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Comparative study on charge radii and their kinks at magic numbers
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Isotope dependences of charge radii, i.e., isotope shifts, calculated by the Skyrme Hartree-Fock, the relativistic
mean-field, and the relativistic Hartree-Fock calculations are compared against the experimental data of magic
and semimagic nuclei. It is found that the tensor interaction plays a role in reproducing the “kink” behavior,
irregularity of isotope shifts at the neutron magic number, in the relativistic Hartree-Fock approach. With several
Skyrme models, it is found that the kink behavior can be reproduced with the spin-orbit interaction having
nonzero isovector channel. The single-particle orbitals near the Fermi energy are crucial to determine the kink
size. The effects of the symmetry energy and the pairing interaction are also discussed in relation to the kink
behavior.
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I. INTRODUCTION

Charge radii of atomic nuclei Rch are one of the important
properties of atomic nuclei, which can be measured precisely
via the electron scattering [1,2] and the laser spectroscopy
[3,4]. The isotope dependence of Rch, i.e., the isotope shift,
has been discussed for a long time theoretically and experi-
mentally. The slope of Rch as a function of the neutron number
N is known to change at the neutron magic number, which is
called the “kink” behavior. It was discussed in Ref. [5] that the
kink behavior of Pb isotopes can be reproduced if the strengths
of isoscalar and isovector spin-orbit interaction in the Skyrme
energy density functional (EDF) is properly adjusted. Re-
cently, it was discussed using the M3Y-P6a interaction that the
kink behavior is also reproduced by the three-body spin-orbit
interaction [6]. The kink behavior was also discussed by using
the relativistic mean-field calculation in Ref. [7], in which the
importance of the occupation probabilities above the shell gap
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was pointed out. The kink behavior of mercury isotopes was
also discussed recently in Refs. [8–10].

The aim of this paper is to discuss whether the kink be-
havior is reproduced even in the “normal” treatment, i.e.,
mean-field models with a widely used functional and a stan-
dard contact pairing interaction, without any additional terms
or effects. In this paper, we compare Rch of Sn and Pb iso-
topes obtained by the nonrelativistic Skyrme Hartree-Fock
(SHF) [11], the relativistic mean-field (RMF) [12,13], and
the relativistic Hartree-Fock (RHF) [14,15] calculations. This
comparison enables us to discuss the kink behavior from two
perspectives on the spin-orbit splitting. In the nonrelativistic
Skyrme energy density functional calculation, the spin-orbit
splitting is phenomenologically determined by the parame-
ters, the isoscalar spin-orbit strength W0, and the isovector
one W ′

0 . On the other side, in the relativistic mean-field cal-
culations, where the single-particle state is described with the
Dirac equation obtained self-consistently from the relativistic
EDF, the spin-orbit splitting is induced by the relativistic
effect without introducing any additional parameter. In the
RHF model, the tensor interaction can also be included when
the Fock terms are explicitly considered. Using such com-
parisons, we will be able to find out how much the tensor
interaction, and its contribution to the spin-orbit field, is im-
portant to reproduce the kink behavior. In addition, we will
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also study a correlation between the symmetry energy of the
nuclear equation of state and the kink behavior.

This paper is organized as follows. In Sec. II, the theoret-
ical framework of this paper will be given. In Sec. III B, the
calculation results of Sn isotopes will be presented, where the
detailed discussion of the occurrence mechanism of the kink
behaviors will be given. In Sec. III C, the calculation results
of Pb isotopes will be shown, where the detailed discussion
will be mainly referred to in Sec. III B. In Sec. III D, effects
of parameters of the nuclear equation of state on the kink
behavior will be shown. In Sec. III E, effects of the pairing
strength and interaction will be discussed. In Sec. III F, the
calculation results of Ca isotopes will be given, where it will
be found that beyond-mean-field effects are indispensable to
reproduce the isotope dependence of Rch of Ca isotopes. In
Sec. IV, this paper will be summarized.

II. THEORETICAL FRAMEWORK

The methods used in this paper can be classified into two
classes: the nonrelativistic framework and the relativistic one.
We use the SHF calculation for the former and the RMF and
RHF calculations for the latter.

In the SHF calculation, the following Skyrme EDFs are
used: SAMi [16], SGII [17], SLy4 [18], SLy5 [18], SkM*
[19], HFB9 [20], UNEDF0 [21], UNEDF1 [22], and UNEDF2
[23]. In addition, the Skyrme EDF with the tensor interaction
“SAMi-T” [24] is used, in which all the parameters, including
the tensor interaction, were simultaneously optimized to fit
a set of experimental data. To see the effect of the tensor
interaction, the SAMi-T EDF without the tensor interaction
is also used being referred to as “SAMi-noT”. A variety
of SAMi EDFs with the different value for the effective
mass, the symmetry energy, and the nuclear incompressibil-
ity, called “SAMi-m” [25], “SAMi-J” [25], and “SAMi-K”
[26] families, respectively, are also adopted in order to see
whether properties of nuclear equation of state (EoS) affect
the kink behavior. The parameters of all these SAMi EDFs
are optimized for the same set of experimental data. The
pairing interaction is taken into account by using the Hartree-
Fock-Bogoliubov calculation with the volume-type pairing
interaction [27]

Vpair(r1, r2) = −V0δ(r1 − r2) (1)

with the cutoff energy of 60 MeV, whose strength is de-
termined to reproduce the neutron pairing gap of 120Sn as
�n = 1.4 MeV. The strengths for different EDFs are shown in
Table I. All the calculations are performed by using the
harmonic oscillator basis [28] under the assumption of spher-
ically symmetric shape. Since all nuclei studied are magic or
semimagic ones, this assumption on the shape is reasonable.

In the RMF calculation, the Fock term is neglected and
correspondingly the EDF is optimized in order to reproduce
the reference data. The RHF calculation, on the other hand,
takes the Fock term into account and the parameters of the
relativistic EDF are optimized with the reference data as
the RMF model. In the RMF calculation, the DD-PC1 [29],
DD-ME2 [30], PKDD [31], and DD-LZ1 [32] EDFs are
used, while in the RHF calculation, the PKO1 [33], PKO2

TABLE I. Adopted pairing strengths for Skyrme EDFs in this
study. The volume-type pairing interaction is used and the energy
cutoff is 60 MeV.

