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Statistical approach of nuclear multifragmentation with a realistic nuclear equation of state
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In this work, the canonical thermodynamical model for nuclear multifragmentation has been updated with
a realistic nuclear equation of state. Mass distribution, intermediate mass fragment multiplicity, and isospin
sensitive observables have been investigated with a semi-microscopic approach of determining nuclear binding
and excitation energies. Production of neutron-rich isotopes as well as isoscaling and isobaric yield ratio
parameters have been significantly modified due to inclusion of this realistic nuclear equation of state.
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I. INTRODUCTION

The study of nuclear multifragmentation is important for
understanding the reaction mechanism in heavy-ion collisions
at intermediate and high energies [1,2]. Nuclear multi-
fragmentation reactions are commonly used study nuclear
liquid-gas phase transition [1,3–9] and nuclear equation of
state [2,10] and to extrapolate the thermodynamic properties
of the astrophysical environment of worm stellar matter from
the laboratory scenario [11,12]. Statistical approaches are
quite successful for studying nuclear multifragmentation re-
actions at intermediate energies. The disintegration of excited
nuclei are commonly studied by implementing different sta-
tistical ensembles. The statistical multifragmentation model
proposed by the Copenhagen group [5], the microcanonical
models of Gross [13] and Randrup and Koonin [14], and
the canonical thermodynamical model (CTM) [15] are widely
used. In these statistical models, observables related to nu-
clear fragment cross section (and/or multiplicity) are usually
determined based on the available phase space calculation.
Now, to get the accurate phase space, nuclear binding and
excitation of all clusters are required and in most of the exist-
ing statistical approaches like the canonical thermodynamical
model, statistical multifragmentation model, etc., binding is
determined from the Bethe-Weizsacker mass formula, which
successfully explained the ground-state properties at zero
temperature and saturation nuclear density [16,17]. However,
nuclear multifragmentation occurs at subsaturation density
and higher excitation energy. To include temperature effects
in the bulk energy part, the Fermi gas model is commonly
used in statistical models of nuclear multifragmentation, and
for surface energy part, various additional parametrization in
Bethe-Weizsacker mass formula is introduced. The density
and/or temperature dependence of the nuclear binding also
plays an important role in the study of stellar matter properties
and also has significant influence for determining the nuclear
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properties of extremely neutron-rich and neutron-deficient nu-
clei formed in multifragmentation reactions.

The aim of this work is to implement more realistic bind-
ing and excitation in the canonical thermodynamical model
(CTM) for nuclear multifragmentation and to study the impact
of it on the basic observables like intermediate mass fragment
(IMF) multiplicity, mass distribution, and isospin sensitive
observables like isotopic distribution, isoscaling, and isobaric
yield ratio. In order to study the decay of the excited fragments
produced in the multifragmentation stage, the evaporation
model [18] is also updated with the same realistic binding and
excitation.

The paper is structured as follows. In Sec. II, a brief intro-
duction of the canonical thermodynamical model is presented.
The results are described in Sec. III, and finally a summary
and conclusions are discussed in Sec. IV.

II. MODEL DESCRIPTION

In CTM [1,15], it is assumed that statistical equilibrium is
attained at the freeze-out stage and the population of differ-
ent channels of disintegration is solely decided by statistical
weights in the available phase space. The calculation is done
for fixed mass, atomic number, freeze-out volume, and tem-
perature. In a canonical model [15], the partitioning is done
such that all partitions have the correct A0, Z0 (equivalently
N0, Z0). The canonical partition function is given by

QN0,Z0 =
∑ ∏ ω

nN,Z

N,Z

nN,Z !
, (1)

where the sum is over all possible channels of breakup
(the number of such channels is enormous) satisfying N0 =∑

N × nN,Z and Z0 = ∑
Z × nN,Z ; ωN,Z is the partition func-

tion of the composite with N neutrons and Z protons and nNZ

is its multiplicity. The partition function QN0,Z0 is calculated
by applying a recursion relation [19]. From Eq. (1), the aver-
age number of composites with N neutrons and Z protons can
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be expressed as

