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Background: Muon captures on nuclei have provided us with plenty of knowledge of nuclear properties.
Recently, this reaction attracts attention in electronics, because charged particle emissions following muon
capture on silicon become to trigger non-negligible soft errors in memory devices.
Purpose: To date, there is no theoretical framework based on the nuclear structure that describes a muon capture
reaction followed by particle emissions comprehensively. The purpose of this work is to develop a new method
that considers the nuclear many-body correlation for the accurate understanding of the soft errors in memory
devices.
Method: We combined the second Tamm-Dancoff approximation that is used to estimate muon capture rates
with the two-component exciton model, the model describing particle emission from the pre-equilibrium state.
For particle evaporation from the compound state, the Hauser-Feshbach statistical models were applied. We
chose 28Si and 40Ca to check the performance of the framework.
Result: We paid attention to the muon capture rates, the particle emission spectra, and the multiplicities that have
a close interrelation with each other. We found that the nuclear many-body correlations including two-particle
two-hole excitations is a key to explaining them simultaneously.
Conclusion: The present study showed that the combination of the microscopic approach of muon capture and
the two-component exciton model of particle emission is an effective tool to describe particle emission following
the muon captures, giving the nuclear structure information additionally. For a finer understanding of particle
emission following muon capture and a validation of the present framework, further experimental studies on
particle emission spectra are highly expected.
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I. INTRODUCTION

Negative muon capture on nuclei has recently attracted
significant attention due to its various features, such as mea-
surements of nuclear charge radii, nondestructive analyses,
estimations of double β decay, and so on, as described be-
low. The muon is first captured into outer atomic orbitals
generated by the nuclear Coulomb potential and then transits
to lower orbitals, emitting characteristic muonic x-rays and
Auger electrons. These x-rays are utilized to determine nu-
clear charge radii accurately [1] and are also applied to study
the proton charge radius [2]. Since the muonic x-ray spectrum
with energies higher than the fluorescent x-ray is unique for
elements, it is applied to nondestructive analyses inside ves-
sels [3]. The muon eventually settles into the lowest orbital,
i.e., the 1s1/2 state, and decays via μ− → e− + νμ + ν̄e or is
captured by a nucleus. The latter case is analogous to electron
capture of neutron-deficient nuclei, but can occur even for
stable nuclei due to the large muon mass. Thus, muon capture
is utilized to analyze theoretically calculated nuclear matrix
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elements of double β decay [4] and neutrino-nucleus reaction
on neutron-rich nuclei [4,5] that become significant in core-
collapse supernovae [6].

Another importance of muon capture is to bring nuclei
to highly excited states. Those nuclei deexcite by emitting
various particles, some of which ionize the surrounding mate-
rials. Recently, great attention has been paid to this process in
the field of electronics, because non-negligible soft errors are
caused in memory devices by charged particles and recoiled
nuclei that are emitted after muon capture on silicon [7].
This issue becomes more serious upon reducing the scale of
memory devices (the so-called die shrink) and operating them
at low voltage [8]. Because muons are constantly produced in
the atmosphere by the interaction of cosmic rays and atmo-
spheric nuclei, electric devices are always exposed to muons.
Currently, soft errors in memory devices are studied with
Monte Carlo transport simulations [9,10] in which, however,
the muon capture process is greatly simplified by omitting
to solve the nuclear many-body problem. To date, there is
no theoretical framework based on the nuclear structure that
comprehensively describes muon capture followed by various
particle emissions, so developing a more practical model is
highly demanded.
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Particle emissions following the muon capture were ex-
tensively studied in the 70 and 80s (see review article of
Ref. [11]), and it was discussed that high-energy spectra are
mainly attributed to instant particle emissions from the pre-
equilibrium state where excitation energy is shared only with
a few nucleons in nuclei. At this stage, it was also pointed
out that two-body meson-exchange current (MEC) becomes
essential to explain high-energy neutron and proton emis-
sions [12,13]. In contrast, low-energy spectra are attributed to
particle evaporation from a compound state where excitation
energy is shared with many nucleons in nuclei. Experimental
data of particle emission spectra were explained qualita-
tively by phenomenological models of pre-equilibrium and
compound states [13–15], independent-particle models with
effective masses [16–18], and a particle-hole model consider-
ing transitions between certain nuclear levels [19]. However,
they have not yet been reproduced accurately enough to be
used in a practical application. Moreover, the muon capture
rates were estimated with systematics and not discussed care-
fully from the nuclear structure point of view.