Skyrme EDF V0 (MeV fm3)

SLy4 194.2
SLy5 188.2
HFB9 164.4
SkM* 156.2
SGII 169.8
UNEDF0 127.6
UNEDF1 138.4
UNEDF2 150.0
SAMi 213.7

SAMi-noT 216.4
SAMi-T 225.5

SAMi-K230 213.8
SAMi-K235 206.9
SAMi-K240 201.2
SAMi-K245 209.6
SAMi-K250 208.2
SAMi-K255 206.9
SAMi-K260 205.5

SAMi-m60 227.6
SAMi-m65 215.2
SAMi-m70 203.9
SAMi-m75 194.3
SAMi-m80 185.4
SAMi-m85 177.3

SAMi-J27 205.0
SAMi-J28 208.3
SAMi-J29 212.0
SAMi-J30 215.1
SAMi-J31 217.6
SAMi-J32 219.3
SAMi-J33 220.2
SAMi-J34 220.4
SAMi-J35 220.2

[33], PKO3 [33], PKA1 [34], and the modified version of
the PKO1, which will be referred to as the PKO1* [35],
are used. The pairing correlation is considered by using the
Bardeen-Cooper-Schrieffer (BCS) theory, the Tian-Ma-Ring
(TMR)-type pairing interaction [36] is used for DD-PC1 and
DD-ME2, and the surface-type pairing interaction [37] with
the pairing strength of 500 MeV fm3 is used for DD-ME2,
PKDD, DD-LZ1, PKO1, PKO2, PKO3, PKO1*, and PKA1.
All the calculations are performed assuming the spherically
symmetric shape for the harmonic oscillator or Woods-Saxon
basis.

In this paper, the same pairing strengths are used for both
the proton-proton and the neutron-neutron channels. We con-
firmed that the results hardly change even if the Coulomb
antipairing effect [38] is considered.

After the proton and neutron root-mean-square radii, Rp

and Rn, are obtained by using SHF, RMF, and RHF, the charge
radius Rch is calculated by using a formula for the finite-size
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FIG. 1. Difference of root-mean-square charge radii between ASn and 132Sn, RSn
ch (A) − RSn

ch (132), as a function of A calculated by using
nonrelativistic EDFs. For comparison, experimental data [3,41] are also plotted.

effect of nucleons,

R2
ch = R2

p + r2
Ep + N

Z
r2

En + 〈r2〉SOp + N

Z
〈r2〉SOn, (2)

where rEp = 0.8409 fm is the single proton radius and r2
En =

−0.1161 fm2 is the single neutron mean-square radius [39].
The spin-orbit contributions 〈r2〉SOp and 〈r2〉SOn obtained in
Ref. [40] are calculated with the nucleon magnetic moments
κp = 1.793 and κn = −1.913 [39]. The importance of the
spin-orbit contribution will be discussed in the Appendix.

III. CALCULATED RESULTS

In this section, the “kink” behaviors of Sn and Pb isotopes
will be presented. The detailed mechanism will be discussed
by using Sn isotopes since 132Sn or its neighbor nuclei are not
used for the fitting criteria of the EDFs, and thus, it is expected
that the results may reflect properties of the EDFs better. Then,
the effects of some parameters of the nuclear equation of state
on the kink properties will also be discussed, introducing the
symmetry energy J , the nuclear incompressibility K∞, and the
effective mass m∗. Dependences of the pairing strength and
interaction on the kink behavior will also be discussed. At last,
results of Ca isotopes will be presented.

A. Mass-number A dependence of charge radii
in Sn and Pb isotopes

The mass-number A dependence of the difference between
the root-mean-square charge radius of ASn and that of 132Sn,
RSn

ch (A) − RSn
ch (132), calculated in nonrelativistic (SHF) and

relativistic (RMF and RHF) EDFs are shown in Figs. 1 and
2, respectively. For comparison, experimental data [3,41] are
also plotted. Results for Pb isotopes, RPb

ch (A) − RPb
ch (208), are

shown in Figs. 3 and 4 as well.
It can be seen that most EDFs reproduce well the A depen-

dence of Rch of stable nuclei of Sn isotopes (62 � N � 74)
except UNEDF2, PKA1, and DD-LZ1. In Figs. 3 and 4, most
EDFs reproduce well the A dependence of Pb isotopes be-
low the magic number N = 126, although the UNEDF series
underestimate RPb

ch (A) − RPb
ch (208) slightly, and the DD-LZ1

EDF overestimates it slightly. Behavior above the magic num-
bers is the main topic in this paper, and will be presented
later.

B. Sn isotopes

1. Systematic behavior

Hereinafter, we focus only on the kink behavior. To discuss
the size of kink quantitatively, we define the indicator of kink
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FIG. 2. Same as Fig. 1, but by using relativistic EDFs.

size �2RZ
ch as

�2RZ
ch = �RZ

ch(Amagic + 2) − �RZ
ch(Amagic)

= RZ
ch(Amagic + 2) − 2RZ

ch(Amagic) + RZ
ch(Amagic − 2),

(3)

where Amagic is the mass number corresponding to doubly
magic nuclei, i.e., Amagic = 48 for Z = 20 (Ca), Amagic = 132
for Z = 50 (Sn), and Amagic = 208 for Z = 82 (Pb) and

�RZ
ch(A) = RZ

ch(A) − RZ
ch(A − 2). (4)

This indicator corresponds to the discretized second derivative
of Rch at A = Amagic, which is related to the curvature of the
graph in the continuum limit. The larger value corresponds to
the larger (stronger) kink. The kink indicators for Sn isotopes
are summarized in Tables II and III for Skyrme EDFs and
relativistic EDFs, respectively. From Tables II and III, one
general tendency is found: The results of relativistic (RMF
and RHF) models give stronger kinks than the nonrelativistic
(SHF) ones, while the EDF dependence among the members
of each model is large. In the nonrelativistic SHF, UNEDF
series somehow yields a smaller kink commonly than other
EDFs. In the relativistic cases, the RHF calculations give
larger kinks than those of the RMF ones, except the DD-LZ1
EDF.

One can find that the SHF calculations, except SAMi,
SAMi-noT, and SAMi-T, provide a smaller kink than those

of the relativistic (RMF and RHF) ones. We found that, in
general, the RHF calculations provide the larger kink than
the RMF ones. This can be understood as follows: As will be
discussed, the spin-orbit interaction is important for the kink
behavior [6]. The spin-orbit mean field appears from both the
relativistic effect and the tensor interaction in RHF calcula-
tion, while only from the former in RMF calculation; hence,

TABLE II. Kink indicator �2RSn
ch for Sn calculated by non-

relativistic EDFs. The charge radius differences �RSn
ch (132) and

�RSn
ch (134) are also listed. All values are given in units of 10−3 fm.