〈nN,Z〉 = ωN,Z
QN0−N,Z0−Z

QN0,Z0

. (2)

The partition function of a composite having N neutrons and
Z protons is a product of two parts. One is due to the the
translational motion and the other is the intrinsic partition
function of the composite:

ωN,Z = V

h3
(2πmT )3/2A3/2 × zN,Z (int), (3)

where V is the volume available for translational motion,
which can be expressed as V = Vf − V0, where V0 is the
normal volume of nucleus with Z0 protons and N0 neutrons.
zN,Z (int) is the internal partition function, where the proton
and the neutron are fundamental building blocks, and thus
z1,0(int) = z0,1(int) = 2, where 2 takes care of the spin de-
generacy. For 2H, 3H, 3He, 4He, 5He, and 6He, zN,Z (int) =
(2sN,Z + 1) exp[−βEN,Z (gr)], where β = 1/T, EN,Z (gr) is the
ground-state energy of the composite and (2sN,Z + 1) is the
experimental spin degeneracy of the ground state. Excited
states for these very low-mass nuclei are not included.

A. Conventional approach of determining internal
partition function in CTM

In the conventional CTM approach as well as in most of
the other statistical models of multifragmentation, for deter-
mining the internal partition function of nuclei with Z � 3
the liquid-drop formula is used to calculate the binding en-
ergy and the contribution for excited states is taken from the
Fermi-gas model. In the CTM approach, the internal partition
function is usually expressed as

zN,Z (int) = exp
1

T

[
W0A − as(T )A2/3 − a∗

c

Z2

A1/3

−Csym
(N − Z )2

A
+ T 2A

ε0

]
. (4)

The expression includes the volume energy [W0 = 15.8
MeV], the temperature-dependent surface energy [as(T ) =
as0{(T 2

c − T 2)/(T 2
c + T 2)}5/4 with as0 = 18.0 MeV and Tc =

18.0 MeV], the Coulomb energy (a∗
c = 0.31ac with ac = 0.72

MeV and Wigner-Seitz correction factor 0.31 [5]), and the
symmetry energy (Csym = 23.5 MeV). The term T 2A

ε0
(ε0 =

16.0 MeV) represents contribution from excited states since
the composites are at a nonzero temperature. In Ref. [20], the
volume term of the nuclear binding for extended canonical
model is determined from relativistic mean field approach.

B. New approach for determining more realistic internal
partition function in CTM

In this work, the internal partition function is determined
from a semi-microscopic approach where the Helmholtz free
energy of a nucleus with N neutrons and Z protons can be
decomposed as [21]

FN,Z = F bulk + F surf + F coul, (5)

where the bulk part F bulk is originated from bulk nuclear
matter at baryonic density ρc = ρc,n + ρc,z (ρc,n and ρc,z are
neutron and proton density respectively) and isospin asym-
metry δc = (ρc,n − ρc,z )/ρc = N−Z

N+Z occupying a finite spatial
volume Vc = (N + Z )/ρc. The baryonic density with isospin
asymmetry δc is approximated [22] to the corresponding sat-
uration density (ρ0) of symmetric nuclear matter at finite
asymmetry according to

ρc(δc) = ρ0

(
1 − 3Lsymδ2

c

Ksat + Ksymδ2
c

)
. (6)

Therefore, the bulk part of the Helmholtz free energy given by

F bulk = Vc

⎡
⎣−2

3

∑
q=n,z

ξc,q +
∑

q=n,z

ρc,qηq + v(ρc, δc)

⎤
⎦, (7)

where ξc,n and ξc,z are the kinetic energy density of the nu-
cleus due to neutron (q = n) and proton (q = p) contribution
respectively, which can be expressed as q = n, p,

ξc,q = 3h2

2πm∗
c,q

(
2πm∗

c,qT

h2

)5/2

F3/2(ηc,q), (8)

where ηc,q = F−1
1/2 {( 2πm∗

g,qT

h2 )3/2ρc,q} and F1/2 and F3/2 are the
Fermi integrals. The expression of potential energy per parti-
cle that can be adapted to different effective interactions and
energy functionals is given by

v(ρc, δc) =
N∑

k=0

1

k!

