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Quasiparticle random-phase approximation calculations for M1 transitions with the noniterative
finite-amplitude method and application to neutron radiative capture cross sections
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We derive the equations of quasiparticle random-phase approximation (QRPA) based on the finite amplitude
method with the Hartree-Fock+Bardeen–Cooper–Schrieffer (HF+BCS) single-particle states, and calculate the
magnetic dipole (M1) transition for deformed gadolinium isotopes. Our QRPA calculation shows both large spin-
flip transitions in the 5 to 10 MeV excitation energy and the low energy orbital transition that would correspond
to the M1 scissors mode observed in nuclear experiments. Then, we calculate neutron capture reactions based
on the statistical Hauser-Feshbach theory with the photoabsorption cross sections of even-even nuclei given
by QRPA. We find that the capture cross section is enhanced due to the contribution from the low energy M1
transition although the calculated capture cross section still underestimates the experimental data. This issue in
the calculated capture cross section could be improved by uncertainties of the low energy E1 transition neglected
in our QRPA calculation.
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I. INTRODUCTION

Neutron-capture reactions are essential for the nucleosyn-
thesis of heavy elements, and their cross section data are
needed to calculate nuclear abundances in astrophysical sites
[1]. It is theoretically predicted that many unstable nuclei
are produced through the rapid neutron capture process (r
process) [2] before β decays in core-collapse supernovae and
neutron star mergers, which contributes to the galactic chem-
ical evolution of about half of heavy elements [3]. The (n, γ )
reaction is also important for neutrino-induced nucleosynthe-
sis inside core-collapse supernovae such as the νp process
[4–6] and the ν process [7–9]. The experimental data for the
capture reactions are mainly limited to stable nuclei, so a
reliable theoretical calculation is required to study the origin
of elements.

In the neutron capture reaction, a compound nucleus is
formed after the interaction of an incoming neutron with the
target nucleus and finally decays by emitting several γ rays.
The statistical Hauser-Feshbach theory [10] can estimate the
decay rates of such a compound nucleus, and calculate neu-
tron capture cross sections with transmission coefficients for
all possible competing channels. The transmission coefficient
of the outgoing γ ray is calculated with γ -ray strength func-
tions [11] of electric and magnetic giant resonances under the
Brink-Axel hypothesis [12]. Instead of a standard Lorentzian
using the giant dipole resonance (GDR) parameters, a gener-
alized Lorentzian [11,13] is proposed empirically and widely
used to calculate the γ -ray strength function of the electric
dipole (E1) transition. The magnetic dipole (M1) transition
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also has non-negligible impact on the capture cross section. In
particular, the M1 scissors mode, which is often observed in
a few MeV energy region for strongly deformed nuclei, can
enhance the capture cross section [14–16].

The M1 scissors mode is induced by the collective motion
of protons and neutrons inside a deformed nucleus associated
with the orbital angular momentum operator, and it was first
observed in an electron scattering experiment [17]. Since then,
the M1 scissors mode has been found in various rare-earth
nuclei and actinides [18].

Calculating capture reactions without any phenomenolog-
ical parameters as used in the conventional γ -ray strength
function is possible when we employ the strength of the M1
transition obtained in the density functional theory (DFT)
[19]. DFT interprets the giant resonance as coherent superpo-
sitions of 1p-1h excitations in a nuclear many-body system,
and the transition strength of such a collective excitation is
microscopically calculated with random-phase approximation
(RPA) [19]. In order to introduce pairing correlations, es-
sential for description of open-shell nuclei, RPA must be
extended to quasiparticle RPA (QRPA) [20]. Various collec-
tive excitations have been calculated in (Q)RPA [21]. Fully
self-consistent (Q)RPA approaches with the Skyrme forces
have been applied to the E1 transition [22–25] as well as
the M1 transition [26–31]. Although the (Q)RPA for the E1
transition well reproduces the resonance energy of GDR in
heavy nuclei, it is often reported that the calculated spin-flip
M1 giant resonance unsatisfactory agrees with experimental
data and depends on parametrizations of Skyrme force [27].
The spin densities in the Skyrme force increase the resonance
peak of the spin-flip transition [26].

The finite amplitude method (FAM) [32,33] is an effi-
cient way to solve the fully self-consistent (Q)RPA equation
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when applied to various multipole collective excitations
[23–25,34–36]. The FAM approach was extended to the rela-
tivistic framework [37,38], the proton-neutron FAM (pnFAM)
for weak interactions [39–42], and the fission calculation [43].
The framework of FAM-RPA is used to derive the RPA ma-
trices for Skyrme functionals by the explicit linearization of
residual interactions [25]. The technique of such noniterative
FAM-RPA can be used to derive QRPA matrices based on
the framework of FAM-QRPA that enables the calculation of
the M1 transition for open-shell and deformed nuclei without
any iterative procedure to obtain forward and backward am-
plitudes in other conventional FAM-QRPA.

In this paper, we derive the QRPA matrices based on
noniterative FAM-QRPA and calculate the M1 transition for
deformed gadolinium isotopes. This work is an extension of
our noniterative FAM-RPA [25] to the QRPA framework,
while it neglects the pairing fluctuation. The microscopically
calculated photoabsorption cross sections for the E1 and M1
transitions with our QRPA approach are then fed into the
Hauser-Feshbach calculations as the γ -ray transmission co-
efficients to obtain the neutron capture cross sections. Then,
we compare the calculated result with available experimental
data.