Recent theoretical studies that consider the nuclear many-
body systems more appropriately pointed out that correlations
resulting from the interaction between nucleons play a signif-
icant role in the muon capture [20–23]. This fact motivated
us to revisit the problem of particle emission following muon
capture. To understand the mechanism, we develop a new
method that considers the muon capture with a microscopic
nuclear model and the particle emission with an up-to-date
model of pre-equilibrium and compound states. We demon-
strate that many-body correlations resulting from the residual
two-body interactions are essential to describe particle emis-
sion spectra and multiplicities, the number of emitted particles
per a muon capture, as well as muon capture rates. In particu-
lar, the effect of two-particle two-hole (2p-2h) states, that is to
say, the doorway state, is significant for the particle emission
spectra. The target nucleus of this study is 28Si, the main
material of semiconductors. In addition, we study 40Ca that
have experimental data of emission spectra from low to high
energies.

This paper is organized as follows: In Sec. II, we de-
scribe the model that we used to study particle emissions
following muon captures. Here, we adjust neutron and proton
single-particle densities used in the particle-emission model
and discuss the validity of the adjustment. Section III gives
the discussion of muon capture rates, particle spectra, and
multiplicities, comparing with experimental data. Section IV
summarizes the present work and gives future perspectives.

II. MODEL

We assume that one-neutron particle one-proton hole
(1 pν-1 hπ ) states are produced in nuclei by the muon capture
at first. We describe this process with the Tamm-Dancoff
approximation (TDA) and second TDA (STDA), which is the
extension of TDA to 2p-2h model spaces [24,25]. They are
extensively applied to study nuclear states at low to high exci-
tation energies, enabling us to examine, e.g., charge-exchange
reactions. We have also tested a more sophisticated approach
considering the ground-state correlation, the random-phase

approximation (RPA), and second RPA (SRPA) to calculate
muon capture rates and confirmed that the results are close
to those of TDA and STDA. RPA and SRPA are numerically
time-consuming, so we decided in this work to adopt TDA
and STDA, which are more convenient than RPA and SRPA
with respect to numerical cost. We just refer to several works
studying muon captures within RPA [5,20,22,26–28].

Then, we assume that the 1pν-1hπ state generated by
the one-body weak interaction evolves to more complicated
multiparticle multihole (mp-mh) states leading to the com-
pound state. This process, the so-called pre-equilibrium state,
is still one of the challenging subjects in nuclear physics.
There are mainly two approaches that have been investigated
to describe the pre-equilibrium states, which are semiclas-
sical [29] and quantum models [30] (see also Ref. [31] for
the current status). The latter model has a good predictive
power on several experimental data without phenomenologi-
cal parameters; however, it is still difficult to comprehensively
describe various kinds of multiple particle emissions in low
to high energies. In contrast, the semiclassical model shows
a good performance of reproducing various particle emis-
sions with some phenomenological ingredients of partial level
densities, collision matrices, and so on. We choose in this
work the two-component exciton model [32,33], one of the
semiclassical approaches, because various charged particle
emissions are the present scope and the targets in interest are
stable nuclei for which the model is well established through
the nuclear data evaluations [34,35]. When nuclei reach the
compound state, we describe the particle emission with the
Hauser-Feshbach statistical model [36], which is also applied
extensively to study nuclear reactions and particle emission
after β decay [37,38].

In STDA, excited states of daughter nuclei with spin J
are created by operating a phonon creation operator of the
vibrational states Q†

λJ to the target nuclear ground state |0〉
as

|λJ〉 = Q†
λJ |0〉, QλJ |0〉 = 0. (1)

We calculate the ground state |0〉 with the Skyrme-Hartree-
Fock (SHF) method [39] in coordinate space assuming
spherical symmetry. Note that the STDA is usually applicable
for doubly magic nuclei. Although 28Si has an oblate shape,
the energy gap between the last occupied levels arising from
1d5/2 in the spherical shape and the first unoccupied level
arising from 2s1/2 is large. In addition, the occupied levels
are just resolved weakly at the oblate shape [40]. From those
results, we consider that STDA can be approximately appli-
cable to 28Si. We studied with using two effective forces,
which are SGII [41] and SkO′ [42]. Those forces provide
a reasonable strength distribution of Gamow-Teller 1+ and
spin-dipole transitions to which muon captures are sensitive.
They also reproduce the order of low-lying states of 28Al and
40K, the nuclei generated after the muon captures on 28Si and
40Ca, respectively. Continuum states are discretized by a box
size R = 14 fm. The STDA phonon operator of the vibrational
states is given by

Q†
λJ =

∑
mi

X λJ
mi OJ†

mi +
∑

m�n,i� j

X λJ
mni jOJ†

mni j, (2)
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where m and n denote particle states, while i and j denote
hole states. The operators OJM†

mi and OJM†
mni j create 1p-1h and

2p-2h states, respectively. Omitting the second term of Eq. (2)
corresponds to the TDA. The coefficients X and X in Eq. (2)
that effectively reflect the effects of the residual two-body
interaction are obtained by solving the TDA and STDA equa-
tion [24,25] (