(
vis

k + viv
k δ2

c

)
xk

+ (
ais + aivδ2

c

)
xN+1 exp

(
−b

ρc

ρ0

)
, (9)

where x = ρc−ρ0

3ρ0
, ais = −∑N

k�0
1
k!v

is
k (−3)N+1−k , and aiv =

−∑N
k�0

1
k!v

iv
k (−3)N+1−k . N = 4 and b = 10ln2 are chosen for

this model. This value of b leads to a good reproduction of the
Sly5 functional which is used for the numerical applications
presented in this paper. The model parameters v

is(iv)
k can be

linked with a one-to-one correspondence to the usual equa-
tion of state (EoS) empirical parameters [23], via

vis
0 = Esat − t0(1 + κ0),

vis
1 = −t0(2 + 5κ0),

vis
2 = Ksat − 2t0(−1 + 5κ0),

vis
3 = Qsat − 2t0(4 − 5κ0),

vis
4 = Zsat − 8t0(−7 + 5κ0), (10)

viv
0 = Esym − 5

9 t0[{1 + (κ0 + 3κsym)}],
viv

1 = Lsym − 5
9 t0[{2 + 5(κ0 + 3κsym)}],

viv
2 = Ksym − 10

9 t0[{−1 + 5(κ0 + 3κsym)}],
viv

3 = Qsym − 10
9 t0[{4 − 5(κ0 + 3κsym)}],

viv
4 = Zsym − 40

9 t0[{−7 + 5(κ0 + 3κsym)}], (11)

where Esat, Ksat, Qsat, and Zsat are saturation energy, in-
compressibility modulus, isospin symmetric skewness, and
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kurtosis respectively and Esym, Lsym, Ksym, Qsym, and Zsym are
symmetry energy, slope, associated incompressibility, skew-
ness, and kurtosis respectively. κ0 and κsym govern the density
dependence of the neutron and proton effective mass accord-
ing to

mq

m∗
q (ρc, δc)

= 1 + (κ0 ± κsymδ)
ρc

ρ0
, (12)

with q = n, p. For the applications presented in this paper, all
the parameters are taken from the Sly5 functional [24].

The finite-size corrections are included by the surface part
of the Helmholtz free energy (F surf) [25] for which we adopt
the prescription proposed in Refs. [26–28] on the basis of
Thomas-Fermi calculations with extreme isospin ratios:

F surf = 4πr2
c A2/3

N σ (yc,p, T ) (13)

with r0 = { 3
4πρ0

}
1/3

, yc,p = Z/(Z + N ), and

σ (yc,p) = σ0h

(
T

Tc(yc,p)

)
2p+1 + bs

y−p
c,p + bs + (1 − yc,p)−p

, (14)

where σ0 represents the surface tension of symmetric nuclear
matter and bs and p represent the isospin dependence. For the
Sly5 functional, the parameters were optimized in Ref. [26] as
σ0 = 1.09191, bs = 15.36563, and p = 3.0. The temperature
dependence is incorporated by

h

(
T

Tc(yc,p)

)
=

[
1 −

(
T

Tc(yc,p)

)2]2

for T � Tc(yc,p)

= 0 for T > Tc(yc,p). (15)

Tc(yc,p) is the maximum temperature, for a given value of
yc,p up to which a nuclear liquid phase may coexist with the
nuclear vapor and its expression in MeV units is given by

Tc(yc,p) = 87.76

(
Ksat

375

) 1
2
(

0.155

ρ0

) 1
3

yc,p(1 − yc,p), (16)

where Ksat and n0 are expressed in MeV and fm−3 respec-
tively. The Coulomb contribution in Helmholtz free energy is
considered as same as before, i.e.,

F Coul = a∗
c

Z2

A1/3
. (17)

