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Expression for the heavy-ion fusion cross section
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The expression for calculation of the heavy-ion fusion cross section is obtained in the case of approximation
of the total heavy-ion potential around the barrier by the Morse potential. The approximation of the total
heavy-ion potential around the barrier by the Morse potential is more realistic than the parabolic one. The
asymptotic expressions of the fusion cross section at sub-barrier energies obtained for the Morse and parabolic
approximations of the total heavy-ion potential have different dependencies on collision energy. The fusion cross
sections calculated for the Morse and parabolic approximations of the total heavy-ion potential are discussed for
the reactions 12C + 24Mg and 12C + 30Si in detail.
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I. INTRODUCTION

The study of fusion reactions at sub-barrier energies has
seen an increased interest in recent years [1–17]. The fusion
process has been assumed to occur if colliding nuclei either
penetrate or overcome the total potential barrier formed due
to Coulomb, nuclear, and centrifugal forces.

The total heavy-ion potential around the barrier is often
approximated by parabolic barrier [1–3,8,9,12,17]. There is
an exact expression for the transmission coefficient through
the parabolic barrier [18,19]. By using this expression for the
transmission coefficient, Wong obtained a simple expression
for the heavy-ion fusion cross section [1]. This expression is
very widely applied for the analysis of the heavy-ion fusion
cross section, see, for example, Refs. [1–3,8,9,12,17] and
papers cited therein. There are other simple expressions for
the heavy-ion fusion cross section [10,12,14].

The parabolic approximation of the total potential around
the barrier is symmetric relative to the barrier distance, see
Fig. 1. However, the realistic total heavy-ion potential is
strongly asymmetric around the barrier distance rb. The total
potential is drastically decreasing at distances r < rb due to
the exponential increase of the contribution of the nuclear
part of the ion-ion potential with decreasing of r [20–26]. At
distances r > rb the potential decreases as 1/r due to the ex-
ponential decrease of the nuclear part of ion-ion potential and
the leading role of the Coulomb potential. The asymmetric
shape of the ion-ion potential may be approximated by the
Morse potential [27], see Fig. 1 and Refs. [9,17]. The shape
of the Morse potential is closer to the shape of the realistic
total potential than the parabolic one.

Ahmed obtained the exact expression for the transmission
coefficient through the Morse barrier [28]. Therefore, it is very
useful to get the expression for the heavy-ion fusion cross
section for the Morse potential using the same approximations
as in the case of Wong formula [1]. Such analytical formula
is derived in the next section. Note, the goal is to obtain the

analytical formula for the heavy-ion fusion cross sec-
tion based on the Morse approximation of the total potential.
Due to this any coupled-channel effects on the fusion cross
section, which are important [2–8,13,16], are not considered.
The comparison of the results of the cross-section calculations
using the new and Wong formulas is given in Sec. III. The
conclusions are given in Sec. IV.

II. EXPRESSIONS FOR THE HEAVY-ION
FUSION CROSS SECTION

The heavy-ion fusion cross section [1–10,12–14,16,17] is
given by

σ (E ) = π h̄2

2μE

∞∑
�=0

(2� + 1)T�(E ), (1)

where μ is the reduced mass, E is the energy of collision in
the center of mass system, and T�(E ) is the transmission co-
efficient through the total interaction potential barrier formed
by the Coulomb VC(r), nuclear VN(r), and centrifugal V�(r)
potential energies of two nuclei. The nuclear part of the po-
tential is often parametrized by the Woods-Saxon potential
[20,23,26]. As a result, the total interaction potential energy
of two spherical nuclei for the partial wave � can be presented
in the form

V�(r) = VC(r) + VN(r) + V�(r)

= Z1Z2e2

r
− VW S

1 + exp [(r − rW S )/dW S]
+ h̄2�(� + 1)

2μr2
�

.

(2)

Here, Z1 and Z2 are the numbers of protons in the interacting
nuclei, e is the charge of the proton, and VW S , rW S , and dW S

are the parameters of the Woods-Saxon potential.
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FIG. 1. The comparison of the total potential for � = 0 (Woods-
Saxon+Coulomb) with the Morse and parabolic approximations of
the total potential around barrier for the system 12C + 24Mg. The
barrier height, radius (rb), and curvature for all potentials are the
same.