A11 A12

A21 A22

)(
X
X

)
= ES

(
X
X

)
. (3)

The matrix element A11 (A22) includes matrix elements of
residual two-body interactions that are not included in the
SHF method and is responsible for interchanging one 1p-1h
(2p-2h) state to another 1p-1h (2p-2h) state, while A12 couples
one 1p-1h state with one 2p-2h state and A21 vice versa [25].
Setting all the matrix elements of two-body interaction in A
matrices to be zero, the STDA equation is identical to the
independent-particle model, which assumes nucleons freely
move in the nuclear (SHF) potential. By setting A12 and A21

matrices to be zero, STDA becomes identical to TDA. The
model space for 1p-1h state is set to be εm − εi � 100 MeV,
where εm and εi are the single-particle energies for particle
and hole states, respectively, while the model space for 2p-2h
state is set to the lowest 12 levels, which are different for
different nuclei and effective interactions. For 28Si, the lowest
12 levels are the 2nq + lq � 2 shell, 1 f7/2, 2p, 3s, and 2d for
SGII (neutron and proton) and SkO′ (neutron). The lowest
12 levels for SkO′ (proton) are almost the same as SkO′

(neutron), but 2p3/2 is replaced by 2d3/2. For 40Ca, the lowest
12 levels are the 2nq + lq � 2 shell, 1 f , 2p, 3s, and 1g9/2

for SGII (neutron) and SkO′ (neutron). For SGII (proton) and
SkO′ (proton), the lowest 12 levels are almost the same as the
neutron ones, but 1g9/2 is replaced by 2p3/2. We confirmed
that the result of muon capture rates converges well within
this model space.

Muon capture rates are written as [20,43]

ω(E ) =
∑
λ,J

2G2ν2

1 + ν/M
δ
(
E − E (λ,J )

x

)

×
⎡
⎣

∣∣∣∣∣
∑
νπ

X λJ
νπ 〈 jν lν‖φ(r)(M̂J − L̂J )‖ jπ lπ 〉

∣∣∣∣∣
2

+
∣∣∣∣∣
∑
νπ

X λJ
νπ

〈
jν lν

∥∥φ(r)
(
T̂ el

J − T̂ mag
J

)∥∥ jπ lπ
〉∣∣∣∣∣

2
⎤
⎦, (4)

where G = 1.166×10−11 MeV−2 is the Fermi coupling con-
stant, M is the mass of the target nucleus, and ν = mμ −

M + εμ − E (λ,J )

x is the muon neutrino energy. Here, 
M
is the mass difference between parent and descendant nuclei
taken from AME2020 [44], jν,π are the total angular momen-
tum, and E (λ,J )

x is the excitation energy with respect to the
ground states of the daughter nuclei.

The muon binding energy εμ and the wave function φ(r) of
the 1s1/2 orbital, the lowest state on which the muon is initially
bound, are calculated by solving the Dirac equation under the
Coulomb potential formed by the atomic nucleus. They are
calculated by solving the Dirac equation under the Coulomb

potential formed by the atomic nucleus and the (Z − 1)
electrons1

[
T + V Coul

N-μ (r) + V VP
N-μ(r) + V Coul

e-μ (r)
]
φ(r) = εφ(r), (5)

where T is the Dirac kinetic operator and Z denotes the atomic
number of the atom. The Coulomb potential created by the
atomic nucleus reads

V Coul
N-μ (r) = −4π

r

∫ r

0
ρch(r′)r′2dr′ − 4π

∫ ∞

r
ρch(r′)r′dr′,

(6)
where ρch is the spherical-averaged charge-density distribu-
tion of the atomic nucleus obtained by the SHF calculation,
which is often approximated as the δ function in most works.
The Coulomb potential formed by the (Z − 1) electrons reads

V Coul
e-μ (r) = 4π

r

∫ r

0
ρe(r′)r′2dr′ + 4π

∫ ∞

r
ρe(r′)r′dr′, (7)

where ρe is the electron-density distribution. In this work,
the electron-density distribution is calculated by the density-
functional theory [45,46] with the local density approximation
(LDA), where the PZ81 LDA correlation functional [47] is
used. It should be noted that the electron density and the
muon wave function are solved simultaneously and self-
consistently; thus, the effect of the muon is also considered in
the electron-density distribution as well. The vacuum polar-
ization between the nucleus and the muon V VP

N-μ is considered
by using the Uehling effective potential [48,49].