II. THEORY

A. Finite amplitude method (FAM)

We briefly review the general framework of the finite am-
plitude method in QRPA. In FAM-QRPA, the forward and
backward amplitudes of a frequency ω are calculated through
[24,33]

(Eμ + Eν − ω)Xμν (ω) + δH20
μν (ω) = −F 20

μν (ω), (1)

(Eμ + Eν + ω)Yμν (ω) + δH02
μν (ω) = −F 02

μν (ω), (2)

where X (Y ) is the forward (backward) amplitude, Eμ is an
energy eigenvalue of a Bogoliubov quasiparticle state μ,
δH20(02)

μν (ω) is the two-quasiparticle component of residual in-
teractions, and F 20(02)

μν (ω) is the two-quasiparticle component
of the external field. For a simple notation, hereafter, we drop
the index ω in matrices except when necessary. The resid-
ual interaction is calculated with the forward and backward
amplitudes, and these amplitudes are determined by solving
Eqs. (1) and (2) iteratively at each ω. The obtained amplitudes
are used to calculate the transition strength [33]

dB(ω; F )

dω
= − 1

2π
Im

∑
μν

(
F 20∗

μν Xμν + F 02∗
μν Yμν

)
, (3)

where the imaginary part of ω corresponds to the Lorentzian
width characterizing the width of the transition strength. Here-
after, we assume that the external field F does not change the
isospin of nucleons.

B. QRPA equations

Instead of solving Eqs. (1) and (2) by an iterative pro-
cedure, we derive the QRPA equation with the well-known

QRPA matrices A and B from the explicit linearization of
the residual interaction in Eqs. (1) and (2) as in FAM-
RPA [25]. We use the quasiparticle states of Hamiltonian
in the Hartree-Fock+Bardeen–Cooper–Schrieffer (HF+BCS)
calculation instead of the Hartree-Fock-Bogoliubov (HFB)
calculation. In HF+BCS, the HFB matrices, such as U and
V , only allow the mixing between a single-particle state k,
and the corresponding time-reversed state k̄. These matrices
can be described in the coordinate space �r, the spin space σ ,
and the isospin q(= n, p) [19,20]:

Uμ(�r, σ, q) = uμφμ(�r, σ, q), (4)

Vμ(�r, σ, q) = −vμφ∗
μ̄(�r, σ, q), (5)

where uμ � 0 and vμ � 0 are the BCS parameters, and
φμ(�r, σ, q) ≡ φ

q
μ is the single-particle state of the HF Hamil-

tonian h0 satisfying h0φ
q
μ = εμφ

q
μ. To derive Eq. (5), we use

properties of the time-reversal symmetry of the HF single-
particle states, φ

q
μ̄ = T φ

q
μ, and φ

q
¯̄μ = T 2φ

q
μ = −φ

q
μ, where T

is the time-reversal operator [44]. In the case of a Hermitian
one-body external field F [19,33], the quasiparticle compo-
nents in Eqs. (1) and (2) are given by

F 20
μν = (U † f V ∗ − V † f T U ∗)μν

= −uμvν f q
μν̄ + uνvμ f q

νμ̄

= −ζ τ
μν f q

μν̄, (6)

F 02
μν = (U T f T V − V T f U )μν

= −uμvν f q
ν̄μ + uνvμ f q

μ̄ν

= −ζ τ
μν f q

ν̄μ, (7)

where ζ τ
μν = uμvν + τuνvμ with τ = ±1 and f q

μν =∫
d3rφq∗

μ Fφ
q
ν . From the second lines to the third lines in

the above equations, we assume the time-reversal invariance
for the external field, T FT −1 = τF , and use a relation,
f q
νμ̄ = −τ f q

μν̄ [20,45].
We ignore the contributions from the residual interac-

tions of the BCS pairing gap δ± and the abnormal density
δκ± [33]. Then, as in Eqs. (6) and (7), quasiparticle com-
ponents of the residual interaction in Eqs. (1) and (2) are
given by

δH20
μν = −ζ+

μνδheven
μν̄ − ζ−

μνδhodd
μν̄ , (8)

δH02
μν = −ζ+

μνδheven
ν̄μ − ζ−

μνδhodd
ν̄μ , (9)

where δheven(odd) is the residual interaction composed of
time-even (odd) fields composed of the HF+BCS single-
particle states. In FAM-QRPA, these residual interactions
are calculated with a small parameter η following the same
procedure to obtain δh(ω) and δρ(ω) in Ref. [33]. In the
limit of η → 0, such calculated residual interactions can be
expressed as the linear combination of X and Y as done in
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FAM-RPA [25]. Then, the QRPA equation is derived from Eqs. (1) and (2):(
A − ω B

B∗ A∗ + ω

)(
X q′

αβ

Y q′
αβ

)
= −ζ τ

μν

(
f q
μν

f q
νμ

)
, (10)

Aq,q′
μν,αβ = (Eμ+Eν )δμαδνβ+ζ+

μνζ
+
αβ

∫
d3r φq∗

μ

∂heven
q

∂
(
ηζ+

αβX q′
αβ

)
∣∣∣∣∣
η=0

φq
ν + ζ−

μνζ
−
αβ

∫
d3r φq∗

μ

∂hodd
q

∂
(
ηζ−

αβX q′
αβ

)
∣∣∣∣∣
η=0

φq
ν ,

(11)