A. The fusion cross section in the case of parabolic barrier

Let the total interaction potential energy of two nuclei for
the partial wave � be approximated by the parabolic function
around the barrier as

V p
� (r) ≈ B� + h̄2�(� + 1)

2μr2
�

− μω2
� (r − r�)2

2
. (3)

Here, B� + h̄2�(�+1)
2μr2

�

, r�, and h̄ω� are, respectively, the height,

radius, and curvature of the barrier. Then, using the Kemble-
Hill-Wheeler formula [18,19] for the transmission coefficient
T�(E ) through a parabolic barrier, the cross section is given as

σ (E ) = π h̄2

2μE

∞∑
�=0

(2� + 1)

1 + exp
[

2π
h̄ω

(
B� + h̄2�(�+1)

2μr2
�

− E
)] . (4)

Taking B�, r�, h̄ω� as fixed at the partial wave � = 0, and
replacing the summation by an integral, one obtains the Wong
formula [1] for the fusion cross section

σW (E ) = r2
b h̄ω

2E
ln {1 + exp [2π (E − B)/h̄ω]}. (5)

Here, r0 = rb and B = B0 are, respectively, the radius and
height of the barrier for the partial wave � = 0, and

h̄ω ≡ h̄ω0 =
(

− h̄2

μ

d2V0(r)

dr2

)1/2∣∣∣∣
r=rb

(6)

is the curvature of the total potential for � = 0. Emphasize that
the Wong formula for the fusion cross section is obtained in
the assumptions that B�, r�, ω� are rather insensitive to �.

B. The fusion cross section in the case of heavy-ion potential
approximated by the Morse potential

Applying the independence of B�, r�, ω� on �, the total
interaction potential energy of two spherical nuclei for the
partial wave � can be approximated around the barrier by the

Morse potential

V M
� (r) ≈

(
B + h̄2�(� + 1)

2μr2
b

)[
2 exp

(
− r − rb

d

)

− exp

(
−2

r − rb

d

)]
. (7)

Then, using the Ahmed formula [28] for the transmission co-
efficient T�(E ) through the Morse barrier, the cross section is
given as

σ (E ) = π h̄2

2μE

∞∑
�=0

(2� + 1)[1 − exp (−4πα)]

1 + exp [2π (β� − α)]
, (8)

where

α =
(

2μd2E

h̄2

)1/2

, (9)

β� =
[

2μd2

h̄2

(
B + h̄2�(� + 1)

2μr2
b

)]1/2

. (10)

Equations (4) and (8) are very similar.
As pointed out in Ref. [28] the contribution of the term

exp (−4πα) in the Ahmed transmission coefficient is neg-
ligible. Neglecting this term in Eq. (8) and replacing the
summation on � by an integral, one obtains the formula for
the heavy-ion fusion cross section for the potential barrier (7)
in the form

σ (E ) = πr2
b (h̄ωM )2

4EB

[
Li2[− exp (−2π (α − β0))]

2π2

+ ln [1 + exp (−2π (α − β0))]β0

π
+ α2 − β2

0 + 1

12

]
.

(11)

Here, Li2(x) is the dilogarithm function [29–32]. The curva-
ture of the Morse potential barrier for � = 0 is

h̄ωM =
(

− h̄2

μ

d2V M
0 (r)

dr2

)1/2
∣∣∣∣∣∣
r=rb

=
(

h̄2

μ

2B

d2

)1/2

. (12)

If the parabolic and Morse potentials are used for the approx-
imation of the same total potential (2) then h̄ωM = h̄ω.

Using Eq. (12) the parameters α and β0 can be presented
as the functions of B, E , and h̄ω:

α = 2(BE )1/2

h̄ω
, (13)

β0 = 2B

h̄ω
. (14)

Substituting Eqs. (13)–(14) into Eq. (11) the expression for
the heavy-ion fusion cross section is presented in the simple
form

σ (E ) = πr2
b

{
1 − B

E
+ (h̄ω)2

48BE

+ h̄ω

2πE
ln [1 + exp (4π (B −

√
BE )/h̄ω)]

+ (h̄ω)2

8π2BE
Li2[− exp (4π (B −

√
BE )/h̄ω)]

}
. (15)
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So, Eqs. (5) and (15) for the heavy-ion fusion cross sec-
tion depend on the same characteristics of the total heavy-ion
potential (2) near the barrier, which are the barrier height B,
radius rb, and curvature h̄ω.

