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Mixing of one-particle-one-hole projected states with the variation after projection wave functions
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In this paper, we study the mixing of one-particle-one-hole projected states with the variation after projection
(VAP) wave functions in an attempt to improve the approximation of this method. It turns out that, when
minimizing only the lowest (yrast) energy with given spin and parity, the one-particle-one-hole projected
states cannot be mixed into the converged VAP wave function, which is very similar to the situation of the
Hartree-Fock method. However, if one minimizes the sum of several lowest energies with the same spin and
parity, the one-particle-one-hole mixing can make some improvements to the VAP wave functions. We expect
such one-particle-one-hole mixing may be useful in the calculations of the low-lying excited states in heavy
nuclei with a large model space.
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I. INTRODUCTION

The nuclear shell model (SM) [1] has been very successful
in describing various properties of nuclei, especially in the
neighborhood of the closed shells, where the configuration
space is usually small but good enough for the construc-
tion of the nuclear wave function. However, in the heavy
deformed nuclear region, the configuration space is huge, in
which the full SM calculation is almost impossible. Such
huge configuration space must be compressed so that the
SM calculation can be performed on a present-day computer.
Unfortunately, the energies and wave functions obtained in
a compressed configuration space are approximated ones. To
make such approximated solutions as close as possible to the
exact shell model ones, various methods, such as shell model
truncation [2], stochastic quantum Monte Carlo approaches
[3–6], projected configuration interaction [7,8], and the class
of variation after projection (VAP) methods [9–14], have been
developed.

Among those approximated SM methods, the VAP method
is an important one, in which the nuclear wave functions with
good quantum numbers are sufficiently optimized [9–14]. In
Refs. [9,10], the Hartree-Fock-Bogoliubov (HFB) vacuum
states are adopted, and the neutron and proton number pro-
jections are performed in addition to the angular momentum
projection. Very good approximations of their results have
been achieved. However, the full projection of the HFB state
onto good quantum numbers (i.e., neutron number, proton
number, angular momentum, and parity) requires fivefold in-
tegration, which is much too time consuming. On the other
hand, in Ref. [11], we showed that the angular momentum
projection is crucial in obtaining a good shell model ap-
proximation. So, a simpler VAP can be one in which the
Hartree-Fock (HF) Slater determinants (SDs) are taken and
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only the angular momentum projection and parity projection
are performed [12–14]. Apparently, with the same number of
projected states, the approximation of the VAP with projected
SDs is not as good as that with projected HFB vacua. This
is because HFB vacuum incorporates more correlations, espe-
cially pairing. However, the approximation of the former can
be continuously improved by adding more and more projected
SDs. In this sense, we are more interested in the VAP with
projected SDs due to its relatively lower computational cost.
Besides, the rationality of using the HF SDs to construct
the nuclear wave functions has already been examined using
the Monte Carlo shell model (MCSM), in which very good
approximations can be achieved [4–6]. Thus we only discuss
the VAP with projected SDs in this paper.

In the MCSM method, the yrast state and non-yrast states
can be varied on the same footing by minimizing the sum of
their energies [5]. It turns out that such variation is based on
a solid theoretical foundation [13], in which the Hylleraas-
Undheim-MacDonald (HUM) theorem, widely known in the
field of quantum chemistry, plays a key role [15,16]. In the
present work, we use the same algorithm. The orthogonal-
ity among the calculated states is automatically fulfilled by
solving the Hill-Wheeler (HW) equation. This avoids the
complexity of the frequently used Gram-Schmidt orthogonal-
ization, as adopted in Ref. [9]. After that, we further found
that the complicated K mixing can be safely removed from
VAP with the adopted SDs fully symmetry unrestricted. This
considerably simplifies the VAP calculation, especially in the
application to the high-spin states with arbitrary deformation
[14]. We should remind that in the MCSM calculations [6] the
authors had already taken the single K = I projected states to
perform their calculations, for simplicity. Such simplification
works quite well in the MCSM, but unfortunately they did not
give further description of this single-K simplification.

However, if the VAP method is applied to heavy deformed
nuclei, the computational burden becomes quite heavy. More
seriously, the energy convergence is very slow as the number
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FIG. 1. Quantities as functions of the VAP iteration for the
Jπ = 8+ state in 26Mg. Results with Eq. (1) are shown as open cir-
cles. Those with Eq. (11) are shown as filled dots in different colors.
The calculated quantities are (a) the norms σk , (b) the absolute values
of the energy gradients, and (c) the VAP energies. The iteration
terminates once the absolute value of the energy gradient is less than
0.01 keV. The USDB interaction is adopted.

of included projected states increases [10]. Under this situ-
ation, the VAP calculation with a large number of projected
states becomes impractical. A further improvement of such
a VAP wave function may be the inclusion of the projected
particle-hole states built on top of the converged reference
SDs. This is very similar to the cases of the projected shell
model [17] and the MONSTER method [9], in which the
projeced quasiparticle states on top of the selected projected
vacuum are included to form the nuclear wave function.