Bq,q′
μν,αβ = ζ+

μνζ
+
αβ

∫
d3r φq∗

μ

∂heven
q

∂
(
ηζ+

αβY q′
αβ

)
∣∣∣∣∣
η=0

φq
ν + ζ−

μνζ
−
αβ

∫
d3r φq∗

μ

∂hodd
q

∂
(
ηζ−

αβY q′
αβ

)
∣∣∣∣∣
η=0

φq
ν , (12)

Eμ =
√

(εμ − λ)2 + 2
μ, (13)

where hq is the time-dependent Hartree-Fock (TDHF) Hamil-
tonian of the nucleon q, and heven(odd)

q is the time-even(odd)
part of hq, λ is the Fermi energy, and μ is the pairing
gap of single-particle state μ, and the size of the configu-
ration space is restricted to μ � ν, α � β. When we derive
Eqs. (10)–(13), we assume the time-reversal symmetry of the
HF Hamiltonian, T h0T −1 = h0, and change the definition of
the amplitudes in Eqs. (1) and (2) as

Xμν → −Xμν̄, Yμν → −Yμν̄, (14)

which facilitates to extend an existing RPA code to the full
QRPA calculation. The QRPA equation of Eq. (10) reproduces
the RPA equation in Ref. [25] when we impose εμ(α) > λ >

εν(β ) and uμ(α) = vν(β ) = 1, which results in ζ±
μν = ζ±

αβ = 1 in
Eqs. (10)–(12) and μ = 0 in Eq. (13).

The integrands in Eqs. (11) and (12) are calculated with
the Skyrme forces composed of the HF+BCS single-particle
states. For example, the contribution from the effective mass
m∗

q [46] to the integral term proportional to ζ+
μνζ

+
αβ in Eq. (11)

is given by∫
d3r φq∗

μ ∇ ·
(

∂

∂
(
ηζ+

αβX q′
αβ

) −h̄2

2m∗
q

)
η=0

∇φq
ν

=
∫

d3r

{
∂ (b1ρn + b1ρp − b′

1ρq)

∂
(
ηζ+

αβX q′
αβ

)
}

η=0

∇φq∗
μ · ∇φq

ν

= (b1 − δqq′b′
1)

∫
d3r φ

q′∗
β φq′

α ∇φq∗
μ · ∇φq

ν , (15)

ρq =
∑
α∈q

v2
α

∣∣φq
α

∣∣2

+η
∑

αβ ∈ q
α � β

ζ+
αβ

(
φ

q∗
β φq

αX q
αβ + φq∗

α φ
q
βY q

αβ

) + O(η2), (16)

where b1 and b′
1 are coefficients in the Skyrme force [46], and

ρq is the density of nucleon q. The symmetrical properties
such as X q

αβ = X q
β̄ᾱ

, Y q
αβ = Y q

β̄ᾱ
, and φ

q∗
ᾱ φ

q
β̄

= φ
q∗
β φ

q
α are used

to derive the second line of Eq. (16). As implied in Eq. (15),
integral terms in the QRPA matrices can be calculated by
multiplying ζ±

μνζ
±
αβ with the residual interaction derived in

the same way as RPA calculation (e.g., Eqs. (32) and (39)
in Ref. [25]). The ρq in Eq. (16) contains a factor ζ+

αβ in
the linear term of η and such a property is also confirmed
in other time-even fields such as the spin-orbit density �Jq,
and the kinetic energy density τq [46]. On the other hand,
the time-odd fields such as the current density �jq and the
spin density �sq [46] include a factor ζ−

αβ in O(η) [e.g., see
Eq. (A2)]. ζ+

αβ and ζ−
αβ in Eqs. (11) and (12) originated from

the linear terms of η in time-even and time-odd fields. Al-
though our approach is applicable only if the time-reversal
symmetry of the HF Hamiltonian is satisfied, we can cal-
culate the QRPA matrices in Eqs. (11) and (12) without
any uncertainty of small parameter η as used in the conven-
tional matrix-FAM (m-FAM) [47]. In our explicit linearization
with η → 0, we can apparently show that the matrix A (B)
is Hermitian (symmetric) [25], which are general proper-
ties of (Q)RPA matrices [19] and useful to test numerical
calculations.

The frequency ω in Eq. (10) is decomposed into real and
imaginary parts: ω = E + iγ /2, where E is the incoming
photon energy and γ is the Lorentzian width. The signs of
τ in Eqs. (6) and (7) are negative (positive) for the M1 (E1)
operator due to the time-odd (even) operator.

The forward and backward amplitudes are used to calculate
the transition strength. In our QRPA, the transition strength of
Eq. (3) is described by

dB(ω; F )

dω
= − 1

π
Im

∑
μν∈q
μ�ν

ζ τ
μν

(
f q∗
μνX q

μν + f q∗
νμY q

μν

)
, (17)

where we use Eqs. (6), (7), and (14). Then, the photoabsorp-
tion cross section of the M1 transition is given by [25]

σabs(E ; M1) = 16π3

9h̄c
E

∑
K=0,±1

dB(ω; MK )

dω
, (18)

where MK is the M1 operator written as

MK = μN

A∑
i=1

(
g(i)

s
�σi

2
+ g(i)

l
�li
)

· ∇(riY1K (θi, ϕi )), (19)

where the (ri, θi, ϕi ) is the spherical coordinate of nu-
cleon i, and g(i)

l = 0(1) and g(i)
s = −3.826(5.586) for
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neutrons (protons). The photoabsorption cross section of
the E1 transition is calculated in the same way as
Eq. (18) with the E1 operator DK (K = 0,±1) [25] instead
of MK .