III. DISCUSSION

Let us consider the asymptotic behavior of the expressions
for the heavy-ion fusion cross sections in the case of high
and low collision energies in comparison to the fusion barrier
height B. The asymptotic dependencies of the Wong formula
are well known:

σW (E ) ≈
{

πr2
b

(
1 − B

E

)
, if 2π E−B

h̄ω
� 1,

r2
b h̄ω

2E exp
(
2π E−B

h̄ω

)
, if 2π E−B

h̄ω
� −1.

(16)

The asymptotic dependencies of the formula (15) are

σ (E ) ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

πr2
b

(
1 − B

E + (h̄ω)2

48BE

)
, if 4π

√
BE−B
h̄ω

� 1,

r2
b h̄ω

2E

(
1 + h̄ω

4πB

)×
exp

(
4π

√
BE−B
h̄ω

)
, if 4π

√
BE−B
h̄ω

� −1.

(17)

Here, the properties of the dilogarithm functions [29,30]

Li2(z) ≈ z at |z| � 1, (18)

Li2(−z) + Li2(−1/z) = −π2/6 − (1/2)(ln z)2 (19)

are taken into account. (Equation (19) was obtained by Euler
in 1768 [29].)

The values of the asymptotic cross section for high-energy
collisions, E > B, in Eqs. (16) and (17) are very similar,
because the contribution of the last term in brackets in the
corresponding expression of Eq. (17) is small as a rule. In
contrast to this, the different dependencies of the cross sec-
tion on E at sub-barrier energies, E < B, are observed for the
parabolic and Morse approximation of the barrier. Note that
using the asymptotic expression of the cross section at very
low-energy collisions may be preferable because the accurate
calculation of the dilogarithm function at such a value of an
argument is difficult.

It is useful to introduce the parameter δ = (E − B)/B and
apply this parameter for the low-energy asymptotics of the
fusion cross section (16) and (17), which are written as

σW (E ) ∝ exp

[
2πBδ

h̄ω

]
, (20)

σ (E ) ∝ exp

[
2πBδ

h̄ω

(
1 − δ

4
+ δ2

8
+ · · ·

)]
. (21)

The ratio of asymptotics of the cross section at the sub-barrier
energies is

σW (E )

σ (E )
∝ exp

[
πBδ2

2h̄ω

(
1 − δ

2
+ · · ·

)]
. (22)

Therefore, the Wong cross section is higher than the cross
section evaluated for Morse potential at sub-barrier collision
energies. The strong effect on the cross section appears at
large values of δ. The large values of δ are taken place at deep
sub-barrier collision energies for light-heavy-ion systems with

small values of the barrier height B. Due to this, the reactions
12C + 24Mg and 12C + 30Si are considered below for the prac-
tical applications of discussed expressions for the heavy-ion
fusion cross section.

The fusion cross section for the reaction 12C + 24Mg
calculated using Eqs. (5) and (15) are compared with the
experimental data in Fig. 2. The experimental data for the
fusion cross section for this reaction are taken from Refs. [15].

The parameters B = 11.5 MeV, rb = 7.6 fm, and h̄ω =
h̄ωW = 2.36 MeV are obtained by fitting the experimental
fusion cross-section data using Eq. (15). The fitting is done
by eye. As an example, these values of parameters for the
Akyuz-Winter potential [23] are B = 11.5 MeV, rb = 8.3 fm,
and h̄ω = 3.23 MeV. The barrier heights are the same in
both cases. The fusion cross section at over-barrier energies
is proportional to r2

b , see Eqs. (16) and (17). The value rb =
7.6 fm leads to a good description of the over-barrier cross-
section values, see Fig. 2. The curvature of the Akyuz-Winter
potential is larger than the one obtained in the fusion cross-
section fit using Eq. (15).

The experimental fusion cross section is well described by
the formula (15) in the full energy range, see Fig. 2. The
Wong formula well describes the experimental data around
the barrier and at over-barrier collision energies. The cross
section calculated with the help of the Wong formula strongly
overestimates the experimental cross section at deep sub-
barrier energies. The difference between these approaches at
sub-barrier energies is due to the larger thickness of the Morse
barrier at sub-barrier energies than the one of the parabolic
barrier, see Fig. 1. Remember that expressions (5) and (15), as
well as the parabolic and Morse approximations of the total
potential, are obtained using the same values of the barrier
characteristics.