III. RESULTS

Statistical model calculations are performed for two frag-
menting systems having the same proton number Z0 = 75
but different mass numbers A0 = 168 and 186, which are ex-
pected to be formed from the central collision of 112Sn +112Sn
and 124Sn +124Sn reaction with 75% pre-equilibrium emis-
sion [29,30]. The choice of fragmenting systems is based on
well-known experiments of 112Sn +112Sn and 124Sn +124Sn
reactions at 50 MeV/nucleon performed by the MSU group
at NSCL [31]. More precise calculation for identifying
fragmenting source mass number, isospin asymmetry, and
excitation can be found in Refs. [32,33]. As described
in Sec. II, fragments with all possible proton numbers

FIG. 1. Binding energy per nucleon of (a) carbon, (b) oxygen,
(c) silicon, (d) calcium, (e) nickel, and (f) tin isotopes obtained from
nuclear liquid drop model (blue dotted lines) and realistic compress-
ible liquid drop approach with Sly5 parameters (red solid lines).
Experimental binding energies taken from AME2020 [34] are shown
by black squares.

(i.e., Z = 1 to 75) and neutron numbers (within neutron and
proton dripline each Z) will be produced in multifragmenta-
tion reactions and their multiplicities are linked to the nuclear
binding; the binding energies of some selective cases like
various isotopes of carbon, oxygen, silicon, calcium, nickel,
and tin are shown in Fig. 1. Binding energy per nucleon of
the above-mentioned isotopes obtained from the conventional
liquid drop model and the more realistic compressible liquid
drop approach with Sly5 parameters are compared with their
experimental values. From Fig. 1 it can be concluded that
the bindings are modified significantly for the neutron-rich
nuclei. Neutron-rich nuclei are remarkably produced in mul-
tifragmentation reactions, and hence the effect of this binding
energy shift on the basic observables of multifragmentation
reactions is described below.

Figure 2 represents the mass distribution obtained from
CTM calculation with conventional liquid drop model and
more realistic compressible liquid drop approach with Sly5
parameters at three different temperatures, 3, 5, and 8 MeV,
from disassembly of Z0 = 75, A0 = 168 at constant free-out
volume 6V0. The intermediate mass fragment (IMF) multi-
plicity (MIMF) is also an important observable in the nuclear
multifragmentation process which is measured both experi-
mentally and theoretically in many situations [35–41]. The
IMF multiplicity (MIMF) dependence with temperature (from
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FIG. 2. Mass distribution from fragmentation of Z0 = 75,
A0 = 168 system at temperature T = 3 MeV(upper panel), 5
MeV(middle panel), and 8 MeV(lower panel) studied from conven-
tional CTM calculation (blue dashed lines) and CTM calculation
with realistic Sly5 EoS (red solid lines).

disassembly of Z0 = 75, A0 = 186 at constant free-out volume
6V0), freeze-out volume (for the same fragmenting system
Z0 = 75, A0 = 168 but at constant temperature 5 MeV),
and neutron to proton ratio of the fragmenting system (from
disassembly with constant Z0 = 75 at constant temperature 5
MeV and free-out volume 6V0) are presented in Fig. 3. From
Fig. 3, it can be verified that the effect of nuclear binding on
intermediate mass fragment multiplicity is more significant at
higher temperature and freeze-out volume, i.e., the conditions
at which the system breaks more. For a given temperature and
freeze-out volume, the IMF multiplicity is strongly modified
for the fragmentation from very isospin asymmetric systems
due to significant production of neutron rich nuclei. Figure 4
represents the isotopic distribution of some selective lower
(helium), intermediate (carbon, oxygen, silicon, and calcium),
and heavy (nickel) mass fragments originated from the multi-
fragmentation of Z0 = 75, A0 = 168 system at temperature 5
MeV and free-out volume 6V0. As in the IMF region, neutron-
rich isotopes are more bound in the compressible liquid drop
approach with Sly5 parameters compared to the conventional
liquid drop model, and hence the production of neutron-rich
isotopes of carbon, oxygen, silicon, and calcium is signifi-
cantly enhanced.