C. Elimination of spurious modes

The (Q)RPA theory has spurious modes at zero energy
(ω = 0) corresponding to the collective motion of the whole
nucleus associated with the violation of symmetries such as
translational and rotational symmetries in the intrinsic Hamil-
tonian [19]. In (Q)RPA calculations, such a spurious mode
usually appears at low energy and couples with the physical
states due to the discretized coordinate space and the limited
size of the configuration space [28,32,48]. The admixture
of the spurious mode can be eliminated with the Hermitian
broken-symmetry operator P and the conjugate operator Q
satisfying [Q, P] = ih̄. In order to remove the spurious mode,
we renormalize the Hermitian external field F with a descrip-
tion similar to Ref. [28]:

F̃ = F − i

h̄
〈0| [P, F ] |0〉 Q + i

h̄
〈0| [Q, F ] |0〉 P, (20)

Q20
μν = −(Q0)q

μν̄, P20
μν = −(P0)q

μν̄, (21)(
A B
B∗ A∗

)(
Q0

−Q∗
0

)
= − ih̄

M0

(
P0

P∗
0

)
, (22)

M0 = 2{Re(P0)(A + B)−1Re(P0)

+ Im(P0)(A − B)−1Im(P0)}, (23)

where M0 is the inertia for the spurious mode, and |0〉 is the
QRPA vacuum approximated by the HF+BCS ground state
within the quasiboson approximation. For the M1 transition,
the spurious mode appears at low energy due to the violation
of the rotational symmetry for axially deformed nuclei and the
spurious mode can be eliminated with the total angular mo-
mentum operator, P = ∑A

i=1(Jj )i( j = x, y) in Eqs. (20)–(23).
For the E1 transition, the translation of the center-of-mass
induces the spurious modes, and Eqs. (20)–(23) are used
to eliminate them with the total momentum operator, P =∑A

i=1(−ih̄)(∇ j )i( j = x, y, z). We remark that such an elim-
ination for the E1 transition is equivalent to imposing an
effective charge of a neutron, e(n)

eff = −eZ/A, and that of a
proton, e(p)

eff = eN/A on the E1 operator [28]. We calculate the
E1 transition with these effective charges on the E1 operator
as in Ref. [25].

D. Microscopic calculations for neutron capture

We briefly review the calculation of neutron capture
reactions following Ref. [15]. The photoabsorption cross sec-
tions for E1 and M1 transitions are used to calculate the
neutron capture cross section based on the statistical Hauser-
Feshbach model with the width fluctuation correction. In this
statistical model, the formula for the radiative capture process,
where a neutron and lumped γ -ray channels are involved, is

written as

σnγ (En) = π

k2
n

∑
J�

gc

T J�
n T J�

γ

T J�
n + T J�

γ

W J�
nγ , (24)

where En is the incident neutron energy, kn is the incident
neutron wave number, gc is the spin statistical factor, Wnγ is
the width fluctuation correction factor [49], Tγ is the lumped
γ -ray transmission coefficient, and Tn is the neutron trans-
mission coefficient. The indices J and � in the sum are the
possible spin and the parity of the compound state.

The lumped γ -ray transmission coefficient is given by

T J�
γ =

∑
jπ XL

∫ E0

0
dEx2πE2L+1

γ fXL(Eγ )ρ(Ex, jπ ), (25)

where E0 = En + Sn is the total excitation energy, Sn is the
neutron separation energy of the target nucleus, Eγ is the
emitted photon energy, jπ is the spin and parity of the final
state after the γ decay, Ex = E0 − Eγ is the excitation energy
of the final state, ρ is the level density at Ex, and fXL is the γ -
ray strength function of the type of the transition X (= E , M )
and multipolarity L. Assuming the Brink-Axel hypothesis,
the γ -ray strength function can be expressed in terms of the
photoabsorption cross sections,

fXL(Eγ ) = σabs(Eγ ; XL)

(2L + 1)(π h̄c)2E2L−1
γ

, (26)

where σabs(Eγ ; XL) is the photoabsorption cross section for
XL transition. The above relation enables the application of
the photoabsorption cross sections of QRPA to the micro-
scopic calculation for the capture cross section without any
experimental data of giant resonances.

III. RESULTS AND DISCUSSIONS

A. M1 transition

We solve the QRPA equation with the M1 operator,
MK (K = 0,±1) as the external field and calculate the tran-
sition strength and the photoabsorption cross section of M1
transition for 156Gd following the description in Sec. II B. The
single-particle states of HF+BCS are calculated as in the same
setup in Ref. [50] where the axially symmetric harmonic os-
cillator basis [44] and the surface pairing interaction [51] are
used for calculating the single-particle wave function. To cal-
culate

∑
K=±1 dB(ω, MK )/dω, we use a Hermitian operator

F = M+1 − M−1 with P = −√
2

∑A
i=1(Jx )i for the elimina-

tion of the spurious mode. The QRPA matrices are calculated
as in Ref. [25] employing the Skyrme parameters of SLy4
[52]. Here, we consider the contribution from spin terms in the
Skyrme force neglected in Ref. [25] that affects the spin-flip
parts of the M1 transition [26]. Such spin terms are involved in
the residual interaction from the time-odd Hamiltonian, hodd

q
in Eqs. (11) and (12), and the detailed description is shown in
the Appendix.