The excitation energy E (λ,J )
x with respect to the ground

states of the daughter nuclei (28Al and 40K) resulting from
the muon capture on the parent nuclei (28Si and 40Ca) is ap-
proximated by E (λ,J )

x = E (λ,J )
TDA − E (0)

TDA, where E (λ,J )
TDA and E (0)

TDA
are the STDA or TDA phonon energies and the lowest ener-
gies, respectively. We consider spin-parity up to Jπ � 5±. The
lowest states of TDA and STDA are, respectively, 3+ and 4−
for 28Al and 40K, which are consistent with the experimental
data. The one-body operators of charge M̂J , longitudinal
L̂J , transverse electric T̂ el

J , and transverse magnetic T̂ mag
J

fields are found in Ref. [43]. The one-body operators include
the axial-vector coupling, gA, and pseudoscalar coupling, gP.
Often a smaller value of gA in nuclei than that of the free nu-
cleon is needed. The need of quenching arises from neglected
meson-exchange currents and complex nuclear configurations
[50,51]. The pseudoscalar coupling constant is derived from
the Goldberger-Treiman relation [52].

A recent ab initio study that considers both meson-
exchange currents and higher-order nuclear configurations
succeeded in reproducing β-decay rates of several nuclei [53].
Although the present framework cannot fully consider the
origin of the quenching, it can calculate highly excited states
that are difficult to correctly describe for ab initio nuclear
methods. We will discuss the effect of the quenching of gA

on muon capture rates, using gA = −1.26 (free nucleon) and
the typical quenched value of gA = −1. Likewise, gP in finite
nuclei is not certain and might have a different value from that

1Because of the charge-neutral condition, the number of bound
electrons is Z − 1.
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derived from the Goldberger-Treiman relation [54]. However,
the uncertainty of gP against muon capture rates is not as
significant as that of gA [22,26], as we show later on. For
numerical purposes, the δ function in Eq. (4) is replaced by
the Lorentzian function with a width of 1 MeV.

Assuming that the 1pν-1hπ state generated by the one-body
operators of the muon capture as an initial state, we carry
out the two-component exciton model calculation. The master
equation of the two-component exciton model is [33]

dP(pπ , pν, t )

dt

= P(pπ − 1, pν, t )λπ+(pπ − 1, pν )

+ P(pπ , pν − 1, t )λν+(pπ , pν − 1)

+ P(pπ − 1, pν + 1, t )λνπ (pπ − 1, pν + 1)

+ P(pπ + 1, pν − 1, t )λπν (pπ + 1, pν − 1)

− P(pπ , pν, t )[λ(pπ , pν ) + W (pπ , pν )], (8)

where λ(pπ , pν ) = ∑
x λx(pπ , pν ) is the total transition rate,

λq+ is the creation rate of a particle-hole pair, λπν is the
exchange rate of proton and neutron particle-hole pairs, and
P(pπ , pν, t ) is the occupation probability of the exciton state
having proton particle number pπ and neutron particle number
pν at time t . The creation and exchange rates are given in
Eqs. (169), (170), (174), and (175) of Ref. [33]. The total
particle emission rate is W (pπ , pν ) = ∑

b

∫
dεWb(pπ , pν, ε),

where Wb is the particle-b emission rate from the (pπ , pν )
exciton state, which is calculated with the inverse reaction
cross section and the partial level density for residual nuclei.
In other papers studying two-exciton models, e.g., Ref. [32],
the notation of hole states, hπ,ν , is explicitly shown in the
master equation of the two-component exciton model, but we
omitted it in Eq. (8) for simplicity. By solving Eq. (8) with
an initial condition of 1pν-1hπ , the probability for emitting
particle b can be calculated by [33]

σb(ε) =
∫

dER(E )
∑
pπ ,pν

Q(pπ , pν )Wb(pπ , pν, ε), (9)

where Q is the cumulative occupation probability defined as
[33]

Q(pπ , pν ) =
∫ t1

t0

P(pπ , pν, t )dt, (10)

and R the normalized capture rate [33]

R(E ) = ω(E )
1∫

ω(E ′)dE ′ . (11)

As the number of excitons, which is equal to the number of
particles and holes, is greater than Ncomp, the calculation of
the pre-equilibrium state terminates and that of the compound
state initiates. We set Ncomp = 12, which from our experi-
ence gives the best agreement with double-differential cross
sections of nucleon-nucleus reactions systematically. We use
a standard parameter set for pre-equilibrium and compound
states that is globally used in evaluating nuclear data (see
Ref. [33] for more detail). Only for the proton and neutron
single-particle state densities g do we adjust to gπ = Z/19
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FIG. 1. Single-particle state densities of SGII (top) and SkO′

(bottom) as a function of energy range ε. Note that those of neutron
and proton are almost overlapped.

and gν = N/19 from the standard value of the Fermi gas,
gπ = Z/15 and gν = N/15 [55]. This adjustment is reason-
able considering the semimagic structure of 28Si and the
magic structure of 40Ca.