EDF �RSn
ch (132) �RSn

ch (134) �2RSn
ch

UNEDF1 +14.913 +11.886 −3.027
UNEDF2 +14.850 +12.571 −2.279
UNEDF0 +12.495 +10.479 −2.016
SkM* +11.456 +11.027 −0.429
HFB9 +11.302 +12.222 +0.920
SLy4 +10.665 +12.449 +1.784
SLy5 +10.568 +12.363 +1.795
SGII +11.436 +13.446 +2.010
SAMi-noT +11.101 +17.318 +6.217
SAMi-T +11.196 +18.507 +7.311
SAMi +11.229 +21.092 +9.863

Expt. +7.4 +22.4 +15.0
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FIG. 3. Same as Fig. 1, but for Pb isotopes with the reference point at 208Pb, RPb
ch (A) − RPb

ch (208).

the origin of the spin-orbit interaction of the RMF calculation
is different compared to that of the RHF calculation. The
spin-orbit interaction in the Skyrme calculation is introduced
phenomenologically as the W0 and W ′

0 terms without any den-
sity dependence. Discussion of the density dependence of the
spin-orbit interaction in the Skyrme interaction can be found
in Refs. [42–45].

Among Skyrme EDFs, the UNEDF series provide the “an-
tikink”; the SkM* and HFB9 do not provide visible kink; and
the SLy4, SLy5, and SGII give the kink, but the magnitude

TABLE III. Same as Table II, but calculated by relativistic EDFs.

EDF �RSn
ch (132) �RSn

ch (134) �2RSn
ch

PKDD +11.088 +14.166 +3.078
DD-PC1 +11.411 +15.862 +4.451
DD-ME2 (Surface) +9.055 +15.159 +6.104
DD-ME2 (TMR) +9.290 +15.587 +6.297
PKO2 +11.424 +18.474 +7.050
PKO1 +10.172 +19.566 +9.394
PKA1 +5.691 +16.512 +10.821
DD-LZ1 +4.836 +16.631 +11.795
PKO3 +9.455 +23.896 +14.441
PKO1* +9.629 +25.748 +16.119

Expt. +7.4 +22.4 +15.0

is smaller than the experimental one. The SAMi, SAMi-noT,
and SAMi-T provide the kink larger than the other Skyrme
EDF. The SAMi EDF is constructed to give the better de-
scription of spin-isospin properties, such as Gamow-Teller
resonances [16], where the strength of the spin-orbit inter-
action stems from the spin-isospin transitions involving the
spin-orbit partner levels. Hence, we conjecture that the mod-
eling with respect to the spin-orbit splitting is essential to
describe the kink better. Note that the SGII is also constructed
towards Gamow-Teller resonances [17], but it does not
give the kink as large as the SAMi. It is worthwhile to mention
that, in Pb isotopes, SAMi series and SGII give stronger kinks
than other Skyrme EDFs as will be shown later.

The SkI4 EDF also gives the kink behavior of Pb iso-
topes [5]. References [5,46] claim that the introduction of
the isoscalar and isovector spin-orbit interactions, W0 and W ′

0 ,
is essential, while the standard Skyrme EDFs have only the
isoscalar term (W0 = W ′

0). Among better EDFs to describe
the kink behavior, the two strengths are identical, W0 = W ′

0
in the SGII EDF; in the SkI4 EDF, the isoscalar and isovec-
tor spin-orbit interactions have opposite signs, namely, W ′

0 <

0 < W0 and |W ′
0 | < W0; in the SAMi EDF, the isoscalar and

isovector spin-orbit interactions are of the same direction, but
the strengths are different, 0 < W ′

0 < W0. Since their strengths
and signs of W0 and W ′

0 are different and rather arbitrary, it is
not possible at the moment which combination of W0 and W ′

0
values are the best for the kink behavior. It should be noted
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FIG. 4. Same as Fig. 2, but for Pb isotopes with the reference point at 208Pb.

that the detailed discussion of W0 and W ′
0 can be found in

Refs. [44,47–50].
Comparing the results of the SAMi-T and the SAMi-noT

EDFs, one can see how the Skyrme tensor interaction af-
fects the kink behavior. Although the SAMi-T EDF gives
the stronger kink than the SAMi-noT EDF and the Skyrme
tensor interaction makes the slope above the shell gap steeper,
its effect is not so significant. Moreover, the shell structure,
which will be discussed later, is not changed much by the ten-
sor terms. Therefore, the Skyrme tensor interaction introduces
additional spin-orbit terms in the mean field, but its effect is
not so strong as far as SAMi-T is concerned. This is because
the effect of the tensor interaction may be already included in
the original spin-orbit interaction during the fitting procedure.

Next, we shall focus on the relativistic calculation. Except
for the DD-LZ1 EDF, the RMF calculations give a smaller
kink than the RHF calculations, while the DD-LZ1 EDF gives
a comparable size of kink with those of the RHF calculations.
Among the RHF calculations, the kink size of PKO2 is the
weakest and PKO3 and PKO1* give appreciable kinks. It
should be noted that although the PKA1 and the DD-LZ1 give
the strong kink, their slopes above N = 82 are not so steep;
the reason why their kink sizes are large is that the slopes
below N = 82 are loose. Indeed, the slope above N = 82 of
the PKA1 is the smallest among the RHF calculations,
while the slope above N = 82 of the DD-LZ1 is still largest

among the RMF calculations. To check the pairing model
dependence, two results of DD-ME2 with different pairing
interactions, denoted by “DD-ME2 (TMR)” and “DD-ME2
(Surface)”, are shown in Fig. 2, where the former and the
latter, respectively, correspond to the Tian-Ma-Ring (TMR)
type [36] and the surface-type pairing interactions. One can
easily find that these two pairing interactions give almost the
same kink size.