The corresponding parabolic and Morse potentials are
compared with the total Coulomb+Woods-Saxon nucleus-
nucleus potential V0(r) for the system 12C + 24Mg in Fig. 1.
The Morse potential is a drastically better fit V0(r) that the
parabolic approximation. The parameters of Woods-Saxon
potential VW S = 38.3 MeV, rW S = 4.48 fm, and dW S = 1.1

FIG. 2. The comparison of the fusion cross section σ (E ) for the
reaction 12C + 24Mg evaluated with the help of Eqs. (5) and (15) with
experimental data from Ref. [15].
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FIG. 3. The comparison of the fusion cross section σ (E ) for the
reaction 12C + 30Si evaluated with the help of Eqs. (5) and (15) with
experimental data from Ref. [11].

fm are obtained by fitting the barrier characteristics B, rb,
and h̄ω, which are used for the cross-section description
with the help of Eq. (15). These values of parameters are
different from the corresponding parameters of the Akyuz-
Winther potential [23]. Note, that the Akyuz-Winther [23]
and other nucleus-nucleus potentials [20–22,24–26] are used
in the coupled-channel calculations of the fusion cross sec-
tion [2–8,13,16]. The effect of coupled-channel enhancement
of the fusion cross section below the barrier is modeled by the
reduction of the barrier curvature in the present approach.

The fusion cross sections for the reaction 12C + 30Si
calculated using Eqs. (5) and (15) are compared with the ex-
perimental data in Fig. 3. The experimental data for the fusion
cross section for this reaction are taken from Ref. [11]. The
parameters rb = 7.9 fm, B = 13.1 MeV, and h̄ω = h̄ωW =
2.44 MeV are obtained by fitting the experimental cross-
section data using Eq. (15). The fusion cross section evaluated
with the help of the Morse potential better agree with the
experimental data below barrier than the one obtained for the
parabolic potential.

In the case of the Morse potential, the heavy-ion fusion
cross section can be calculated using the exact expression (8)
as well as Eq. (15), which is obtained using in Eq. (8) the
replacement of the sum over � by the corresponding integral.
The differences between the cross-section values found with
the help of Eqs. (8) and (15) are small. As an example,
it reaches several percent at deep sub-barrier energies for

reactions considered here. Moreover, this difference decreases
with the increase of the collision energy. Therefore, the preci-
sion of Eq. (15) is high.

Note, that a detailed comparison of the heavy-ion fu-
sion cross section calculated using the parabolic, Morse, and
more realistic Coulomb+Woods-Saxon or double-folding to-
tal nucleus-nucleus potentials is discussed in Refs. [9,17]. In
the case of the Coulomb+Woods-Saxon or double-folding
nucleus-nucleus potential, the fusion cross section is cal-
culated using the Kemble expression for the transmission
coefficient related to the direct calculation of the action be-
tween the turning points of the total potential [9,17]. Such the
semiclassical Wentzel-Kramers-Brillouin approach is tradi-
tional for the sub-barrier tunneling [33] and sub-barrier fusion
reactions, see, for example, [2,5].

IV. CONCLUSION

The expression for calculation of the heavy-ion fusion
cross section is obtained in the case of approximation of the
total heavy ion potential around the barrier by the Morse po-
tential. The approximation of the heavy ion potential around
the barrier by the Morse potential is more realistic than the
parabolic one.

The over-barrier fusion cross sections calculated for the
parabolic and Morse potentials at the same values of the
barrier height B, radius rb, and curvature h̄ω lead to practically
the same cross-section values. In contrast to this, the values
of the sub-barrier fusion cross sections obtained with the
help of the Morse potential are smaller than the ones for the
parabolic barrier. The fusion cross sections obtained for the
Morse and parabolic approximations of the total heavy-ion
potential have different dependencies on collision energy.

The fusion cross sections obtained using Morse approxi-
mations of the total heavy-ion potential better agree with the
experimental data for the reactions 12C + 24Mg and 12C + 30Si
than the parabolic one.
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