To validate the single-particle state densities used here, we
estimated them with SHF, which approximates to

w(ε) = 1

ε

∫ ε f +ε/2

ε f −ε/2

∑
i

niδ(εi − ε′)dε′, (12)

where ε f is the Fermi energy, εi is the single-particle energy
of bound state calculated by SHF, and ni = 2 ji + 1 is the
degeneracy. The Fermi energy is computed by averaging the
single-particle energies of the last occupied and first unoccu-
pied levels. The results of the single-particle state density with
an energy bin 
ε = 0.5 MeV is shown in Fig. 1, where those
for N/15 and N/19 are also drawn. Note that the results of
neutrons and protons are almost overlapped because their shell
structures are nearly the same due to N = Z . Since the level
structure is discrete, the state density at ε ≈ 0 is zero. The
state density becomes finite when at least one single-particle
state is involved within ε f ± ε/2. Actually, it is vague what
to the extent that we should include energy range of ε to
determine an appropriate single-particle state density. How-
ever, we may exclude small ε where only a few levels are
involved and large ε where the level is too far from ε f . It may
be reasonable to select ε > 8 MeV where the state density
settles down to some extent and ε < 18 MeV since ε f for
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TABLE I. Calculated muon capture rates for 28Si and 40Ca (in the
unit of 106 s−1). The lower and upper values of model calculations
are obtained by using gA = −1 and −1.26 in the case of gP = 7 [52],
respectively. The experimental data for natural silicon and calcium
are also listed [56]. The numbers in parentheses are the uncertainties
of the corresponding last digits.

Nucleus Force FREE TDA STDA Expt.

28Si SGII 1.02–1.46 0.87–1.26 0.81–1.18 0.8712(18)
SkO′ 1.04–1.49 0.87–1.26 0.72–1.04

40Ca SGII 3.12–4.35 2.54–3.58 2.35–3.32 2.557(14)
SkO′ 2.58–3.63 2.07–2.95 1.90–2.58

proton is about 9 MeV. We can see that the line of N/19 is
closer to the calculated state densities in the wide range of
10 � ε � 18 MeV than N/15.

III. RESULT AND DISCUSSION

Table I lists the calculated muon capture rates of 28Si and
40Ca. In addition to TDA and STDA, we also show the result
of “FREE” that is obtained by assuming that nucleons move
independently in the nuclear potential. The experimental data
for natural silicon and calcium are also listed. Note that the
natural abundances of 28Si and 40Ca are about 92% and 97%,
respectively, and their muon capture rates are expected to be
close to those for the natural elements. The range of calculated
muon capture rates in Table I is estimated with the axial-vector
coupling of gA = −1 and −1.26. In this range, the muon cap-
ture rates decrease with increasing gA. Hence, the lower and
upper values of the calculated muon capture rates correspond
to the results of gA = −1 and −1.26, respectively. Here, we
set gP = 7 from the Goldberger-Treiman relation [52]. We
find that the muon capture rates of FREE overestimate exper-
imental data of 28Si and 40Ca both for SGII and SkO′, while
TDA and STDA reproduce them reasonably well within the
uncertainties of gA. In the case of STDA, the capture rates are
systematically smaller than TDA. This is because STDA con-
siders 2p-2h excitations, major higher-order configurations
next to 1p-1h ones, and probabilities generating high nuclear
excitation energies increase, leading to the reduction of phase
spaces of muon neutrinos. In the case of TDA, we need to use
gA 	 −1 for 28Si and 40Ca of SGII to match the calculated
results with the experimental data, and gA = −1.15 for 40Ca
of SkO′. However, owing to the effect of 2p-2h excitations
for STDA, the axial-vector coupling constants needed to ac-
commodate the calculated results with the experimental data
shift to lower values, which are, in the case of SGII (SkO′),
gA = −1.04 (−1.12) for 28Si and −1.06 (−1.25) for 40Ca,
respectively. This result indicates that a weak quenching of the
axial-vector coupling constant is favorable if 2p-2h excitations
are considered. We also see that the muon capture rates of
SkO′ is smaller than SGII. This is because the resonances for
SkO′ distribute at higher energies than SGII, leading to the
reduction of phase spaces of muon neutrinos (see also Figs. 2
and 3). The dependence of the effective interactions is strong
for 40Ca, for which the muon capture rate of SkO′ is about
20% lower than that of SGII.
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FIG. 2. Normalized capture rates R(E ) for 28Si (top) and 40Ca
(bottom) obtained by FREE, TDA, and STDA. The results of SkO′

force with gA = −1.0 and gP = 7 are shown. The horizontal axis
represents the excitation energy of 28Al and 40K. Contributions of
MEC approximated by a Gaussian form are also shown by the dashed
line (see text).