One of the important aspects of intermediate energy heavy
ion reactions study is to reduce the uncertainty in the nu-
clear equation of state. Isoscaling [32,33,42–48] and isobaric
yield ratio [47–51] methods are commonly used to search

FIG. 3. Variation of multiplicity of intermediate mass fragments
(MIMF) with (a) temperature (upper panel) and (b) freeze-out volume
(middle panel) and isospin asymmetry of the fragmenting system
(lower panel) from conventional CTM calculation (blue dashed lines)
and CTM calculation with realistic Sly5 EoS (red solid lines). Cal-
culations are performed for fragmenting system of atomic number
Z0 = 75 and mass number A0 = 168.

the precise nuclear equation of state. In this work, the effect
of nuclear binding on isoscaling and isobaric yield ratio are
investigated in the framework of CTM. It has been observed
both experimentally and theoretically that the ratio of yields
from two different reactions (having different isospin asym-
metry) exhibit an exponential relationship as a function of
the neutron (N) and proton (Z) number and this is termed as
“isoscaling.” Two fragmentation reactions 1 and 2 at a given
energy are being considered whose fragmenting systems have
different masses A01 and A02 (A02 > A01) but same charge
Z1 = Z2 = Z0:

R21 = 〈n2N,Z〉/〈n1N,Z〉 = C exp(αN + βZ ), (18)

where α and β are the isoscaling parameters and C is a
normalization factor. Figure 5 represents the isoscaling ra-
tios obtained from CTM calculation at constant temperature
T = 5 MeV and freeze-out volume Vf = 6V0 for two frag-
menting sources with identical atomic numbers Z0 = 75
but different mass numbers A01 = 168 and A02 = 186. The
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FIG. 4. Isotopic distributions for Z = 2, 6, 8,14, 20, and 28 from
fragmentation of Z0 = 75, A0 = 168 system at T = 5 MeV studied
from conventional CTM calculation (blue dashed lines) and CTM
calculation with realistic Sly5 EoS (red solid lines).

FIG. 5. Ratios (R21) of multiplicities of fragments of producing
the nucleus (N, Z ) where system 1 is Z0 = 75, A0 = 168 and system
2 is Z0 = 75, A0 = 186. Conventional CTM results (blue dashed
lines) are compared with CTM calculation with realistic Sly5 EoS
(red solid lines). For each case reactions are simulated at constant
temperature T = 5 MeV and freeze-out volume Vf = 6V0. The left
panel shows the ratios as function of neutron number N for fixed Z
values, while the right panel displays the ratios as function of proton
number Z for fixed neutron numbers. The lines drawn through the
points are best fits of the calculated ratios.

FIG. 6. Variation of isobaric yield ratio lnR[1, −1, A] with A2/3

for Z0 = 75, A0 = 168 (left panel) and Z0 = 75, A0 = 186 (right panel)
from the conventional CTM approach (blue dashed lines) and CTM
calculation with realistic Sly5 EoS (red solid lines). Calculations
are performed at temperature T = 5 MeV and freeze-out volume
Vf = 6V0.

isoscaling ratio R21 is plotted as function of the neutron num-
ber (N) for Z = 2, 4, 6, and 8 in the left panel whereas the
right panel displays the ratio as function of the proton number
(Z) for N = 2, 4, 6, and 8. The lines are the best fits of the cal-
culated R21 ratios to Eq. (18). From Fig. 5, it can be concluded
that CTM calculation with more realistic semi-microscopic
binding and excitation also shows isoscaling behavior, but
with the inclusion of realistic semi-microscopic binding the
magnitude of the isoscaling parameters α and β decreased.

The isobaric ratio of yields [49] of two different types of
fragments having same mass number A but different isospin
asymmetry I = N − Z and I ′ = N ′ − Z ′ originating from the
fragmenting system is given by

R[I ′, I, A] = 〈nI,A〉/〈nI ′,A〉. (19)

The quantity R[I ′, I, A] shows linear behavior with A2/3 for
I = 1 and I ′ = −1 from the conventional liquid drop approach
[48]. Figure 6 confirms that for semi-microscopic realistic
binding this linear behavior also holds but for a given fragment
mass number, production of neutron-rich isotopes is greater
with realistic binding compared to the conventional liquid
drop approach, and hence the isobaric yield ratio value is less.
This reduction is more for fragmentation from more isospin
asymmetric systems (Z0 = 75 and A0 = 186) compared to
other one (Z0 = 75 and A0 = 168).

