 GeV

)2

[fm] (35)

such that
√

〈r2〉 = 0.5 fm at T = 200 MeV, a reasonable
approximation to the lattice results [16]. The lower panel of
Fig. 2 corresponds to Fig. 1. We have added the magenta
line, which is the result if we apply only the collisional rate,
�coll, whereas the orange line is obtained if we take the sum
of both rates, �local and �coll. The multiplicity of charmonia
starts from a lower value than in equilibrium at T = 200 MeV
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FIG. 3. Same as Fig. 1 but initial spatial distribution of
(anti)charm quarks is restricted to a half-sized box.

because a larger thermal momentum lowers the Wigner pro-
jection. The orange line recovers the equilibrium multiplicity
at about the same time when the temperature of the box
reaches its final value. One can clearly see that the inclusion
of �local is necessary to obtain a results consistent with the
assumed equilibrium.

C. Expanding (anti)charm quarks

Now we confine the initial (anti)charm quarks within a
smaller box of size 503 fm3 in the center of the large box,
assuming a momentum distribution of the (anti)charm quarks,
corresponding to T = 200 MeV. The density of the charm
and anticharm quarks in this smaller box is therefore 8 times
higher as compared to the above discussed configuration.

As time passes the charm density decreases and the num-
ber of charmonia converges to that expected for a system in
equilibrium in the full volume. One can see in Fig. 3 that
the multiplicity, which is given by the solid blue line, indeed
converges to the number expected for a system in equilibrium.
The time integration of �coll, however, does not catch up with
the decrease and remains higher. The reason is that Wr in
Eq. (24) now depends on time and we obtain

Pφ (t ′) = Wp(p∗
1, p∗

2; 0)Wr (0)

+Wp(p∗
1, p∗

2; t1 + ε)Wr (t1 + ε)

−Wp(p∗
1, p∗

2; t1 − ε)Wr (t1 − ε)

+Wp(p∗
1, p∗

2; t2 + ε)Wr (t2 + ε)

−Wp(p∗
1, p∗

2; t2 − ε)Wr (t2 − ε)

...

+Wp(p∗
1, p∗

2; t ′ + ε)Wr (t ′ + ε)

−Wp(p∗
1, p∗

2; t ′ − ε)Wr (t ′ − ε). (36)
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FIG. 4. Combination of Figs. 2 and 3 for the initial conditions of
(anti)charm quarks.

Equations (25) and (26) are still valid, but the two terms do
not cancel any longer:

Wp(p∗
1, p∗

2; ti + ε)Wr (ti + ε)

= Wp(p∗
1, p∗

2; ti+1 − ε)Wr (ti+1 − ε), (37)

because Wr (ti + ε) is larger than Wr (ti+1 − ε) due to the
spatial diffusion of (anti)charm quarks. This is why the equi-
librium distribution of Eq. (27) cannot be achieved in this
scenario.

D. Cooling and expanding (anti)charm quarks

Now we imitate heavy-ion collisions by combining the
two previous scenarios, in other words, heavy (anti)quarks are
initially at a high temperature and densely populated in a small
volume. As before the initial temperature is given by 400 MeV
and the initial volume by 503 fm3. Then they cool down and
expand in space.

Therefore the projection probability first increases with
time due to the momentum loss, as in Fig. 2, and then de-
creases due to the spatial diffusion, as in Fig. 3. However,
one can see in Fig. 4 the multiplicity, obtained by the time
integration of �coll, differs from that obtained by applying the
Wigner projection directly and from that, which is given by
the statistical model.

V. SPATIAL DIFFUSION TERM

The discrepancies between the statistical model and the
time integration of � in Figs. 3 and 4 originate from the
calculations of dρN/dt . Since ρN is the density operator of
N (anti)charm quarks, it includes both spatial and momentum
information. But only momentum space information has been
taken from the comparison between Eqs. (8) and (11). In other
words, only the interaction terms are taken into account and
the kinetic terms (the free streaming) are neglected in Eq. (11).
The spatial diffusion is attributed to the kinetic terms in K1 and
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K2 of Eq. (5). In principle, it must not contribute to dρN/dt
because heavy quark and heavy antiquark are bound by the
potential V12 and move together as shown in Eq. (7). However,
in standard cascade simulations we have only free propaga-
tion and instant scatterings [12] and it is still challenging
to properly implement microscopic potentials in numerical
simulations [13,29].