Table II shows the muon capture rates for 28Si and 40Ca
calculated within TDA and STDA varying gP = 0, 7, and 10
as done in Ref. [22]. Here, we set gA = −1.26. The range
of 0–10 of gP is arbitrarily chosen just for investigating the
dependence of muon capture rates. We can see that the muon
capture rates decrease with increasing gP. This dependence
is consistent with the result of 100Mo studied by Jokiniemi
et al. [22]. If gP < 7, the calculated muon capture rates are
systematically greater than the experimental data listed in
Table I. In this case, a quenched axial-vector coupling
constant gA > −1.26 that leads to smaller muon capture rates
is required to reproduce the experimental data. On the other
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FIG. 3. Same as Fig. 2 but for the result of SGII.
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TABLE II. Muon capture rates for 28Si and 40Ca (in units of
106 s−1), varying the pseudoscalar coupling constant gP = 0, 7, and
10. Here, we set gA = −1.26.

TDA STDA

Nucleus Force gP = 0 7 10 gP = 0 7 10

28Si SGII 1.44 1.26 1.20 1.35 1.18 1.12
SkO′ 1.45 1.26 1.20 1.19 1.04 0.99

40Ca SGII 4.14 3.58 3.41 3.84 3.32 3.16
SkO′ 3.42 2.95 2.81 2.99 2.58 2.46

hand, if gP > 7, the calculated muon capture rates approach
the experimental data, and therefore a strong quenching of gA

as the case of gP < 7 is not required. Due to the uncertainty
of gP and the effective interaction dependence, it is actually
difficult to make a rigorous conclusion about the relationship
between the quenching of gA and the 2p-2h excitations from
the muon capture rates. However, we see that the 2p-2h excita-
tions play a crucial role to enhance muon capture rates at high
nuclear excitation energies, leading to high-energy particle
emissions.

In Table I, we have seen the improvements in the muon
capture rates from FREE to TDA and STDA. This result
is related to the many-body correlations resulting from the
residual two-body interaction. To explain it, we show in Fig. 2
the normalized capture rates R(E ) of 28Si and 40Ca calculated
by SkO′. The normalized capture rates become large in lower
excitation energies because outgoing muon neutrinos can have
a large phase space. The functions of R(E ) for FREE, TDA,
and STDA show a similar curve to each other in excitation
energies less than about 20 MeV, although those of TDA
and STDA distribute in higher energies than FREE by a few
MeV. With increasing excitation energies, the capture rates
decrease. Above excitation energies more than about 25 MeV,
R(E ) become less than 0.01, and significant differences begin
to emerge for FREE, TDA, and STDA. This is because the
residual two-body interaction that is not taken into account for
FREE works repulsively for strength distributions of most Jπ

channels. Such a feature substantially decreases the momen-
tum of outgoing muon neutrino, reducing the muon capture
rates through the factor ν2 in Eq. (4).

STDA gives additional enhancements in normalized muon
capture rates above E = 30 MeV as compared with TDA as
seen in Fig. 2. This is because the 1p-1h states couple with
the 2p-2h ones, and some of them at high energies receive
substantial strengths from those at low energies. The enhance-
ment of transition probabilities at high energies induces the
further reduction of muon capture rates as found in Table I,
and a weak quenching of gA shows a favorable agreement with
the experimental data, accordingly. In general, the effect of
the residual interaction becomes small with increasing energy,
and the capture rates of FREE, TDA, and STDA get closer to
each other.

The result of muon capture rates calculated by SGII is
shown in Fig. 3. Similar to SkO′, we can observe that the
residual two-body interaction and the coupling with 2p-2h
states induce a significant increment in muon capture rates

FIG. 4. Particle yields after the muon capture on 28Si (top) and
40Ca (bottom). The result of SkO′ for gA = −1 and gP = 7 is shown.
Experimental data for neutrons (filled symbols) and protons (open
symbols) are taken from Refs. [18,57,58] and [59–61], respectively.
Note that the units are not given in the original paper of Budyashov
[59], so that we normalized the second point from the low energy to
STDA+MEC.

above E � 20 MeV. Although the enhancement in 30 � E �
60 MeV due to the coupling with 2p-2h states is slightly
weaker than SkO′, it significantly affects the particle emission
spectra and multiplicities, as we discuss next.

Figure 4 shows the particle emission spectra of muon cap-
ture on 28Si and 40Ca. The results of SkO′ with the axial-vector
coupling gA = −1 and gP = 7 are illustrated together with the
experimental data. We have checked the sensitivity of particle
emission spectra to gA and gP. They varied only by a few
percent in the range discussed in Tables I and II. In Fig. 4,
the low-energy peaks formed around E = 2–4 MeV result
from the particle emission from the compound state, while
the high-energy tails of spectra are due to particle emission
from the pre-equilibrium state. The result of FREE largely
underestimates the experimental data. This shortcoming is
improved by TDA because of the enhancement of the cap-
ture rates at high energies, as seen in Fig. 2. STDA further
raises the calculated spectra and the results get closer to the
experimental data. We would like to stress here that the effect
of the 2p-2h excitations was small for the normalized muon
capture rates, as seen in Figs. 2 and 3; however, its influence
on particle emission spectra (Fig. 4) is non-negligible. We
have also calculated the particle emission spectra with the
single-particle state densities of gπ = Z/15 and gν = N/15.
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However, the result largely underestimated the experimental
data of particle emission spectra at high energies because the
large single-particle state densities prompt rapid transition to
the compound state, hindering high-energy spectra attributed
from the pre-equilibrium state.