The PKO1, PKO2, PKO3, PKO1*, and PKA1 basically
start from the same Lagrangian, while the number of mesons
and their meson-nucleon coupling constants are different. The
mesons considered in these EDFs are summarized in Table IV.
This suggests that π -PV, ρ-T, and ρ-VT couplings, which
gives the tensor interaction, are important to reproduce the
kink behavior. According to Ref. [35], the strength of the
tensor interaction of PKO2 is weakest and that of PKO1* is
the strongest; that of PKO3 is the second strongest, and those
of PKA1 and PKO1 are marginal. Strengths of the tensor
interaction of these interactions are consistent with the kink
size: the stronger the tensor interaction the larger the kink
size. Therefore, the tensor interaction or its outcomes, such
as spin-orbit mean field, and shell structure, are important
to reproduce the kink behavior. This is in contrast to the
nonrelativistic case.

The DD-LZ1 EDF is constructed with the guidance of
pseudospin symmetry restoration [51] and, as a result, shell
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TABLE IV. Mesons considered in PKDD, DD-ME2, DD-LZ1,
PKO1, PKO2, PKO3, PKO1*, and PKA1 EDFs. All the couplings
are density dependent.

EDF π -PV ρ-V ρ-T ρ-VT ω-V σ -S

PKDD No Yes No No Yes Yes
DD-ME2 No Yes No No Yes Yes
DD-LZ1 No Yes No No Yes Yes

PKA1 Yes Yes Yes Yes Yes Yes
PKO1 Yes Yes No No Yes Yes
PKO2 No Yes No No Yes Yes
PKO3 Yes Yes No No Yes Yes
PKO1* Yes Yes No No Yes Yes

evolution was described better than other popular RMF EDFs
[32]. It is constructed without an ansatz of density depen-
dences of some meson couplings and fitted to 218U, which
is related to the subshell closure of Z = 92. The pseudospin
symmetry is strongly related to the spin-orbit splitting [52].
This fact is in agreement with our conjecture that the spin-
orbit splitting is important to reproduce the kink size.

2. Single-particle energies

To understand the kink behaviors better, the single-particle
spectra of neutrons of 132Sn are shown in Figs. 5 and 6.
The magenta dotted line indicates the N = 82 shell gap. All
the calculations show that the 2 f7/2 orbital is just above the
N = 82 shell gap, but above the 2 f7/2 orbital, the order of
valence-neutron orbitals noticeably depends on the EDF uti-
lized. Especially, the 1h9/2 orbital appears just above the 2 f7/2

orbital in SAMi, SAMi-noT, SAMi-T, DD-PC1, PKO3, and
PKO1* calculations, in which the kink is strong as listed in

Tables II and III. Therefore, the order of the single-particle
orbitals above the shell gap will play an important role as
mentioned in Ref. [7]. To understand this mechanism more
clearly, the occupation probabilities of the single-particle or-
bitals just above the shell gap of 134Sn are plotted in Figs. 7
and 8. Here, the occupation probability, which ranges between
0 and 1, is defined by the occupation number divided by the
maximum occupation number. The correlation between the
occupation probability of the 1h9/2 orbital and the slope above
the N = 82 gap [�RSn

ch (134)] is plotted in Fig. 9. It is easily
seen that, in general, the larger occupancy of the 1h9/2 orbital
gives the steeper slope, and accordingly the larger kink, for
instance, in SAMi, SAMi-noT, SAMi-T, and the PKO series.
One possible explanation on this kink-evolution effect of 1h9/2

is as follows: the 1h9/2 orbital does not have the nodal struc-
ture, while the 2 f7/2 one has a node. The former has larger
overlap with the protons and thus it extends the charge radius
due to the proton-neutron attractive interaction, as discussed
in Ref. [7]. Thus, when the two valence neutrons above the
N = 82 shell occupy this orbital, the mean radial distribution
is suddenly enhanced. The DD-LZ1 again shows an excep-
tional behavior: Its kink size is noticeably strong, although the
occupation probability of the 1h9/2 orbital is small. A similar
result is obtained with PKA1. For the large size of the kink of
DD-LZ1 and PKA1, an alternative hint is possibly given by
considering the single-particle levels. In Fig. 6, the energies
of 1h9/2 obtained from the DD-LZ1 and PKA1 are located
higher than the other relativistic EDFs’ results, and thus, their
radial distributions can become wider. Even if its occupation
probability is small, a finite mixing of this 1h9/2 component
can enhance the sudden change of radial distributions between
132Sn and 134Sn, as well as the size of kink.

It is also shown that the occupation probability of the 3p3/2

orbital is much larger than the 1h9/2 orbital in the UNEDF0,
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FIG. 5. Single-particle spectra of 132Sn calculated in nonrelativistic EDFs.
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UNEDF1, and UNEDF2, which show the “antikink” behavior
at N = 82. These antikinks also originate from the steep slope
below N = 82 and the moderate slopes above N = 82.

The occupation probabilities of the orbitals near the
Fermi level depend on the single-particle energies. The
occupation probabilities affect the kink size, as well as
the spin-orbit interaction. In order to discuss the effect of
the single-particle energies, the spin-orbit interaction should
be effectively switched off. To this end, the average energy
of the spin-orbit partners ε is considered here. This ε is not
affected by the spin-orbit potential but by the central poten-
tial. The spin-orbit interaction for the orbital with the orbital
angular momentum l is proportional to l for j = l + 1/2
orbitals and −(l + 1) for j = l − 1/2 orbitals. Therefore, the
averaged single-particle energy for the l orbital is defined by

ε = l

2l + 1
ε< + l + 1

2l + 1
ε>, (5)
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FIG. 7. Occupation probability of orbitals above the N = 82
shell gap for 134Sn calculated by using nonrelativistic EDFs.

where ε< and ε> are the single-particle energies for j =
l − 1/2 and l + 1/2 orbitals, respectively. Figures 10 and
11 show the correlation between the averaged single-particle
energies ε of the 1h and 2 f orbitals in 134Sn and the kink
size �2Rch in the nonrelativistic and relativistic schemes, re-
spectively. There is a weak correlation between ε of the 1h
orbital and the kink size. As ε of the 1h orbital is small, the
1h9/2 orbital becomes lower and accordingly the occupation
probability of the 1h9/2 orbital becomes larger. The occupa-
tion probability of the 1h9/2 orbitals is correlated to the kink
size as discussed above. We also found that there is no obvious
correlation between ε of the 2 f orbital and the kink size.
In Figs. 12 and 13, the correlation between the difference
between two average energies, ε2 f − ε1h, and the kink size
is shown. We found that, in contrast to the case of bare ε,
there is a clear correlation between ε2 f − ε1h and �2RSn

ch in
the nonrelativistic calculation. We also found that if the pion
contribution is included in the RHF calculation; the smaller
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kink size calculated by using nonrelativistic EDFs.