The mixing of particle-hole projected states with the VAP
wave functions requires more complicated projected matrix
elements to form a wider Hill-Wheeler (HW) equation. Fortu-
nately, in the present VAP calculation [12–14], all the matrix
elements needed in the one-particle-one-hole (1p-1h) mixing
are already available. These matrix elements were originally
used to build the Hessian matrix of the VAP energy, so that
the VAP calculation may converge after a very few iterations
(see Fig. 1 below). Thus the improved energies and the nuclear
wave functions with 1p-1h mixing can be calculated without
much computational cost. However, if one further considers
the 2p-2h mixing, there are two problems. The first one is
that new projected matrix elements among the 2p-2h config-
urations must be calculated specifically. The other one is that

the number of 2p-2h SDs is much larger than the 1p-1h one.
Therefore the calculation including 2p-2h mixing is much
more complicated. Here, for simplicity, we only discuss the
1p-1h mixing in this paper and see how it affects the VAP
wave function.

The paper is organized as follows. Section II provides a
general introduction of the adopted method. Section III dis-
cusses the 1p-1h mixing after the VAP for the yrast states.
Section IV discusses the 1p-1h mixing after the VAP for the
non-yrast states. A summary and outlook are presented in
Sec. V.

II. THE VAP METHOD AND THE 1p-1h MIXING

Let us start the introduction of the present method with the
simplest case in which only a single SD, |�〉, is considered.
At given quantum numbers of spin J , parity π , and magnetic
quantum number M, one can generate 2J + 1 projected states,
PJπ

MK |�〉, from |�〉. Here, PJπ
MK stands for the product of the

angular momentum projection operator PJ
MK and the parity

projection operator Pπ . Generally, all these 2J + 1 projected
states are expected to be taken to form the trial nuclear wave
function,

|�JπMα〉 =
J∑

K=−J

f Jπα
K PJπ

MK |�〉, (1)

where α is used to distinguish states with the same J , π , and
M. The coefficients f Jπα

K and the corresponding energy EJπ
α

are determined by solving the following HW equation:

J∑
K ′=−J

(
HJπ

KK ′ − EJπ
α NJπ

KK ′
)

f Jπα
K ′ = 0, (2)

where HJπ
KK ′ = 〈�|ĤPJπ

KK ′ |�〉 and NJπ
KK ′ = 〈�|PJπ

KK ′ |�〉. For
convenience, we assume EJπ

1 � EJπ
2 � · · · � EJπ

2J+1. The co-
efficients f Jπα

K should satisfy the normalization condition

J∑
K,K ′=−J

f Jπα∗
K NJπ

KK ′ f Jπα
K ′ = 1. (3)

|�JπMα〉 needs to be optimized so that it can be as close as
possible to the exact shell model one. According to Eq. (2),
|�JπMα〉 is completely determined by |�〉 provided the
Hamiltonian is given. Thus the optimization of Eq. (1) is
actually realized by varying the |�〉 state.

To vary the |�〉 state, one may first need to parametrize
it. Suppose there is a normalized HFB vacuum state, |�0〉.
The corresponding quasiparticle operators are denoted by β

†
0,μ

and β0,μ. Using the Thouless theorem [18,19], |�0〉 can be
changed to a new HFB vacuum state |�〉, namely,

|�〉 = N e
1
2

∑
μν dμνβ

†
0,μβ

†
0,ν |�0〉 = N e

∑
κ dκ A†

κ |�0〉, (4)

where d is a complex skew matrix. The matrix elements dμν

will be considered as the variational parameters. N is the
normalization parameter, so that 〈�|�〉 = 1. For convenience,
the subscript κ is used to stand for the (μ, ν) numbers with
μ < ν, and the particle pair operators are defined as

Â†
κ = β

†
0,μβ

†
0,ν , (5)
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Âκ = (β†
0,μβ

†
0,ν )† = β0,νβ0,μ. (6)

Here, the vacuum states |�0〉 and |�〉 are reduced to be SDs,
so that the particle number projections can be omitted. There-
fore, the Â†

κ operators become 1p-1h operators corresponding
to the |�0〉 state.

Now, let us present a brief introduction on how to establish
the VAP iteration. Suppose that we have a |�〉 state at certain
VAP iteration. Then we set |�0〉 = |�〉 and d = 0. At this
d = 0 point, the energy EJπ

α and the corresponding f Jπα
K co-

efficients are calculated first by solving Eq. (2). This process
includes two successive diagonalizations. The first one is the
diagonalization of the norm matrix NJπ in Eq. (2) and we have

J∑
K ′=−J

NJπ
KK ′Rk

K ′ = σkRk
K , (7)

where σk � 0 and Rk with k = 1, 2, . . . , 2J + 1 are eigenval-
ues and the corresponding eigenvectors, respectively. Then
one can establish a new set of orthonormal basis states,
|ψJπ

k 〉 (k = 1, 2, . . . , 2J + 1),

∣∣ψJπ
k

〉 = 1√
σk

J∑
K=−J

Rk
K PJπ

MK |�〉, (8)

and Eq. (2) can be transformed into a normal eigenvalue
equation,

2J+1∑
k′=1

[〈
ψJπ

k

∣∣Ĥ ∣∣ψJπ
k′

〉 − EJπ
α δkk′

]
uJπα

k′ = 0. (9)

The second diagonalization is then performed on Eq. (9), so
that the energies EJπ

α in Eq. (2) are obtained and the coef-
ficients of the wave functions, f Jπα

K , are transformed from
uJπα

k , i.e.,

f Jπα
K =

2J+1∑
k=1

Rk
K uJα

k√
σk

. (10)

Notice that, in Eq. (8), σk should not be zero, or the cor-
responding |ψJπ

k 〉 should be abandoned. However, if σk is too
small, the |ψJπ

k 〉 basis states may not be calculated precisely
enough to guarantee the stability of the calculated energies
and wave functions. This is one of the main troubles when all
2J + 1 projected basis states are included in the VAP calcu-
lation, because some of the smallest σk values could become
tinier and tinier, and finally the VAP could collapse.