The QRPA equation in Eq. (10) is solved from E = 62.5
keV to 20 MeV at every 62.5 keV with a fixed Lorentzian
width γ = 125 keV. With the symmetry of indices in the
forward and backward amplitudes, we impose an asymmetry
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FIG. 1. The calculated photoabsorption cross sections of the
M1 transitions for 156Gd. The solid line shows the total pho-
toabsorption cross section in Eq. (18). The dotted line is the
component of dB(ω, M0)/dω, and the dot-dashed line is for∑

K=±1 dB(ω, MK )/dω.

in the pairs of quasiparticles, μ � ν and restrict the size of the
configuration space as u2

μ, v2
ν > 10−2, and Eμ + Eν < Ecut =

50 MeV. The M1 spurious mode appears at lower incoming
photon energy even though Ecut is relatively high. However,
the transition strength of the spurious mode is negligible due
to the elimination of Eq. (20).

Figure 1 shows the calculated photoabsorption cross sec-
tion in Eq. (18) for 156Gd and the contributions from different
values of K . The transition strength depends on the value of
K due to the deformation of 156Gd. The excitation at low
energy that can affect the neutron capture cross section mainly
comes from the K = ±1 mode. Without the contribution from
Eq. (A3), the result is similar to the case without the resid-
ual interaction as in the case of double magic nuclei [25].
Such spin terms move the spin-flip strength to higher energies
and separate contributions from the orbital and spin parts of
Eq. (19). The strong peaks at 7.5 MeV and 9.8 MeV in Fig. 1
would reflect the double-humped structure as often found in
heavy deformed nuclei [53].

The transition strength is usually used to compare calcu-
lations with experimental data. In our QRPA calculation, the
M1 transition strength is given by

dB(M1)

dE
=

∑
K=0,±1

dB(ω; MK )

dω
. (27)

Figure 2 shows the results of Eq. (27) with and without the
spin g factor g(i)

s in Eq. (19). It is clearly seen that the large
strength in the 5 to 10 MeV range for orbital+spin (solid
line) originated from the spin-flip M1 transition due to the
finite value of g(i)

s . The residual interaction induces the frag-
mentation of the spin-flip transitions and upshifts them up
to about 15 MeV. From the energy integration of Eq. (27),
the total transition strength from E = 5 MeV to 15 MeV is∑

B(M1) = 29.4μ2
N , which is larger than the typical value

(∼11μ2
N ) for heavy deformed nuclei [53]. Such overestima-

tion of the total M1 transition strength is also reported by other
published (Q)RPA calculations, and quenching of the spin g

0

5

10

15

20

25

0 5 10 15 20

156Gd, SLy4, M1

dB
(M

1)
/d

E
N

2 /
M

eV
]

[

E [MeV]

orbital + spin
orbital

FIG. 2. The strength functions of the M1 transitions for 156Gd
with (solid line) and without (dotted line) the spin g factor gs in
Eq. (19).

factor was proposed to improve the agreement with experi-
mental data [21]. By applying a typical value of the quenching
factor, g(i)

s,eff/g(i)
s = 0.6–0.7 [54], the calculated

∑
B(M1) is

reduced by a factor of 0.36–0.49, since the contribution from
the spin-flip transition is proportional to the square of g(i)

s in
Eq. (19).

As shown in the dotted line of Fig. 2, the contribution from
orbital motion is not negligible at low energies. The transition
strength near 3.3 MeV can be seen as the M1 scissors mode
in a macroscopic view of the collective motion. For rare-earth
nuclei, the scissors mode appears around 3 MeV, and the total
transition strength is reported to be

∑
B(M1) ∼ 3μ2

N [53].
In our QRPA calculation, we obtain

∑
B(M1) = 4.9μ2

N by
integrating Eq. (27) up to 4 MeV. The difference between the
solid and dotted lines in Fig. 2 implies that the contribution
of spin part in Eq. (19) persists even at low energies. This
suggests the overestimation of our calculated

∑
B(M1) might

be reconciled by introducing the quench of g(i)
s .

B. Spurious mode from M1 isoscalar operator

We discuss the role of elimination of the spurious mode
following Sec. II C. In order to clarify the origin of the spuri-
ous mode, we separate the magnetic moments of nucleons in
Eq. (19) by two parts such as the isoscalar (IS) and isovector
(IV) operators [55],

�μ = μN

A∑
i=1

(
g(i)

s
�σi

2
+ g(i)

l
�li
)

= μN (�μIS + �μIV), (28)

�μIS = 1

2
�J + gp

s + gn
s − 1

2

A∑
i=1

�σi

2
, (29)

�μIV = −
A∑

i=1

τzi�li − (
gp

s − gn
s

) A∑
i=1

τzi
�σi

2
, (30)

where �J = ∑A
i=1(�li + �σi/2) is the total angular momentum

operator and τzi is 1/2(−1/2) for neutrons (protons).
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FIG. 3. The elimination of the spurious mode from the M1 scis-
sors mode with Eq. (20). The solid line (dashed line) shows the
result of

∑
K=±1 dB(ω, MK )/dω in the case with (without) removing

the spurious mode. The dotted line shows the contribution from the
isoscalar operator in Eq. (29) to the dashed line.