ε2 f − ε1h gives the smaller �2RSn
ch , while other correlation is

not obvious in the relativistic calculation. Note that similar
analysis for the band termination was done in Ref. [53].

By summarizing the above discussions, to evolve the kink
behavior of Rch at N = 82, the occupation probability of the
1h9/2 orbital, which is located above the 2 f7/2 orbital, must be
large enough. In order to lower the 1h9/2 orbital, the spin-orbit
interaction should not be too strong. Otherwise, the 1h9/2

level becomes higher than the 2 f7/2 one in energy and also
the 3p3/2 energy can be too low, which is the origin of the
antikink. The spin-orbit gaps of the 1h orbitals calculated
by the UNDEF0, UNEDF1, and UNEDF2 are almost the
same as the other Skyrme EDFs except for the SAMi series.
However, the occupation probability of the 1h9/2 orbital in the
UNEDF0, UNEDF1, and UNEDF2 is smaller. This may be
caused by a larger effective mass of UNEDF EDFs. It should
be noted that the larger effective mass makes the smaller en-
ergy spreading above the shell gap as well, while the UNEDF
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FIG. 13. Same as Fig. 12, but by using relativistic EDFs.
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TABLE V. Same as Table II, but of Pb together with �RPb
ch (208)

and �RPb
ch (210).

EDF �RPb
ch (208) �RPb

ch (210) �2RPb
ch

UNEDF0 +11.158 +9.561 −1.597
SkM* +9.764 +9.491 −0.273
UNEDF1 +11.244 +11.364 +0.120
HFB9 +10.160 +10.945 +0.785
UNEDF2 +10.646 +11.670 +1.024
SLy4 +9.096 +11.210 +2.114
SLy5 +8.920 +11.507 +2.587
SGII +9.396 +13.625 +4.229
SAMi-noT +8.683 +16.457 +7.774
SAMi-T +8.595 +16.829 +8.234
SAMi +8.571 +18.176 +9.605

Expt. +11.0 +19.6 +8.6

series gives as wide energy spreading above the shell gap as
the other Skyrme EDFs tested here. The spin-orbit strength,
energy spreading, and the effective masses are related to each
other [54]; hence, a detailed study of the effect of the effective
mass is left for a future investigation. Another feature is the
two parameters of the spin-orbit interaction in some of the
Skyrme EDFs. Even though the strengths of isoscalar and
isovector spin-orbit interactions, W0 and W ′

0 , are the same, the
kink can appear as in the SGII case. Thus, the effect of W0

and W ′
0 to the kink behavior is still puzzling. The tensor in-

teractions also induce the spin-orbit mean field in the Skyrme
EDF, SAMi-T, but its effect is tiny. The average single-particle
energy of the 1h orbital is also correlated with the kink size.

It should be noted that these two orbitals, 2 f7/2 and 1h9/2,
are pseudospin doublet; thus if the pseudospin symmetry ex-
actly holds, these two orbitals completely degenerate, which
may make the occupation probability of 1h9/2 larger. It is

TABLE VI. Same as Table V, but by using relativistic EDFs.

EDF �RPb
ch (208) �RPb

ch (210) �2RPb
ch

PKA1 +8.709 +14.888 +6.179
DD-LZ1 +6.935 +15.462 +8.527
DD-ME2 (TMR) +9.133 +17.962 +8.829
DD-ME2 (Surface) +9.537 +18.567 +9.030
PKO2 +10.694 +19.800 +9.106
PKDD +9.105 +19.879 +10.774
PKO3 +10.103 +21.265 +11.162
PKO1 +9.690 +21.183 +11.493
DD-PC1 +7.566 +20.118 +12.552
PKO1* +10.553 +23.893 +13.340

Expt. +11.0 +19.6 +8.6

known that the relativistic models have the pseudospin sym-
metry implicitly in the Dirac wave function. This may be
another reason why the relativistic calculation describes the
kink behavior better. However, some relativistic EDFs, such
as the DD-LZ1, which is expected to give better description
of the pseudospin symmetry, do not give such degeneration.

C. Pb isotopes

In this subsection, results for Pb isotopes are shown. The
kink indicators for Pb isotopes are summarized in Tables V
and VI. Results for Pb isotopes are basically similar to those
for Sn isotopes, while there are some differences. For in-
stance, HFB9 and UNEDF2 give small positive kinks, SGII
and DD-PC1 give significantly larger kinks. Since properties
of 208Pb are frequently used for fitting criteria of EDFs, such
differences may appear.

1h9/2

1h9/2

1i11/2

1i11/2

1i13/2
1i13/2

1j15/2

1j15/2

2f5/2

2f5/2

2f7/2

2f7/2

2g7/2

2g7/2

2g9/2

2g9/2

3p1/2

3p1/2

3p3/2

3p3/2

3d3/2

3d3/2

3d5/2

3d5/2

4s1/2

4s1/2

SAMi-T SAMi-noT SAMi SGII SLy4 SLy5 SkM* HFB9 UNEDF0 UNEDF1 UNEDF2

208Pb (Neutron)

E
ne

rg
y

(M
eV

)

0

−5

−10

−15

−20

FIG. 14. Same as Fig. 5, but of 208Pb.
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To understand these behaviors, the single-particle spectra
of neutrons of 208Pb are shown in Figs. 14 and 15. The
magenta dotted line represents the N = 126 shell gap. All
the calculations show that the 3p1/2 orbital is just below the
N = 126 shell gap, while above the shell gap, either the 2g9/2

or 1i11/2 orbital appears: the SAMi-T, SAMi-noT, SAMi, DD-
PC1, DD-ME2, PKDD, PKO1, PKO2, PKO3, and PKO1*
EDFs give the 1i11/2 orbital lower than the 2g9/2 one, while
the other calculations give the opposite. The exceptions are
the SkM* and UNEDF2 EDFs. In these two EDFs, the 2g9/2

orbital appears just above the shell gap, the same as most
Skyrme EDFs, but the 1 j15/2 orbital appears instead of the
1i11/2 orbital above the 2g9/2 orbital. Referring to Tables V
and VI, one can find that the EDFs, having the 1i11/2 orbital
just above the shell gap, give a notable kink. Therefore, the
order of the single-particle orbitals above the shell gap may
play an important role as mentioned in Ref. [7]. To understand
the mechanism more clearly, the occupation probabilities of
the single-particle orbitals just above the shell gap of 210Pb
are plotted in Figs. 16 and 17. The correlation between the
occupation probability of the 1i11/2 orbital and the slope above
the N = 126 gap [�RPb