After we have the projected energies EJπ
α and the corre-

sponding wave functions, we choose the lowest one, EJπ
1 , and

minimize it. Thus the gradient and the Hessian of EJπ
1 in the

space spanned by the dκ parameters are calculated according
to the formulas in Ref. [12], and then the next improved SD
|�〉 can be determined by adopting the trust-region Newton’s
algorithm [20]. The VAP iteration terminates when the gra-
dient of EJπ

1 becomes less than 0.01 keV, which is precise
enough to obtain the exact minimum of EJπ

1 .
In Fig. 1, we demonstrate such VAP iteration using the

example of the yrast 8+ state in 26Mg, which will be further
discussed in the next section. The initial SD |�〉 is randomly
chosen. The adopted Hamiltonian is USDB [21]. The results

are shown as black circles. From this initial |�〉, the VAP
converges normally after 43 iterations.

However, according to Ref. [14], the form of the trial VAP
wave function with spin J can be simplified by adopting just
one projected state rather than adopting all 2J + 1 angular
momentum projected states for each selected reference state.
To confirm this point, we chose only one of the 2J + 1 pro-
jected states in Eq. (1), and the trial VAP wave function can
be considerably simplified as

|�JπM (K )〉 = PJπ
MK |�〉√

〈�|PJπ
KK |�〉

, (11)

where the K number can be randomly chosen. Here, we still
take the above example and choose K = 0, 2, and 5 to opti-
mize Eq. (11) independently by using exactly the same VAP
code. The results are shown as filled dots with different colors
in Fig. 1. It is shown that all the converged energies EJπ (K )
for |�JπM (K )〉 with different K are almost the same and also
very close to the converged EJπ

1 .
Now, we have one optimized wave function of Eq. (1)

and three optimized ones of Eq. (11) with K = 0, 2, and
5, which must be compared with one another. Overlaps
among these wave functions are calculated. The values of
|〈�JπM1|�JπM (K )〉| corresponding to the converged results
in Fig. 1 are 0.9867, 0.9853, and 0.9898 for K = 0, 2, and
5, respectively. Actually, results with other K numbers are
almost the same as in Fig. 1. This clearly shows the equiva-
lence of Eqs. (1) and (11) and implies the equivalence among
the |�JπM (K )〉 states themselves. The latter is confirmed by
calculating the quantities of |〈�JπM (K )|�JπM (K ′)〉|, which
turn out to be 0.9930, 0.9911, and 0.9875 for (K, K ′) = (0, 2),
(0,5), and (2,5), respectively.

Such equivalence was discussed in Ref. [14]. Actually, the
energy of a rotating system at a given spin can be minimized
in two ways. The first way is that the orientation of the rota-
tional axis can be totally free, which corresponds to using the
K-mixing wave function in Eq. (1). In this case, the orienta-
tion of the rotational axis can be found by solving the HW
equation in Eq. (2). The other way that is the orientation of
the rotational axis can be fixed, which corresponds to using
the single-K wave function in Eq. (11). In the classical pic-
ture, the energy minimization in these two ways should be
equivalent since the energy is independent of the orientation
of the rotational axis. This explanation is indeed supported by
the above calculations. However, the above overlaps do not
exactly equal 1, which implies that there may be some slight
differences among those converged VAP wave functions. Ac-
tually, in the quantum nuclear system, the spin is quantized,
and the orientation of the rotational axis is uncertain. Differ-
ent forms of trial nuclear wave function may have different
probability distributions of the rotational axis. That means that
these VAP wave functions are unlikely to be identical. Thus,
strictly speaking, EJπ

1 �= EJπ (K ). More clearly, one can easily
get EJπ

1 < EJπ (K ) since the form of Eq. (1) covers the case
of Eq. (11). This can be seen in Fig. 2 at n = 1. However,
such differences are always slight and we still consider that
the above VAP wave functions are almost equivalent due to
their large overlaps.
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FIG. 2. The converged EJ+
1 energies (black circles for K = 0

and red diamond for K = 5) and the corresponding E ′J+
1 energies

(black bars for K = 0 and red bars for K = 5) as functions of the
number of reference SDs, n, for the yrast states with (a) Jπ = 8+ and
(b) Jπ = 0+ in 26Mg. The horizontal lines show the full SM energies.
The blue bar shows the converged energy of Eq. (1) taken from Fig. 1.

We should stress that only the equivalences for the opti-
mized VAP wave functions are discussed here. With the same
|�〉, Eq. (1) is expected to be better than Eq. (11). This can be
seen in Fig. 1: the energy of Eq. (1) is indeed much lower than
the ones of Eq. (11) at the first iteration where the same initial
|�〉 is used to start all the VAP calculations. However, in the
process of VAP iteration, the |�〉 state in |�JπM1〉 and those
in the |�JπM (K )〉 states change independently, and they may
become different from one another. This clearly tells us that
the converged VAP wave functions with different reference
SD states can be almost equivalent.