STDA still largely underestimates the proton spectra in
Fig. 4. The one-body operators of muon capture in Eq. (4)
create only the 1 pν-1 hπ state as an initial state after muon
capture reactions. To enhance the proton emission spectra
from this initial state, a neutron must give its energy in-
stantly to a proton; however, this energy transfer does not
occur regularly during the pre-equilibrium process. In this
respect, Lifshitz and Singer have discussed the effect of
MEC on proton emission spectra [13]: MEC is a two-body
current and has a form of isospin operator [τ1 ⊗ τ2]1,−1,
yielding 1pπ -2hπ -1pν-0hν states (hereafter called M1) and
0pπ -1hπ -2pν-1hν states (M2). The former configuration has
one-proton particle at the initial state and is able to accelerate
high-energy proton emissions. Lifshitz and Singer studied that
the muon capture rates attributing from MEC are about 5%
of the total ones for nuclei with A < 100 (see Table 1 of
Ref. [13]) and its nuclear excitation function forms a one-peak
structure (see Fig. 2 of Ref. [13]) with the mean excitation
energy of 54.8–58.1 MeV. Following their discussion, we
initiate the calculation of pre-equilibrium process with the
initial states of M1 and M2 and see the change of particle
yields after the muon captures within our framework. New
particle yields are then given by

σb,STDA+MEC(ε) = σb,STDA(ε) + NM

2

∑
X=1,2

σb,MX (ε), (13)

where

σb,MX (ε) =
∫

dEG(E )
∑
pπ ,pν

QMX (pπ , pν )Wb(pπ , pν, ε).

(14)
The first term of Eq. (13) corresponds to particle yields cal-
culated with the initial configuration of 1pν-1hπ state, while
the second term of Eq. (13) corresponds to particle yields
calculated with the initial states of M1 and M2. The nor-
malized muon capture rates defined as G(E ) in Eq. (14)
is approximated by the Gaussian function. The ratio of the
muon capture rates for MEC to the total one, denoted NM,
is set to be 0.05. The factor of 1/2 in the second term of
Eq. (13) comes from the assumption that M1 and M2 states
are created with an equal probability by MEC. To hold the
total muon capture rates estimated by STDA, R(E ) is modified
to 0.95R(E ) being σb,STDA = 0.95σb. The mean excitation
energy of the Gaussian function is set to be 56 MeV and
the width is arbitrarily set to 15 MeV, which is determined
from an estimation of Fig. 2 of Ref. [13]. We checked the
width dependence of particle yields; however, no significant
differences appear below 50 MeV where one can compare
with experimental data. The partial muon capture rates of
MEC calculated in this way are illustrated in Fig. 2. The
result of considering MEC (STDA + MEC) is shown in Fig. 4.
Particle emission spectra at high energies are enhanced fur-
ther, in particular, a remarkable improvement is obtained for
the proton spectra in spite of the rough approximation for

FIG. 5. Same as Fig. 4 but for the result of SGII.

MEC. This result is consistent with previous work [13], indi-
cating that not only one-body excitations given in Eq. (4) but
also MEC is essential to simulate particle emission spectra.

Figure 5 shows the particle emission spectra calculated by
SGII. The results are qualitatively the same as SKO′. Since
the muon capture rates at high energies are weaker than SkO′

(Fig. 3), the calculated spectra at high energies are slightly
smaller than SkO′. However, we can see that the effect of the
coupling with 2p-2h states is non-negligible. Together with
MEC, the calculated spectra show a good agreement with the
experimental data.

Table III lists the calculated and experimental data of mul-
tiplicities of emitted particles for 28Si and 40Ca, which are
obtained by integrating particle yields with energy. Here, we
used gA = −1 and gP = 7 in the calculation; however, we
confirmed that the difference from gA = −1.26 is less than
3%. The results of FREE underestimate the experimental data,
while we obtain improvements with increasing the many-body
correlations of 1p-1h mixture (TDA), and the coupling with
2p-2h states (STDA). The effect of MEC is comparable to
TDA and STDA, making the calculated results even closer
to the experimental data. On the contrary, the calculated α-
particle multiplicity of 28Si and neutron multiplicity of 40Ca
deviate from the experimental data. The measured energy
range of α-particle multiplicity for 28Si is limited only to
15–20 MeV and the available experimental data of neutron
multiplicity for 40Ca is only one, which was measured more
than 50 years ago [62]. The multiplicity strongly depends
on the distribution of capture rates that modulates particle
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TABLE III. Calculated multiplicities per 103 muon captures for 28Si and 40Ca compared with the experimental data for the natural silicon
and calcium. The results of SGII and SkO′ forces with gA = −1 and gP = 7 are shown. Experimental data for neutrons are taken from
Ref. [62], while those for charged particles are from Ref. [60]. Energy ranges experimentally measured in Ref. [62] are shown in the third
column. We regarded neutron spectra of Ref. [60] are measured in an entire energy region. The numbers in parentheses are the uncertainties of
the corresponding last digits.