ch (210)] is plotted in Fig. 18. It is easily
seen that, in general, the larger occupancy of the 1i11/2 orbital
gives the steeper slope, and accordingly the larger kink. This
mechanism is the same as discussed in Sn isotopes; the radial
distribution of this single-particle orbital with a smaller n
value can be extended and give a larger kink. We especially
mention the DD-LZ1 and PKA1, which have relatively small
kinks in Table VI. In the present case of Pb, this small kink is
attributable to the occupation probabilities shown in Fig. 18.
Namely, the dominant component is of 2g9/2 with DD-LZ1
and PKA1, whereas the other relativistic EDFs conclude
the dominance of 1i11/2. Then, the dominant 1i11/2 (2g9/2)
component leads to a large (small) change of radii for the

corresponding kink behavior. However, as we mentioned in
the previous Sn case, this explanation was less persuading for
the Sn isotopes, where the DD-LZ1 and PKA1 conclude large
kinks, even though their occupation probabilities of 1h9/2 for
extended radii are minor, as shown in Fig. 8.

The SGII EDF gives the notable kink, while the 2g9/2

orbital appears just above the N = 126 shell gap. Neverthe-
less, this can be understood as follows: the energy difference
between the 2g9/2 orbital and the 1i11/2 one is small for the
SGII case compared with the other calculations. Accordingly,
as seen in Fig. 16, the occupation probability of 1i11/2 is sub-
stantially large, even though that of 2g9/2 is larger than 1i11/2.
Hence, the effect of the 1i11/2 orbital is appreciable. Then,
one puzzle appears. Even though the strengths of isoscalar
and isovector spin-orbit interactions, W0 and W ′

0 , are the same
in the SGII EDF, the kink can appear in almost the same
size with the SAMi EDF, in which W0 �= W ′

0 . This is in con-
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FIG. 16. Occupation probability of orbitals above the N = 126
shell gap for 210Pb calculated by using nonrelativistic EDFs.
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FIG. 17. Same as Fig. 16, but by using relativistic EDFs.

trast to the claim in Refs. [5,46]. Thus, we cannot find any
strong relation between the isoscalar and isovector spin-orbit
strengths and the kink behavior. Lastly, we should notice that
the Skyrme tensor interaction also introduces the spin-orbit
mean field of SAMi-T, but its effect is tiny, as in the Sn case.

Figures 19 and 20 show the correlation between the av-
eraged single-particle energies ε of the 1i and 2g orbitals in
210Pb and the kink size �2Rch. There is a weak correlation
between ε of the 1i orbital and the kink size. This can be
understood that, as ε of the 1i orbital is small, the 1i11/2 orbital
becomes lower and accordingly the occupation probability of
the 1i11/2 orbital becomes larger. The occupation probability
of the 1i11/2 orbitals is correlated to the kink size as discussed
above. In contrast to the case of 134Sn, there is also a weak
correlation between ε of the 2g orbital and the kink size;
while the correlation is opposite to that for the 1i orbital.
In Figs. 21 and 22, the correlation between the difference
between two average energies, ε2g − ε1i, and the kink size is
shown. We found that there is an obvious correlation between
ε2g − ε1i and �2RPb

ch in both the nonrelativistic and relativistic
calculations. This clearly indicates that the kink size �2RPb

ch
also depends on properties of the central nuclear potential as
well.
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D. Parameters of nuclear equation of state

Next, we will discuss whether parameters of the equa-
tion of state (EoS) affect the kink behavior. The SAMi EDF
has three families: SAMi-J, SAMi-m, and SAMi-K families.
In these families, the fitting protocol of the EDF parameters
is basically the same as the original SAMi EDF, besides one
of the EoS parameters is fixed to be a selected value: each
member of the SAMi-J family assumes a different symmetry
energy coefficient J at the saturation density, the SAMi-m
member assumes the different effective mass m∗, and the
SAMi-K member assumes the different incompressibility K∞.
Figures 23–25, respectively, show the slope �RSn

ch as func-
tions of the mass number A for the SAMi-J, SAMi-m, and
SAMi-K families. If the value of �Rch increases sharply at
A = Amagic, the large kink appears at the magic number Amagic.
The results of the SAMi-K family show an almost complete
overlap with each other below the N = 82 gap, while they
show tiny differences above the gap although there is no
clear tendency of K∞. Therefore, it can be concluded that the
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FIG. 23. Relative change of charge radii �Rch of Sn isotopes as
a function of A calculated by using the SAMi-J family.
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FIG. 24. Same as Fig. 23, but by using the SAMi-m family.

incompressibility K∞ scarcely has any visible impact on
the value Rch. Different SAMi-m EDF gives similar �Rch

above the N = 82 gap but slightly different tendency in
the region 66 � N � 82. This may be because the effec-
tive mass changes the level distance between single-particle
states, which leads to the different occupancy. Accordingly,
the smaller effective mass gives smaller kink, but its effect is
minor. The size of kink simultaneously depends on the level
spacing, which is not attributable only to the effective mass
but also to other parameters [54].

Different SAMi-J EDF gives slightly different behavior of
�Rch above the N = 82 gap. For simplicity, let us assume that
all the SAMi-J EDFs give the same Rch at N = 82. Then,
naturally, a larger symmetry energy gives a larger neutron
radius of 132Sn. Adding two neutrons to 132Sn, these two
neutrons change the proton radius due to the proton-neutron
interaction, which is strongly related to the symmetry energy.
The larger neutron radius leads to the larger proton radius of
134Sn. In addition, the proton-neutron interaction between the
last two neutrons and the protons is important. As a net effect,
the larger J gives the larger Rch at N > 82, as mentioned in
Ref. [9] for mercury isotopes.
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FIG. 25. Same as Fig. 23, but by using the SAMi-K family.
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FIG. 26. Same as Fig. 23, but for Pb isotopes.

The similar results can be found in Pb isotopes, while all
the parameter sets give the similar results below the N = 126
magic number, as shown in Figs. 26–28.