The advantages of introducing Eq. (11) into VAP are ob-
vious. First, the number of all required matrix elements with
Eq. (11) is only one (2J + 1)2th of that with Eq. (1). Conse-
quently, the computational time with Eq. (11) is remarkably
reduced. In the example of Fig. 1, the elapsed time for each
iteration with Eq. (11) is only about 3 s on an Intel Xeon CPU
with 20 cores, while the time with Eq. (1) is about 360 s on the
same CPU. Second, the VAP iteration with Eq. (11) converges
more reliably and faster than that with Eq. (1). As one can
see from Fig. 1(a), the smallest σk values corresponding to
Eq. (1) tend to be tinier and tinier as the iteration proceeds.
Fortunately, they come back after the 30th iteration in this
calculation. However, one is not always lucky. In many cases,
the σk values could keep on moving to zero and one cannot get
a converged VAP wave function with Eq. (1) (See the exam-
ples in the Supplemental Material for Ref. [14]). Therefore,

using Eq. (11) one also can avoid numerical instability from
a practical point of view. Finally, the VAP calculation with
Eq. (11) can be conveniently extended to arbitrary high-spin
states, while doing so for the VAP with Eq. (1) is very difficult.

Recognizing the equivalence of Eqs. (1) and (11) in VAP,
we prefer to take the simplified Eq. (11) and extend it by
including more reference SDs,

|�JπMα (K )〉 =
n∑

i=1

f Jπα
i PJπ

MK |�i〉. (12)

The coefficients f Jπα
i and the corresponding energy EJπ

α , can
be obtained by solving the following HW equation:

n∑
i′=1

〈�i|
(
Ĥ − EJπ

α

)
PJπ

KK |�i′ 〉 f Jπα
i′ = 0. (13)

These f Jπα
i coefficients also should satisfy the normalization

condition
n∑

ii′=1

f Jπα∗
i 〈�i|PJπ

KK |�i′ 〉 f Jπα
i′ = 1. (14)

Here and below, all EJπ
α energies are calculated from

Eq. (13) rather than Eq. (2) since we no longer use Eq. (1).
In this paper, we assume EJπ

1 � EJπ
2 � · · · � EJπ

n . But in
practical calculations we are only interested in the lowest
m (� n) energies.

From Eq. (13), one can see that changes of the |�i〉 states
may directly change the EJπ

α energies. Our target is to try to
find a set of these n |�i〉 states, so that the calculated lowest m
EJπ

α energies can be as close as possible to the corresponding
exact shell model ones denoted by eJπ

α . Here, we also assume
eJπ

1 � eJπ
2 � · · · � eJπ

m .
Thanks to the Cauchy’s interlacing theorem, which makes

it clear that EJπ
α � eJπ

α for any excited energies [13]. Recently,
we just recognized there is a famous HUM theorem widely
known in the field of quantum chemistry [15,16]. This theo-
rem exactly tells us the relation of EJπ

α � eJπ
α .

Therefore, one can define the non-negative energy differ-
ence δEα = EJπ

α − eJπ
α . Then the summation of δEα for the

lowest m states must be non-negative, too. Namely,

�Em =
m∑

α=1

δEα =
m∑

α=1

EJπ
α −

m∑
α=1

eJπ
α � 0. (15)

Clearly, if �Em = 0, then δEα = 0 for all included states. This
means EJπ

α = eJπ
α and we obtain the exact eigenenergies of

the given Ĥ . But in general, �Em > 0. Then our target is
to try to find a number (n) of basis states through variation,
so that �Em becomes a minimum. Then the corresponding
EJπ

α energies at the minimum of �Em can be simultaneously
obtained. These EJπ

α energies can be compared with the exact
eJπ
α ones to test the quality of the present VAP method [13].

When m = 1, we come back to the Ritz variational principle.
However, �Em is usually unknown because we do not

know the exact eJπ
α energies in most cases. Actually, with

a given Ĥ , the eJπ
α energies are determined, and can be

considered as constants in Eq. (15). So minimizing �Em is
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equivalent to minimizing

Sm =
m∑

α=1

EJπ
α . (16)

Since the involved |�i〉 states are varied independently,
each of them has its own d matrix, which is denoted by
di. The matrix elements of di are then denoted by diκ ,
namely

|�i〉 = Nie
∑

κ diκ A†
iκ |�0,i〉. (17)

For simplicity, we use �d to denote the vector of all the
independent diκ parameters. Given a certain �d , all |�i〉 states
can be uniquely determined. Consequently, the quantity Sm,
determined by the set of |�i〉 states, can be considered as
a function of �d . Therefore, the VAP calculation is actually
the minimization of Sm in the space spanned by all the diκ

parameters.
Let us give a brief introduction to the present VAP iter-

ation. Starting from a set of randomly chosen |�0,i〉 states,
the gradient and the Hessian matrix of Sm at �d = 0 are cal-
culated. Then a new point �dmin �= 0 can be searched so that
Sm is as low as possible. This �dmin determines a new set of
|�i〉 states. We then update the |�0,i〉 states with these |�i〉
ones and perform the next VAP iteration. Notice that we only
calculate the gradient and the Hessian matrix at �d = 0. This is
because at this special point |�i〉 = |�0,i〉, and the particle-
hole operators Â†

iκ become the ones corresponding to |�i〉.
This may considerably simplify the VAP formulation and the
corresponding calculation.