Energy FREE TDA STDA STDA + MEC

Nucleus Particle range (MeV) SGII SkO′ SGII SkO′ SGII SkO′ SGII SkO′ Expt.

28Si n Entire 639 573 631 812 676 938 729 983 864(72)
p 4–20 14.9 13.5 23.9 23.7 31.8 41.4 54.4 63.5 52.46(192)
d 5–17 1.99 2.01 3.98 4.13 5.89 7.13 7.96 9.15 9.80(46)
t 6–17 0.303 0.309 0.714 0.720 1.18 1.54 1.63 1.97 1.70(13)
α 15–20 0.288 0.285 0.598 0.607 0.944 1.14 1.28 1.47 0.57(10)

40Ca n Entire 352 473 583 659 559 631 613 681 764(32)

emissions from the pre-equilibrium state, which emits only
a few particles, and the compound state, which emits multiple
particles. For further understanding of particle emissions and
validations of the nuclear model, more experimental studies
that cover the spectra from low to high energies are required.

Here, we show the calculated multiplicities of charged
particles for entire energy range in Table IV, where gA = −1
and gP = 7 is used in the calculation. We confirmed that
the difference from gA = −1.26 is less than 3%. Compared
with Table III, the multiplicities of charged particles in the
entire energy region are considerably larger, implying that
the measured energy ranges are still narrow to discuss the
influences on memory devices. In particular, the α-particle
multiplicity in entire energy region is 40–50 times larger than
that of 15 � E � 20 MeV of Table III. This result means that
further experimental investigates are still needed.

IV. SUMMARY

We demonstrated that the many-body correlation resulting
from the residual two-body interaction operating between nu-
cleons plays an important role in the muon capture rates of
28Si and 40Ca. In particular, the coupling with 2p-2h states is
essential to describe the particle emission spectra and the mul-

tiplicities. In other words, this indicates that particle emissions
following muon captures have information on the nuclear
structure at high energies. The present study shows that the
combination of the microscopic approach of muon capture
and the two-component exciton model of particle emission
is an effective tool to describe particle emission following
muon capture, giving additional nuclear structure information.
Only the effect of MEC was considered within a simple man-
ner, so that it is demanded in future to take it into account
within the framework of STDA that is able to calculate tran-
sition amplitudes of two-body external field of MEC given in
Refs. [13,63,64] in nuclear many-body systems. The present
outcomes are expected to contribute to the development of
Monte Carlo transport simulations of muon captures [9,10]
and further understanding of the nuclear structure.

The α-particle multiplicity of 28Si and neutron multiplicity
of 40Ca are the remaining questions of this work. Currently,
three facilities providing negative muon beams (TRIUMF,
RAL, J-PARC, and PSI) are running in the world, and new
experiments are planned there. In addition, a new negative
muon facility is going to launch in RCNP at Osaka University.
Those activities will increase information on the interaction
between muon and nuclei, and help us not only to verify the
present framework but also to develop theoretical models.

TABLE IV. Calculated multiplicities per 103 muon captures for 28Si and 40Ca in the case of the entire energy range. The results of SGII
and SkO′ forces with the axial-vector coupling gA = −1 and pseudoscalar coupling gP = 7 are shown.

Emitted FREE TDA STDA STDA+MEC

Nucl. particle SGII SkO′ SGII SkO′ SGII SkO′ SGII SkO′

28Si p 60.7 61.5 94.2 98.9 101 119 128 144
d 2.51 2.49 4.68 4.91 6.71 8.66 9.32 11.2
t 0.442 0.448 0.940 0.979 1.52 2.07 2.16 2.68

3He 0.0512 0.0540 0.127 0.130 0.230 0.368 0.383 0.514
α 12.5 11.5 18.2 18.0 20.3 24.4 24.7 28.6

40Ca p 101 136 169 221 166 203 202 238
d 2.28 2.62 5.01 5.58 5.42 5.87 7.74 8.17
t 0.286 0.331 0.733 0.808 0.934 1.07 1.46 1.58

3He 0.0948 0.110 0.250 0.276 0.339 0.397 0.548 0.630
α 25.7 25.5 39.3 42.4 38.5 39.6 42.0 43.0
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