The excited fragments produced in the multifragmenta-
tion stage decay to their stable ground states. They can γ

decay to shed energy but may also decay by light particle
emission to lower mass nuclei. Hence, an evaporation model
with the same realistic semi-microscopic binding and ex-
citation is developed. Emissions of n, p, d, t, 3He, and 4He
particles are considered. Particle-decay widths are obtained
using Weisskopf’s evaporation theory [52]. To study the clus-
ter functional effect on cold fragments for isospin sensitive
observables like isotopic distribution, isoscaling, and isobaric
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FIG. 7. Upper panels: Isotopic distributions for Z = 6 (upper left
panel) and Z = 8 (upper right panel) after secondary decay from
Z0 = 75, A0 = 168 system. Lower left panel: Ratios (R21) of multi-
plicities of secondary fragments (N, Z ) where system 1 is Z0 = 75, A0

= 168 and system 2 is Z0 = 75, A0 = 186. (The lines drawn through
the points are best fits of the calculated ratios.) Lower right panel:
Variation of isobaric yield ratio lnR[1, −1, A] of secondary frag-
ments with A2/3 for Z0 = 75, A0 = 168. Blue dashed lines represents
results from the CTM calculation described in Sec. II- A followed
by the evaporation model [18] with binding from the conventional
liquid drop model and excitation from Fermi gas model, whereas red
solid lines indicates results obtained from the CTM calculation de-
scribed in Sec. II- B followed by the evaporation model with realistic
binding and excitation. All calculations are performed at temperature
T = 5 MeV and freeze-out volume Vf = 6V0.

yield ratio, two separate cases are considered: (a) CTM cal-
culation described in Sec. II A followed by the evaporation
model [18,53] with binding from the conventional liquid drop
model and excitation from the Fermi gas model, and (b) CTM
calculation described in Sec. II B followed by the evaporation
model with realistic binding and excitation. The results are
presented in Fig. 7, which confirms relative enhancement of
multiplicities of very neutron-rich isotopes and reduction of

isoscaling parameters as well as isobaric yield ratio, due to
the introduction of new cluster functionals that exist strongly
even after secondary decay.

IV. SUMMARY AND FUTURE OUTLOOK

The canonical thermodynamical model of nuclear mul-
tifragmentation is upgraded with more realistic semi-
microscopic binding and excitation. The bulk part of the
binding is determined from newly proposed metamodeling
of the equation of state with Sly5 parameters. The effect of
the cluster functional has been examined for basic observ-
ables of nuclear multifragmentation like intermediate mass
fragment multiplicity and mass distribution as well as isospin
sensitive observables like isotopic distribution, isoscaling, and
isobaric yield ratio at different thermodynamic conditions
of temperature and freeze-out volume and isospin asymme-
try of the fragmenting system which can be accessed in
laboratory experiments. Semi-microscopic realistic binding
significantly modifies intermediate mass fragment production
(from isospin asymmetric fragmenting systems), multiplicity
of neutron-rich isotopes, isoscaling and isobaric yield ratio pa-
rameters. These modifications due to inclusion of the realistic
cluster functional are also present after the secondary decay
of the excited fragments.

In a future work, it will be interesting to study the effect
of different nuclear EoS of fragmentation observables in the
framework of this upgraded statistical model. Hybrid model
calculations are quite successful for explaining projectile frag-
mentation reactions in the limiting fragmentation region, but
one of the major constraints of the presently available hybrid
models is that the dynamical stage is performed with mi-
croscopic interaction where as fragmentation is treated with
statistical models where conventional liquid drop binding and
level density are used, therefore substantial error may arise
due to this inconsistency during the coupling of the transport
model output result and further statistical model calculation.
This newly proposed CTM model will bypass such difficulty
and can be coupled more efficiently with a dynamical model
with identical interaction in both stages. It will be very inter-
esting to pursue that in a future work.
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