Now, let us consider the 1p-1h mixing. Suppose that we
have a set of reference SD states |�i〉; then the expanded wave
function including 1p-1h components can be written as

|� ′
JπMα (K )〉 =

n∑
i=1

f ′Jπα

i PJπ
MK |�i〉

+
n∑

i=1

∑
κ

f ′Jπα

iκ PJπ
MK A†

iκ |�i〉. (18)

Here, the A†
iκ operators are the 1p-1h operators corresponding

to |�i〉. The coefficients f ′Jπα
i′(κ ′ ) and the corresponding energy

E ′Jπ
α can be obtained by solving the following expanded HW

equations:

n∑
i′=1

〈�i|
(
Ĥ − E ′Jπ

α

)
PJπ

KK |�i′ 〉 f ′Jπα

i′

+
n∑

i′=1

∑
κ ′

〈�i|
(
Ĥ − E ′Jπ

α

)
PJπ

KK A†
i′κ ′ |�i′ 〉 f ′Jπα

i′κ ′ = 0,

n∑
i′=1

〈�i|AiκPJπ
KK

(
Ĥ − E ′Jπ

α

)|�i′ 〉 f ′Jπα

i′

+
n∑

i′=1

∑
κ ′

〈�i|Aiκ
(
Ĥ − E ′Jπ

α

)
PJπ

KK A†
i′κ ′ |�i′ 〉 f ′Jπα

i′κ ′ = 0.

(19)

The coefficients, f ′Jπα
i′(κ ′ ), should also satisfy the normaliza-

tion condition, so that 〈� ′
JπMα (K )|� ′

JπMα (K )〉 = 1. Again, we
assume E ′Jπ

1 � E ′Jπ
2 � · · · � E ′Jπ

m . Notice that all the matrix
elements appearing in Eq. (19) are already available in our
VAP calculations, because they are originally needed in the
evaluation of the gradient and the Hessian matrix of Sm. Thus
the expanded Eq. (19) can be immediately constructed as long
as the Hessian matrix is obtained. In this sense the 1p-1h
mixing is a natural byproduct of our VAP method.

One may wonder if the dimension of Eq. (19) could be
too large to be solved. Actually, the number of all the 1p-1h
states is exactly the number of all diκ parameters in Eq. (17).
For each selected SD, the number of the corresponding 1p-1h
states can be simply evaluated by using the following formula
presented in Ref. [12]:

DVAP = N (MN − N ) + Z (MZ − Z ), (20)

where N , Z are the numbers of valence neutrons and valence
protons, respectively. MN and MZ are the dimensions of the
model spaces for neutron and proton, respectively. Since the
diκ parameters are complex numbers, the total number of
the real variational parameters for n selected SDs should be
2nDVAP, which is also the dimension of the real Hessian ma-
trix which must be diagonalized in our VAP calculation. Then
the dimension of the corresponding Eq. (19) is n(1 + DVAP),
which is about half of that of the Hessian matrix. Therefore,
as long as the Hessian matrix can be diagonalized, the corre-
sponding Eq. (19) can be solved without further difficulty.

III. 1p-1h MIXING WITH THE YRAST STATES

Let us first study the simplest case of Eq. (11). The energy
corresponding to Eq. (11) can be expressed as

E = 〈�|ĤPJπ
KK |�〉

〈�|PJπ
KK |�〉 . (21)

Clearly, E is a functional of |�〉 governed by the complex
dκ parameters through Eq. (4). Here, dκ can be explicitly
written as

dκ = xκ + iyκ , (22)

where, xκ and yκ are real. We assume E reaches a minimum
at d = 0, then the gradient of E at this point should be zero.
Namely,

∂E

∂xκ

∣∣∣∣ �d=0

= {〈�|Aκ (Ĥ − E )PJπ
KK |�〉

+ 〈�|(Ĥ − E )PJπ
KK A†

κ |�〉} 1〈
�|PJπ

KK |�〉

= 0, (23)

∂E

∂yκ

∣∣∣∣ �d=0

= i
{−〈�|Aκ (Ĥ − E )PJπ

KK |�〉

+ 〈�|(Ĥ − E )PJπ
KK A†

κ |�〉} 1〈
�|PJπ

KK |�〉

= 0. (24)
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This immediately leads to the following equation:

〈�|(Ĥ − E )PJπ
KK A†

κ |�〉 = 0. (25)

On the other side, it is known that in the Hartree-Fock
theory, if the HF energy

EHF = 〈�|Ĥ |�〉
〈�|�〉 (26)

reaches a minimum, then one can easily see that no 1p-1h state
on top of |�〉 can be mixed into |�〉, which means

〈�|ĤA†
κ |�〉 = 0. (27)

This inspired us that similar conclusion in the present VAP
could be true. But here the projection operator is involved.
The projected 1p-1h state

|�κ〉 ≡ PJπ
MK A†

κ |�〉 (28)

is no longer orthogonal to |�JπM (K )〉. One can do the
Gram-Schmid orthogonalization to get a new state

|� ′
κ〉 = |�κ〉 − 〈�JπM (K )|�κ〉|�JπM (K )〉, (29)

so that

〈�JπM (K )|� ′
κ〉 = 0. (30)

If there is no mixing of the 1p-1h projected state |�κ〉 with
|�JπM (K )〉, then one should expect that

〈�JπM (K )|Ĥ |� ′
κ〉 = 0. (31)

It is easy to prove that Eq. (31) is exactly equivalent to
Eq. (25). This clearly tells us that the property of no 1p-1h
mixing at an energy minimum can be generalized from HF
theory to VAP.