We therefore propose that the following term should be
added to Eq. (3) if a standard cascade approach is employed:

�diff (t ) = Tr

(
dρ�

d�r · d�r
dt

ρN

)
, (38)

and for an S state it will be [see Eq. (9)] of the form

�diff (t ) ∼ − 2

σ 2 �r · �v WS (r, p), (39)

where �v = d�r/dt with �r being �rQ − �rQ̄ in their center-of-mass
frame. Then the inequality of Eq. (37) can be removed through

Wp(p∗
1, p∗

2; ti + ε)Wr (ti + ε)

−Wp(p∗
1, p∗

2; ti+1 − ε)Wr (ti+1 − ε)

+
∫ ti+1

ti

dt �diff = 0. (40)

In fact, if the bound state is perfectly described in the
simulations, even �local is not needed, because the equality of
Eq. (29) will dynamically be restored:

Wp(p∗
1, p∗

2, T ; ti + ε) = Wp(p∗
1, p∗

2, T ; ti+1 − ε). (41)

As temperature decreases, the binding of quarkonium will be
stronger so that the relative distance r decreases and the rel-
ative momentum p increases, which compensates the change
of σ with temperature.

Figure 5 shows the time evolution of the multiplicity of
� including �diff in comparison the cases already studied
in Figs. 3 and 4. One finds that including �di f f the time
integration of � is now in good agreement with the statistical
model predictions. Considering the results of our study of the
� multiplicity in a box, the best and simplest method to obtain
the asymptotically correct values is to add to � a diffusion rate
�diff ,

�(t ) = �local(t ) + �coll(t ) + �diff (t )

=
∑
i=1,2

∑
j�3

∑
ν

∫
d3r1d3 p1...d

3rN d3 pN (2π )3N

×ρ�(r1, p1; r2, p2){δ(t − ti j (ν))ρN (t + ε)

−δ(t − ti j (ν − 1))ρN (t + ε)}, (42)

where ν means νth scattering of i = 1 or of i = 2.
Consequently, to be consistent with statistical model pre-

dictions, one has to supplement the old projection probability
of particles i = 1, 2 (the second term in the bracket) by a new
one (the first term in the bracket) whenever a scattering hap-
pens to i = 1 or to i = 2. Then the change of the temperature,
reflected in the change of σ , and of the spatial separation of
(anti)charm quarks between t = ti j (ν − 1) and t = ti j (ν) will
completely be canceled. This approach is also more natural
than Eq. (12), which assumes an instant interaction between
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FIG. 5. Same as Figs. 3 and 4 but including �diff of Eq. (39).

t − ε and t + ε, because it increases ε to the time between
two scatterings. We note that the combination of Eqs. (32) and
(40) yields

Wp(p∗
1, p∗

2; ti + ε)Wr (ti + ε)

−Wp(p∗
1, p∗

2; ti+1 − ε)Wr (ti+1 − ε)

+Wr (ti)
∫ ti+1

ti

dt
∂Wp(p∗

1, p∗
2; t )

∂σ

∂σ

∂t

+Wp(p∗
1, p∗

2; ti )
∫ ti+1

ti

dt
∂Wr (t )

∂�r · ∂�r
∂t

= 0. (43)

VI. SUMMARY

The Remler formalism has been advanced to study the
production of J/ψ in a thermalized expanding system. In this
study we have tested the Remler approach for J/ψ production
in thermalized and thermalizing boxes, composed of c and c̄
quarks. The goal was to verify whether the numerical, Monte
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Carlo based, realization of the Remler algorithm gives the
right asymptotic solution for t → ∞, which can be calculated
analytically.

We started out with calculations in a completely thermal-
ized box, where we find that the Remler formula produces the
results which are consistent with that of a statistical model
calculation. Then three different types of thermalizing boxes
have been investigated.

In the first scenario the initial temperature of the charm
quarks is high. They cool down with time through collisions
with background particles and finally reach thermal equilib-
rium at a lower temperature. The multiplicity of the charm
quarks is kept constant. We have found that the temperature
derivative of the Wigner function is required to assure that the
Remler approach agrees for large times with statistical model
calculations.

In the second scenario charm and anticharm quarks are
initially concentrated in a smaller box and then diffuse in
space. The last scenario, which we studied, is the combination
of the first and second ones: The initial temperature of the
charm quark is higher than that of the background particles
and (anti)charm quarks are concentrated initially in the central
region of the box. Then they cool down and diffuse in space.
This is a simple model for the expansion of the midrapidity
QGP, which is created in heavy-ion collisions. We have found
that in the second and third scenarios the discrepancy between
the multiplicities, calculated in the Remler approach and in a
statistical model, does not disappear even for t → ∞.

We identified the origin of this discrepancy: it is caused
by the fact that in the numerical realization of the Remler

algorithm, as presented in [12] for deuterons, the expansion
of the system between two subsequent collisions is not taken
properly into account. Neglecting the potential, it treats the
c and c̄ quarks as freely moving particles between two col-
lisions whereas in reality they are bound when they form
a quarkonium. Introducing a diffusion rate, which adds to
the local rate and the collision rate, this discrepancy dis-
appears. We note that recently also an approach has been
advanced which includes the cc̄ potential in an approxi-
mate way [13]. It would be interesting to verify whether
their equilibrium is obtained without a spacial diffusion rate.
In conclusion, we have found that also for an expanding
system, which cools down, the Monte Carlo realization of
the Remler formalism describes correctly the approach to
equilibrium.
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