E. Pairing interaction and its strength

We will discuss now whether the pairing strength affects
the kink behavior. Figures 29 and 30, respectively, show the
slope �RSn

ch and �RPb
ch as functions of the mass number A for

different pairing strengths of the volume-type pairing with
the SAMi EDF and Table VII shows the kink indicators for
both Sn and Pb isotopes. Here, V0 = 213.7 MeV fm3 is the
adopted strength, which reproduces the neutron pairing gap of
120Sn as 1.4 MeV. Note that the calculation without the pair-
ing (V0 = 0 MeV fm3) does not reach convergence; thus, the
results are not shown here. Although the behaviors below or
above the shell gap are different for different pairing strengths,
results calculated with weaker pairing strengths give similar
behavior around the magic numbers. The kink indicator �2Rch

is larger if the pairing strength is stronger for Sn isotopes,
while the opposite behavior is shown for Pb isotopes. Note
that results with V0 = 250 and 300 MeV fm3 give different
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FIG. 27. Same as Fig. 24, but for Pb isotopes.
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FIG. 28. Same as Fig. 25, but for Pb isotopes.
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FIG. 29. Relative change of charge radii �Rch of Sn isotopes as
a function of A for different pairing strengths of the volume-type
pairing with the SAMi EDF.
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FIG. 30. Same as Fig. 29, but for Pb isotopes.

054307-14



COMPARATIVE STUDY ON CHARGE RADII AND THEIR … PHYSICAL REVIEW C 107, 054307 (2023)

TABLE VII. Kink indicator �2RSn
ch and �2RPb

ch for Sn and Pb
calculated by the nonrelativistic SAMi EDF with various pairing
strength of the volume-type pairing are also listed. All values are
given in units of 10−3 fm.

Strength V0 �2RSn
ch �2RPb

ch

50 +7.381 +10.257
100 +8.066 +10.071
150 +8.445 +9.626
200 +9.185 +9.245
213.7 +9.863 +9.605
250 +2.646 +1.914
300 +0.441 +0.183

behavior. This is because they give the finite pairing gap even
for 132Sn and 208Pb, i.e., 132Sn and 208Pb are no longer magic
nuclei. Therefore, it is concluded that the pairing strength does
not affect the kink behavior strongly, as long as the magicity
remains unchanged.

Figures 31 and 32, respectively, show the slope �RSn
ch and

�RPb
ch as a function of the mass number A for different types of

pairing interaction with the SAMi EDF. Table VIII shows the
kink indicates for both Sn and Pb isotopes. Here, the pairing
interaction used is written as

Vpair(r) = −V0

(
1 − α

ρ(r)

ρ0

)
δ(r), (6)

where ρ0 = 0.16 fm−3 is the saturation density and α =
0, 1/2, and 1, respectively, correspond to the volume-
type, mixed-type, and surface-type pairings. The strengths
V0 are, respectively, 213.7, 322.4, and 558.0 MeV fm3 for
volume-type, mixed-type, and surface-type pairings, which
are determined to reproduce the neutron pairing gap of 120Sn
as 1.4 MeV. It is seen in the figures that, as long as these
volume-type, mixed-type, and surface-type pairings are used,
no significant difference can be found, while the mixed pairing
shows the strongest kink indicator. Note that the pairing gaps
of 132Sn obtained by the mixed-type and surface-type pair-
ings are, respectively, 0.50 and 1.47 MeV and that of 208Pb

+8

+10

+12

+14

+16

+18

+20

+22

+24

100 104 108 112 116 120 124 128 132 136 140 144

Δ
R

S
n

ch
(A

)
(1

0−
3
fm

)

A

Volume
Mixed
Surface

FIG. 31. Relative change of charge radii �Rch of Sn isotopes as
a function of A for different types of pairing interactions with the
SAMi EDF.
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FIG. 32. Same as Fig. 31, but for Pb isotopes.

obtained by the surface-type pairing is 0.55 MeV. These finite
gaps mean that the magicities of these nuclei are effectively
broken by the pairing correlations.

F. Ca isotopes

The mass number A dependence of RCa
ch (A) − RCa

ch (48) for
Ca isotopes calculated by nonrelativistic (SHF) and relativis-
tic (RMF and RHF) EDFs are shown in Figs. 33 and 34,
respectively. For comparison, experimental data [55,56] are
also plotted. The kink sizes for Ca isotopes are summarized in
Tables IX and X.

We can see that the kink evolution of Ca isotopes, espe-
cially, around the N = 28 kink, is quite different from those of
Sn and Pb isotopes. Compared with the calculated results, the
systematic behavior of experimental Rch values, even N < 28,
is not well described. Indeed, it is suggested in several works
[7,57,58] that beyond-mean-field effects are important in Ca
isotopes. This is an open and intriguing problem for the mi-
croscopic model beyond mean field.

IV. CONCLUSION

In this paper, the sudden change of the mass-number de-
pendence of the charge radius at the neutron shell gap, the
so-called kink behavior, is discussed for Sn and Pb isotopes
by using the nonrelativistic Skyrme, relativistic mean field
(RMF), and the relativistic Hartree-Fock (RHF) calculations.
In general, the RHF calculations give the larger kink with
positive kink indicators and the Skyrme calculations give the
smaller positive values. One exception among the Skyrme
EDFs is the SAMi series which gives exceptionally larger
kink. Abnormal behavior of the kink is induced by some
Skyrme EDFs, for instance, the UNEDF series, which give

TABLE VIII. Same as Table VII but for the different pairing
interaction.

Type of pairing interaction �2RSn
ch �2RPb

ch

Volume +9.863 +9.605
Mixed +11.526 +12.085
Surface +2.251 +9.812
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FIG. 33. Same as Fig. 1, but for Ca isotopes. Experimental data except 40Ca are taken from Refs. [55,56], instead of Ref. [3].

the opposite behavior, a negative value for the kink indicator.
In order to reproduce the kink behavior for the Sn isotopes,
the occupation probability of the 1h9/2 orbital should be
large enough. On the other hand, if the occupation proba-
bility of the 3p3/2 orbital is large, the antikink may appear.
In the case of Pb isotopes, a larger occupation probabil-
ity of the 1i11/2 orbital gives a larger kink indicator at the
N = 126 shell gap. To make such occupancy, the spin-orbit

TABLE IX. Same as Table II, but of Ca together with �RCa
ch (48)

and �RCa
ch (50).