When more reference SDs are involved, as shown in
Eq. (12), the situation becomes more complicated, since the
included SDs |�i〉 and |�i′ 〉 are independent, and the associ-
ated matrix elements 〈�i|(Ĥ − E ′Jπ

α )PJπ
KK A†

i′κ ′ |�i′ 〉 in Eq. (19)
could be arbitrary. One may expect the 1p-1h mixing may
have some effect. To check such an effect, the EJπ

1 energy
and its corresponding E ′Jπ

1 were calculated with n > 1. The
converged EJπ

1 energy and its corresponding E ′Jπ
1 as functions

of n are shown in Fig. 2. For the 8+ state in Fig. 2(a), the
calculations are performed with K = 0 and K = 5, respec-
tively, to show the K independence. It is clearly seen that the
EJπ

1 energies with K = 0 and K = 5 almost coincide and they
become closer and closer to the corresponding shell model en-
ergy eJπ

1 . However, it is striking that all the energy differences
δEJπ

1 are still numerically zero for all calculated n numbers.
This implies that there may exist a theorem for this interesting
phenomenon. According to the above calculations, it seems
that the situation with EJπ

1 = E ′Jπ
1 only appears after the VAP

iteration converges, while the gradient of the energy becomes
zero.

Let us try to determine this theorem. For convenience, we
rewrite the VAP wave function of Eq. (12) for the yrast state
in a simpler form,

|�JπM1(K )〉 =
n∑

i=1

fiP
Jπ
MK |�i〉. (32)

The corresponding energy, E , can be written as

E =
∑n

ii′=1 f ∗
i fi′ 〈�i|ĤPJπ

KK |�i′ 〉∑n
ii′=1 f ∗

i fi′ 〈�i|PJπ
KK |�i′ 〉 . (33)

Clearly, E is a function of all involved variational parameters
d jκ , which are complex numbers,

d jκ = x jκ + iy jκ , (34)

where x jκ and y jκ are real numbers. Notice that the d j matrix
only determines the jth reference SD state |� j〉. Similarly to
the deductions in Ref. [12], the partial derivatives ∂E

∂x jκ
and ∂E

∂y jκ

at �d = 0 can be expressed as

∂E

∂x jκ

∣∣∣∣ �d=0

=
n∑

i=1

f ∗
j 〈� j |Ajκ (Ĥ − E )PJπ

KK |�i〉 fi

+
n∑

i=1

f ∗
i 〈�i|(Ĥ − E )PJπ

KK A†
jκ |� j〉 f j, (35)

∂E

∂y jκ

∣∣∣∣ �d=0

= −i
n∑

i=1

f ∗
j 〈� j |Ajκ (Ĥ − E )PJπ

KK |�i〉 fi

+ i
n∑

i=1

f ∗
i 〈�i|(Ĥ − E )PJπ

KK A†
jκ |� j〉 f j . (36)

Assuming the energy E has reached a minimum at �d = 0,
the partial derivatives in Eqs. (35) and (36) should be zero.
Then one can get

n∑
i=1

f ∗
i 〈�i|(Ĥ − E )PJπ

KK A†
jκ |� j〉 = 0 (37)

and its Hermitian conjugate

n∑
i=1

〈� j |Ajκ (Ĥ − E )PJπ
KK |�i〉 fi = 0. (38)

Now, let us come back to the 1p-1h mixing. A 1p-1h
projected state,

|� jκ〉 = PJπ
KK A†

jκ |� j〉, (39)

may not be orthogonal to the converged VAP wave function
|�JπM (K )〉 in Eq. (32). So one may need to get a new state by
performing the Gram-Schmid orthogonalization,

|� ′
jκ〉 = |� jκ〉 − 〈�JπM1(K )|� jκ〉|�JπM1(K )〉, (40)

so that

〈�JπM1(K )|� ′
jκ〉 = 0. (41)

If there is no mixing between |� ′
jκ〉 and |�JπM1(K )〉, then

one should have

〈�JπM1(K )|Ĥ |� ′
jκ〉 = 0. (42)
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Therefore, we have

〈�JπM1(K )|(Ĥ − E )|� jκ〉 = 0, (43)

which is exactly the same as the Eq. (37). Thus, we have
analytically proved that 1p-1h mixing for the yrast state does
not improve the converged VAP wave function even with more
reference SDs.

IV. 1p-1h MIXING WITH NON-YRAST STATES

As a further exploration, let us study the 1p-1h mixing with
the non-yrast states. Here, the sum of the lowest energies,
Sm (m > 1), with the same quantum numbers is minimized,
as proposed in Ref. [13]. When the gradient of Sm becomes
zero, the VAP calculation converges. However, the gradient
of Sm being zero does not guarantee that the gradients of its
members, EJπ

α , are zero. Thus, it is expected that the 1p-1h
mixing might play some role in lowering the VAP energies
and improving the VAP wave functions in this case.