The solid line (dashed line) in Fig. 3 shows the result
of

∑
K=±1 dB(ω, MK )/dω with (without) removing the spu-

rious mode. By comparing these two lines, we can see the
spurious mode at 1.2 MeV in the dashed line. Such M1
spurious mode at low energy is consistent with the result
in Ref. [28]. The dotted line in Fig. 3 shows the result
of

∑
K=±1 dB(ω, MK )/dω using only Eq. (29) without the

elimination of the spurious mode. The dotted line is almost
equivalent to the dashed line in E < 2 MeV and negligi-
ble at higher energy. Therefore, the IS mode gives rise to
the spurious mode and hardly affects physical excitations.
The spurious mode of the M1 transition is associated with
the collective rotation of the whole nucleus around an axis
perpendicular to the symmetry axis of the axially deformed
nucleus [28] and �J in Eq. (29) dominantly induces such a
collective rotation. The contribution from the spin term in the
IS mode is negligible due to the opposite signs of gp

s and gn
s .

Such results of QRPA follow up a qualitative nature of the M1
transition as discussed in Ref. [18].

For the M1 transition, M0 in Eq. (23) corresponds to
the moment of inertia of the rotating nucleus [56]. We ob-
tain M0 = 55 MeV−1 for the calculation of 156Gd with F =
M+1 − M−1 and underestimate the experimental moments in-
ertia 2

h̄2 θexp = 67.4 MeV−1 [57]. Here, we use the surface
pairing interaction dependent on the nucleon density for the
HF+BCS calculation and the discrepancy could be improved
with a different pairing model. For comparison with previous
research, we calculate moments of inertia for erbium isotopes
and our results are 10–20 % smaller than the volume pairing
results in Ref. [56]. The calculated moments of inertia may
increase if we relax the BCS approximation and consider the
pairing fluctuation δ±.

C. Neutron capture reactions

We calculate the neutron capture cross sections for Gd
isotopes following the discussion in Sec. II D. We use the
coupled-channels Hauser-Feshbach code CoH3 [58] with the

100
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104
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tu
re
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tio

n 
[m
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Neutron Incident Energy [MeV]

QRPA
QRPA(no M1 scissors)

CoH internal
Kononov (1977)
Voignier (1980)
Wisshak (1995)

Chung (2007)

FIG. 4. The neutron capture cross sections on 156Gd. The solid
line shows the result of Eq. (24) with photoabsorption cross sec-
tions of the E1 and M1 transitions in QRPA. The dash-dotted line
shows the result with QRPA cross sections neglecting the contri-
bution from the M1 scissors mode (Eγ � 4 MeV) in Eq. (26) with
XL = M1. The dashed line shows the result with CoH3 internal
strength functions. The symbols are available experimental data
[60–63].

γ -ray strength functions of various XL. As a default setting,
CoH3 employs the standard Lorentzian profiles for the M1,
E2, M2, and E3 transitions and the generalized Lorentzian
form [11] for the E1 transition. The large contribution to the
γ -ray strength function comes from the E1 and M1 transi-
tions, and the contributions from E2, M2, and M3 transitions
are small in general. Here, we calculate both the E1 and M1
transitions for Gd isotopes with the same numerical setup as
in Sec. III A and then apply the QRPA results to Eq. (26) to
calculate the capture cross section instead of the CoH3 internal
strength functions. Note that the γ -ray strength functions of
an even-odd nucleus, (Z, A + 1) are approximated to those of
an even-even nucleus, (Z, A) when we calculate Eq. (24) of
(Z, A) because the γ -ray strength function varies weakly as
the target mass number [59]. It is commonly known that this
approximation phenomenologically works well. However, it
should be kept in mind that advanced theoretical frameworks
for odd mass nuclei are favorable to calculate the fully micro-
scopic γ -ray strength function of (Z, A + 1).

Figure 4 shows the calculated neutron capture cross
sections on 156Gd compared with experimental data. By
comparing the solid and dash-dotted lines, we can see an
enhancement of the calculated capture cross section caused
by the M1 scissors mode in the low energy region (Eγ � 4
MeV) as in Ref. [15]. The calculated capture cross section is
sensitive to the strengths of the excitations at a few MeV
of Eγ because the level density of the compound state ρ in
Eq. (25) increases with the excitation energy, Ex = E0 − Eγ .
The shapes of the two lines are similar in a wide range of
neutron incident energy, and the difference in magnitude is
characterized by the average γ -ray width 〈�γ 〉 calculated with
the transmission coefficient in Eq. (25) and the average s-wave
neutron level spacing D0 [15]. The value of the 〈�γ 〉 for the
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solid line (dash-dotted line) in Fig. 4 is 0.031 eV (0.019 eV),
which indicates that the contribution from the scissors mode
to the calculated capture cross section is 1 − 0.019/0.031 ≈
39%. Such a significant impact of the low energy M1 transi-
tion was also found in Refs. [15,16] and produces results in
better agreement with the experimental data.

The calculated neutron capture cross section with the
QRPA photoabsorption cross section is systematically lower
than the experimental data, as shown in Fig. 4 by the
solid line. For a quantitative discussion, the dashed line is
the calculated capture cross section with the CoH3 internal
strength functions, which are globally parameterized giant
resonances adjusted to available experimental data. The av-
erage γ -ray width of CoH3 internal is 〈�γ 〉 = 0.067 eV so
our QRPA result underestimates the capture cross section by
0.031
0.067 ≈ 46%.