To check if such 1p-1h mixing is valid or not, some
f p shell nuclei are calculated using the GXPF1A interaction
[22]. First of all, the sum of the lowest five Jπ = 9+ energies
in 48Cr and the sum of the lowest five Jπ = 15

2
−

energies in
49Cr are minimized, respectively. The trial wave function in
Eq. (11) is taken. The K values are chosen to be 0 for 48Cr and
1/2 for 49Cr. For the number of selected reference SDs, we
chose n = 5, 10, 15, and 20, respectively, so that one can see
the changes of EJπ

α and E ′Jπ
α as functions of n. The calculated

results are shown in Fig. 3. As expected, all the EJπ
α energies

gradually drop toward the corresponding shell model ones as
n increases. However, different from the results in Fig. 2, all
the calculated E ′Jπ

α energies are lower than the corresponding
EJπ

α values. This means the 1p-1h mixing takes effect and
indeed improves the VAP wave functions due to the nonzero
gradients of the calculated VAP energies, EJπ

α .
The energy differences, EJπ

α − eJπ
α and E ′Jπ

α − eJπ
α as func-

tions of n are plotted in Fig. 4. Obviously, the values of E ′Jπ
α −

eJπ
α are considerably smaller than the ones of EJπ

α − eJπ
α . All

the ratios of E ′Jπ
α − eJπ

α to EJπ
α − eJπ

α are blow 0.8. Actually,
most of them are less than 0.6. This clearly shows that the
1p-1h mixing can play an important role in improving a group
of nuclear wave functions with the same Jπ that are varied
simultaneously.

Moreover, for all calculated states in Fig. 3, our results
show that all the energies with 1p-1h mixing, E ′Jπ

α , at n = 10
are even lower than the VAP energies, EJπ

α , at n = 20. We
should mention that the computational time for the VAP cal-
culation with n = 20 is about three times longer than the one
with n = 10. Since all the matrix elements in Eq. (19) have
already been evaluated during the VAP calculation, the only
time spent on the 1p-1h mixing is solving the expanded HW
equations of Eq. (19). Thus the 1p-1h mixing may not only
improve the approximation of the VAP wave functions but
also substantially save computational time. However, the price
is that the number of included projected basis states is much
larger.

Finally, the VAP plus 1p-1h mixing calculations for the
states with spin ranging from J = 0 to 12 in 56Ni are

FIG. 3. The converged VAP energies EJπ
α (black circles) and

the corresponding E ′Jπ
α ones (red bars) calculated with different

n numbers for the lowest five states with (a) Jπ = 9+ in 48Cr and
(b) Jπ = 15

2

−
in 49Cr. The SM energies eJπ

α are shown as black bars.
The GXPF1A interaction is adopted.
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α (red dots), with different n numbers. The values of EJπ
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α are shown in Fig. 3.
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FIG. 5. The lowest five VAP energies, EJπ
α (blue circles) and the

corresponding E ′Jπ
α (red bars) in 56Ni with Jπ running from 0+ to

12+. The lowest five VAP energies are obtained by minimizing the
sum of them at each Jπ . The SM energies (black dots) are shown for
comparison.

performed. For each spin, we still minimize the sum of the
lowest five energies with n = 10. The GXPF1A interaction is
again adopted. The calculated results are shown in Fig. 5. It
is seen that, with only ten projected SDs for each spin, the
VAP method is still able to reproduce the schematic pattern
of the low-lying energy levels of the full shell model. The
1p-1h mixing again makes more or less improvements for the
calculated states. One may see that, for some states far from
the yrast line, such improvements seem more apparent.

V. SUMMARY AND OUTLOOK

Particle-hole mixing is a natural way of improving the
quality of the nuclear wave functions, as has been adopted
in the random-phase approximation (RPA) [19]. However,
the 2p-2h mixing involves too large matrices, which is not
our present interest. In the present work, we only consider
the possible 1p-1h mixing with the VAP wave functions. It
is well known that in the Hartree-Fock method, the 1p-1h
excited states cannot be mixed into the converged HF vacuum
state. Very similarly, in our VAP calculation, when only the
lowest energy with a given spin and parity is minimized,
we recognized that the 1p-1h projected states on top of the
projected reference SDs cannot be mixed into the converged
VAP wave function. This interesting phenomenon has been
analytically proved in the present work and can be considered
as a natural generalization from the Hartree-Fock method. The
common point is that, for both HF and VAP, the gradients of
their converged energies are zero. However, after one mini-
mizes the sum of a group of lowest energies with the same
quantum numbers in VAP, the later 1p-1h mixing may indeed
give energies lower than the corresponding VAP ones. This
is because the final gradient of each energy is not guaranteed
to be zero. With these results, one can easily imagine such
1p-1h mixing is indeed somewhat limited, especially for those
states whose energy gradients are relatively small. Of course,
one may expect that the approximation of the present work
could be further improved by including a number of the most

important 2p-2h projected basis states. Such work will be
done in the future.

On the other hand, it is well known that the pairing cor-
relation is important in the nuclear system. Such correlation
can be incorporated by introducing the HFB transformation.
However, in the present method, we adopt the projected HF
SDs rather than the projected HFB vacuum states in order
to save the computational cost. Nevertheless, it is interesting
that the obtained VAP energies in the present examples are
still very close to the exact shell model ones even without the
explicit HFB transformation. This might because the adopted
model space is rather small. However, in large model spaces,
as the number of the projected states increases, the energy
convergence seems very slow even with the variational prin-
ciple adopted [10]. This could make the approximation of our
method not as good as the present examples. One may think
the mixing of the 1p-1h projected states is not enough. In
this situation, we consider three possible ways to improve the
approximation of the VAP wave functions. The first way is
further considering the mixing of the most important np − nh
projected SDs on top of the VAP wave functions, which is
very similar to our previous work [8]. The second way is
to add more reference SDs [i.e., n in Eq. (12) is large] into
the VAP wave function; this certainly requires more compu-
tational cost. The third way is directly taking the projected
HFB vacuum states by using, e.g., the VAMPIR approach [9]
or the quasiparticle vacua shell model (QVSM) [10], but this
also increases the computational time at least by two orders
of magnitude due to the extra projections for the numbers of
both protons and neutrons. It would be interesting to compare
these different methods in heavy deformed nuclei if all such
calculations can be implemented in large model spaces in the
future.
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APPENDIX: BASIC MATRIX ELEMENTS FOR
THE 1p-1h MIXING