Although we demonstrated this for 156Gd, almost the same
properties are confirmed for other stable Gd isotopes. For
example, Figs. 5(a) and 5(b) show neutron capture cross sec-
tions on 157Gd and 158Gd. The values of 〈�γ 〉 for QRPA (solid
line), QRPA without the scissors mode (dash-dotted line),
and CoH3 internal (dashed line) are summarized in Table I.
The shapes of these three calculated results are similar over a
wide range of neutron incident energy, but the magnitudes are
different. For 157Gd(158Gd), the scissors mode contributes to
about 38(42)% of the QRPA capture cross section. Since these
Gd isotopes are well deformed, the effect of the M1 scissors
is prominent. However, the contribution of the low energy M1
transition becomes small on a spherical nucleus (e.g., 144Sm)
because the M1 scissors mode is negligible and only the
spin-flip transition contributes to fM1(Eγ ). The QRPA result
is about 37(42)% of the experimental data for 157Gd(158Gd).
Although we limit ourselves to deformed Gd isotopes in this
paper, further systematic studies for both spherical and de-
formed nuclei enable a more quantitative discussion on such
an underestimation of stable nuclei.

Figure 5(c) shows the calculated capture cross sections on
an unstable nucleus 161Gd nearby a stable region. For the
QRPA calculations (solid line and dash-dotted line), we use
the QRPA photoabsorption cross sections on 162Gd. The M1
scissors mode has a large contribution (∼50%) on the QRPA
result due to the large nuclear shape deformation. The QRPA
result (solid line) is about 35% of CoH3 (dashed line) and
the value with microscopic model is smaller than that of the
phenomenological model as found on the stable Gd isotopes.
To discuss the importance of the microscopic model on vari-
ous unstable nuclei, we first need an improvement to resolve
discrepancies with experimental data on stable Gd isotopes.

TABLE I. The values of 〈�γ 〉 (in eV) for QRPA, QRPA without
the scissors mode, and CoH3 internal on Gd isotopes.

Nucleus QRPA QRPA(no M1 scissors) CoH3

156Gd 0.031 0.019 0.067
157Gd 0.029 0.018 0.078
158Gd 0.031 0.018 0.073
161Gd 0.014 0.007 0.040

FIG. 5. Same as in Fig. 4, but for 157,158,161Gd.

Furthermore, our approximation of the γ -ray strength func-
tion of an even-odd nucleus, (Z, A + 1) is not necessarily
valid for very neutron-rich unstable nuclei, and the QRPA
calculation applicable to odd mass nuclei is favorable for more
reliable prediction.

Figure 6 shows the employed E1 and M1 cross sections for
both QRPA (solid line) and CoH3 internal (dashed line) in
Fig. 4. The QRPA result of the E1 transition (solid line) in
Fig. 6 reproduces well the split of GDR peaks for deformed
nuclei as in Ref. [25]. The tail on the lower side of GDR
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FIG. 6. The photoabsorption cross sections of E1 and M1 transi-
tions for 156Gd, which are employed to calculate the neutron capture
cross sections shown by the solid and dashed lines in Fig. 4.

dominantly contributes to Eq. (25) due to the large ρ(Ex, jπ ),
and the solid line is smaller than the dashed line at small
photon energy, which results in the underestimation of the
QRPA result in Fig. 4. Here, we emphasize that the under-
estimation problem can hardly be resolved by the theoretical
improvement of the microscopic M1 calculation alone, be-
cause, as discussed in Sec. III A, our QRPA calculation
overestimates the value of

∑
B(M1) for the scissors mode so

a more realistic calculation is supposed to reduce the values
of both the

∑
B(M1) and 〈�γ 〉, which is against the situation

of neutron capture cases. We may envisage uncertainties in
the E1 transition at low energies also impact the calculated
capture cross sections. The E1 transition strength in QRPA
should be enhanced by 3–5 times to reproduce the calcu-
lated capture cross section of CoH3 internal. We used a fixed
Lorentzian width, γ = 125 keV for our QRPA calculation,
but the energy and temperature-dependent width [11] may
affect the low energy tail of the GDR. The toroidal dipole
resonance is predicted in the same energy region of the pygmy
resonance [64], and such a low energy E1 excitation can
be involved in our QRPA by considering the second-order
terms of the E1 operator ignored in the long-wavelength limit
[65]. Furthermore, the calculated capture cross section can
be enhanced in the microscopic calculations considering the
phonon coupling as in quasiparticle time blocking approxi-
mation (QTBA) [66] and quasiparticle-phonon model (QPM)
[67]. The implicit violation of the generalized Brink-Axel
hypothesis was suggested (e.g., Refs. [68,69]), and a partial
breakdown of the hypothesis could be another possible im-
provement of Eq. (26).

It is also plausible that the assumption of E = Eγ for ω =
E + iγ /2 in Eqs. (26) and (27) might need some corrections
due to the rotational energy Erot such as E = Eγ + Erot.
The γ -ray strength function becomes large even near Eγ = 0
when Erot > 0, which might improve the underestimation
problem. Note that our technique to eliminate the M1 spurious
mode associated with the collective rotation partly accounts
for such a rotational correction.

IV. CONCLUSION

We extended our noniterative FAM-RPA to the framework
of FAM-QRPA with the HF+BCS single-particle states and
solved the QRPA equation to study the M1 transition for
deformed gadolinium isotopes. We showed large spin-flip
transitions from 5 to 10 MeV and the orbital transition around
3 MeV where the M1 scissors mode was experimentally con-
firmed in the deformed rare-earth nuclei. We demonstrated
that the spurious mode of the M1 transition originated from
the IS part of the M1 operator. Although our result overesti-
mates the total M1 transition strength, it can be reduced when
we consider quenching of the spin g factor as proposed in
previous QRPA studies.

Finally we applied the QRPA results of E1 and M1 transi-
tions to calculations of neutron capture reactions based on the
statistical Hauser-Feshbach theory. The low energy M1 tran-
sition contributes to about half of the total calculated capture
cross section, and our calculation underestimates the capture
cross section by 30–50 % compared with the experimental
data. Improvements in the cross section would probably be
possible by considering some uncertainty of the low energy
E1 transition neglected in our QRPA calculation. This we
leave for future work.
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APPENDIX: SPIN TERMS IN THE RESIDUAL
INTERACTION

In QRPA calculation, we consider the contribution from
spin terms in the Skyrme forces ignored in our previous RPA
calculation [25]. The Skyrme energy density, HSk includes the
spin terms labeled with b̃i, b̃′

i(i = 0, 2, 3) [26],

Espin = b̃0

2
|�s|2 − b̃′

0

2

∑
q

|�sq|2

+ b̃3

3
ρα|�s|2 − b̃′

3

3
ρα

∑
q

|�sq|2

− b̃2

2
�s · �s + b̃′

2

2

∑
q

�sq · �sq, (A1)

where �s = �sn + �sp is the summation of the spin density of
nucleon q(= n, p),

�sq = η
∑
αβ∈q
α�β

ζ−
αβ

(
φ

q∗
β �σφq

αX q
αβ + φq∗

α �σφ
q
βY q

αβ

) + O(η2), (A2)

where φ
q∗
ᾱ �σφ

q
β̄

= −φ
q∗
β �σφ

q
α is used in the summation of

α, β. The b coefficients in Eq. (A1) can be described in
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terms of t and x coefficients in the Skyrme forces [70].
The functional derivatives such as δ/δ�sq(

∫
d3rEspin ) and

δ/δρq(
∫

d3rEspin ) generally induce potentials in the single-
particle Hamiltonian for static calculations [70]. In the case
of even-even nuclei satisfying the time-reversal symme-
try, the time-odd potentials derived from such functional

derivatives do not affect the static HF+BCS calculation.
However, in dynamical calculations like (Q)RPA, the sec-
ond derivative δ2/δ�sqδ�sq′ (

∫
d3rEspin ) can induce a residual

interaction in δhodd [26]. The contribution from Eq. (A1)
to an integral term proportional to ζ−

μνζ
−
αβ in Eq. (11) is

written as

(b̃0 − δqq′ b̃′
0)

∫
d3r

(
φq∗

μ �σφq
ν

) · (
φ

q′∗
β �σφq′

α

) + (b̃3 − δqq′ b̃′
3)

∫
d3r

2

3
(ρ0)α

(
φq∗

μ �σφq
ν

) · (
φ

q′∗
β �σφq′

α

)
+ (b̃2 − δqq′ b̃′

2)
∫

d3r ∇(
φq∗

μ �σφq
ν

) · ∇(
φ

q′∗
β �σφq′

α

)
, (A3)

where ρ0 = (ρn + ρp)η=0 in Eq. (16). The effect on Eq. (12) is easily derived from an exchange, (φq′∗
β �σφ

q′
α ) → (φq′∗

β �σφ
q′
α )∗ in

Eq. (A3). In our QRPA calculation, φ
q
μ is expanded in the cylindrical coordinate space as in Ref. [44] and the above residual

interaction is calculated in analogy with our previous RPA calculation [25].
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[38] T. Nikšić, N. Kralj, T. Tutiš, D. Vretenar, and P. Ring,
Phys. Rev. C 88, 044327 (2013).

[39] M. T. Mustonen, T. Shafer, Z. Zenginerler, and J. Engel,
Phys. Rev. C 90, 024308 (2014).

[40] T. Shafer, J. Engel, C. Fröhlich, G. C. McLaughlin, M.
Mumpower, and R. Surman, Phys. Rev. C 94, 055802 (2016).

[41] E. M. Ney, J. Engel, T. Li, and N. Schunck, Phys. Rev. C 102,
034326 (2020).

[42] N. Hinohara and J. Engel, Phys. Rev. C 105, 044314 (2022).
[43] K. Washiyama, N. Hinohara, and T. Nakatsukasa, Phys. Rev. C

103, 014306 (2021).
[44] D. Vautherin, Phys. Rev. C 7, 296 (1973).
[45] W. Greiner and J. A. Maruhn, Nuclear Models (Springer, Berlin,

1996).
[46] J. A. Maruhn, P. G. Reinhard, P. D. Stevenson, and A. S. Umar,

Comput. Phys. Commun. 185, 2195 (2014).
[47] P. Avogadro and T. Nakatsukasa, Phys. Rev. C 87, 014331

(2013).
[48] I. Stetcu and C. W. Johnson, Phys. Rev. C 67, 044315 (2003).
[49] T. Kawano, P. Talou, and H. A. Weidenmüller, Phys. Rev. C 92,

044617 (2015).
[50] L. Bonneau, T. Kawano, T. Watanabe, and S. Chiba, Phys. Rev.

C 75, 054618 (2007).
[51] T. Duguet, P. Bonche, and P. H. Heenen, Nucl. Phys. A 679, 427

(2001).
[52] E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and R. Schaeffer,

Nucl. Phys. A 635, 231 (1998).
[53] A. Richter, Prog. Part. Nucl. Phys. 34, 261 (1995).
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