Matrix elements necessary for the 1p-1h mixing are pre-
sented as a complement of those provided in Ref. [23], so
that all basic matrix elements required in VAP calculations
are available. Following the notations in Ref. [23], let us
assume |�a〉 and |�b〉 as Slater determinants of an N-particle
system, i.e.,

|�a〉 = â†
1 · · · â†

N |〉, (A1)

|�b〉 = b̂†
1 · · · b̂†

N |〉. (A2)

According to the generalized Wick theorem, the overlap be-
tween |�a〉 and |�b〉 can be written as,

〈�a|�b〉 = 〈|âN · · · â1b̂†
1 · · · b̂†

N |〉 = det(R), (A3)
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where R is an N × N matrix with entries

Ri j = 〈|âib̂
†
j |〉. (A4)

In VAP calculations, we need to calculate the following
explicit matrix elements for the energy, the corresponding
gradient, and Hessian matrix:

〈�a|Ô|�b〉, 〈�a|Ôb̂μb̂†
ν |�b〉, 〈�a|âν â†

μÔ|�b〉,
〈�a|âν â†

μÔb̂μ′ b̂†
ν ′ |�b〉, 〈�a|Ôb̂μb̂†

ν b̂μ′ b̂†
ν ′ |�b〉,

〈�a|âν ′ â†
μ′ âν â†

μÔ|�b〉, (A5)

where 1 � μ(μ′) � N and N + 1 � ν(ν ′) � M. Here, M
is the dimension of the model space. Ô refers to a one-
body operator T̂ or two-body operator V̂ , which can be
written as

T̂ =
∑
αγ

Tαγ ĉ†
α ĉγ , (A6)

V̂ = 1

4

∑
αβδγ

Vαβγ δ ĉ†
α ĉ†

β ĉδ ĉγ . (A7)

In Ref. [23], we presented the formulas for the following
matrix elements:

〈�a|Ô|�b〉, 〈�a|âν â†
μÔ|�b〉,

〈�a|âν ′ â†
μ′ âν â†

μÔ|�b〉,
which are necessary for the construction of the energy vari-
ance. Then 〈�a|Ôb̂μb̂†

ν |�b〉 and 〈�a|Ôb̂μb̂†
ν b̂μ′ b̂†

ν ′ |̂�b〉 can be
obtained through the following relations:

〈�a|Ôb̂μb̂†
ν |�b〉 = 〈�b|b̂ν b̂†

μÔ|�a〉∗, (A8)

〈�a|Ôb̂μb̂†
ν b̂μ′ b̂†

ν ′ |̂�b〉 = 〈�b|b̂ν ′ b̂†
μ′ b̂ν b̂†

μÔ|�a〉∗.
(A9)

Therefore the only left matrix elements in Eq. (A5) are of
the type 〈�a|âν â†

μÔb̂μ′ b̂†
ν ′ |�b〉 which will be reused in the

1p-1h mixing in addition to the 〈�a|Ô|�b〉, 〈�a|Ôb̂μb̂†
ν |�b〉,

and 〈�a|âν â†
μÔ|�b〉 ones. Thus, we only present the formulas

for the 〈�a|âν â†
μÔb̂μ′ b̂†

ν ′ |�b〉 matrix elements. Based on the

formulation in Ref. [23], one can get

〈�a|âν â†
μT̂ b̂μ′ b̂†

ν ′ |�b〉 = Tνν ′R{μ|μ′} + Rνν ′T {μ|μ′}
−

∑
i, j

(Tν jRiν ′ + Rν jTiν ′ )R{iμ| jμ′}

−
∑
i, j

Rν jRiν ′T {iμ| jμ′}, (A10)

where R{i| j}, R{i j|kl} and R{i jk|lmn} can be efficiently cal-
culated using the formulas in Ref. [23]. Ti j is defined by

Ti j = 〈|âiT̂ b̂†
j |〉 =

∑
αγ

Tαγ S+
iαS−

γ j, (A11)

where S+
iα = 〈|âiĉ†

α|〉 and S−
γ j = 〈|ĉγ b̂†

j |〉. T {i| j} and T {i j|kl}
can be written as

T {i| j} =
∑
i′ j′

Ti′ j′R{ii′| j j′}, (A12)

T {i j|kl} =
∑
i′ j′

Ti′ j′R{i ji′|kl j′}. (A13)

For the two-body operator, we have

〈�a|âν â†
μV̂ b̂μ′ b̂†

ν ′ |�b〉
= Rνν ′V {μ|μ′} −

∑
ik

RνkRiν ′V {iμ|kμ′}

+
∑

ik

Viνkν ′R{iμ|kμ′}

−
∑
i jkl

[RνlVi jkν ′ + Rjν ′Viνkl ]R{i jμ|klμ′}, (A14)

with

Vi jkl =
∑
αβγ δ

Vαβγ δS+
iαS+

jβS−
γ kS−

δl , (A15)

V {i|l} =
∑

j<k,m<n

V jkmnR{i jk|lmn}, (A16)

V {i j|lm} =
∑

i′< j′,l ′<m′
Vi′ j′l ′m′R{i ji′ j′|lml ′m′}. (A17)
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