EDF �RCa
ch (48) �RCa

ch (50) �2RCa
ch

UNEDF1 +10.272 +15.999 +5.727
UNEDF2 +9.611 +16.829 +7.218
UNEDF0 +5.814 +13.268 +7.454
SAMi +11.096 +21.330 +10.234
HFB9 +5.729 +17.407 +11.678
SLy5 +6.153 +18.080 +11.927
SGII +6.334 +18.378 +12.044
SLy4 +5.421 +17.856 +12.435
SAMi-noT +7.702 +20.374 +12.672
SKMs +3.182 +15.861 +12.679
SAMi-T +6.976 +19.841 +12.865

Expt. −17.8 +41.5 +59.3

mean-field must not be too strong. Note that the averaged
value of the single-particle energy for the spin-orbit doublet
also affects the occupation probability.

Analyzing the RHF calculation, the tensor interaction,
which contributes to the spin-orbit mean-field potential, is
concluded as an essential ingredient to produce such proper
occupations of the single-particle states and to reproduce
well the kink behavior. Compared with the tensor effect of
RHF, the effect of the Skyrme tensor interaction in SAMi-T
EDF is found to be tiny. The different strengths between

TABLE X. Same as Table IX, but by using relativistic EDFs.

EDF �RCa
ch (48) �RCa

ch (50) �2RCa
ch

DD-PC1 +3.671 +16.293 +12.622
PKDD +1.674 +19.694 +18.020
PKO2 +2.670 +24.965 +22.295
DD-ME2 (Surface) −0.019 +24.576 +24.595
PKO1* −2.174 +23.201 +25.375
PKO1 −0.956 +25.284 +26.240
DD-ME2 (TMR) −1.631 +25.863 +27.494
PKO3 −0.550 +27.110 +27.660
DD-LZ1 −10.279 +31.533 +41.812
PKA1 −15.149 +29.323 +44.472

Expt. −17.8 +41.5 +59.3
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FIG. 34. Same as Fig. 2, but for Ca isotopes. Experimental data except 40Ca are taken from Refs. [55,56], instead of Ref. [3].

the isoscalar and isovector spin-orbit interactions in the
Skyrme EDF, W0 �= W ′

0 , may not be an absolutely necessary
condition to reproduce the kink behavior, since the kink can
be produced even by some Skyrme EDFs with W0 = W ′

0
spin-orbit interactions. Hence, the proper determination of the
strength of the isoscalar and isovector spin-orbit interactions
is demanded. Considering the reference data for this
interest, experimentally these spin-orbit interactions manifest
themselves in the spin-orbit splittings of odd-mass nuclei.
However, these levels are affected by the particle-vibration
coupling [59], which is not considered in this paper. It should
be noted that the isovector-scalar δ meson can also introduce
the spin-orbit interaction with the isospin dependence [7,60–
62]. As shown in Ref. [7], the δ meson in the RMF calculation
is an alternative way to reproduce the kink.

We also investigated whether parameters of nuclear equa-
tion of state affect such kink behavior. It is found that the
symmetry energy affects appreciably to change the magni-
tude of the kink indicator in a similar way to induce the
neutron-skin thickness. The effective masses affect the kink
behavior slightly; smaller effective mass gives smaller kink.
In contrast, the nuclear incompressibility scarcely affects the
kink behavior.

Mass number dependence of the charge radii of Ca isotopes
is rather different from those Sn or Pb isotopes, which implies
the importance of beyond-mean-field effects.

The form of the pairing interaction is still under debate. For
instance, the derivative dependence such as the Fayans-type
[63,64], isoscalar pairing [65–71], and spin-triplet pairing
[72–74] have been discussed recently. The pairing strength
for the deformed nuclei might be different from that for the
spherical nuclei [71,75,76]. Effects of them to the kink be-
havior are left for future perspectives. The beyond-mean-field
effect can also affect the kink behavior [7,9,10], which is out
of the scope of this paper and remains for future perspectives,
since we focused only on the mean-field level in this paper.
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APPENDIX: SPIN-ORBIT CONTRIBUTION
OF CHARGE RADII

The fourth and fifth terms of Eq. (2) are called the spin-
orbit contributions, originating from the nucleon magnetic
moments. These terms have not been considered in most
works [18], while it was also discussed that these terms are not
negligible if one discusses the tiny contribution or compare
with the experimental data precisely [40,77,78]. In this Ap-
pendix, we will discuss the effect of the spin-orbit contribution
to nuclear charge radii and their kink behavior for Sn and Pb
isotopes.

The spin-orbit contribution of charge radii is [40,77]

〈r2〉SOτ � κτ

M2
τ Nτ

∑
a∈occ

Naτ 〈l · σ〉, (A1)

where Nτ = Z for τ = p, Nτ = N for τ = n, κτ and Mτ are,
respectively, the magnetic moment and the mass of nucleons
τ , and Naτ is the occupation number of the orbital a. It is
obvious that the s orbitals do not contribute to 〈r2〉SOτ ; if the
spin-orbit doublets are completely occupied, contribution of
these two orbitals cancel each other out. Therefore, only the
spin-orbit doublets partially occupied contributes to 〈r2〉SOτ .

The proton spin-orbit contribution to the charge radius,
〈r2〉SOp, is rather simple. Only the 1g9/2 orbital (〈l · σ〉 = +4,

Na = 10) and only the 1h11/2 orbital (〈l · σ〉 = +5, Na =
12), respectively, contribute to 〈r2〉SOp in Sn and Pb iso-
topes; hence, the contribution can be, respectively, estimated
as 〈r2〉SOp = 0.0634 fm2 and 0.0580 fm2. These contributions
are common for each isotopic chain, and thus the proton
spin-orbit contribution just shifts the graphs of Figs. 1, 2, 3,
and 4 upwards, and the kink behaviors are not changed.

In contrast, the spin-orbit contributions of the neutrons
〈r2〉SOn affect the kink behavior. Note that the magnetic mo-
ment of neutrons κn is negative. First, let us focus on Sn
isotopes. Below the N = 82 shell gap, the highest orbital is
the 1h11/2 orbital (〈l · σ〉 = +5), which gives the negative
〈r2〉SOn of N < 82 isotopes, and thus, the slope below N = 82
becomes mild if the spin-orbit contribution is considered. In
contrast, above the N = 82 shell gap, either the 1h9/2 orbital
(〈l · σ〉 = −6), the 2 f7/2 orbital (〈l · σ〉 = +3), or 3p3/2 or-
bital (〈l · σ〉 = +1) are mainly occupied. If the 1h9/2 orbital
is mainly occupied in N > 82 isotopes, the spin-orbit contri-
bution leads to the slope above N = 82 steep, and thus the
kink becomes strong. On the contrary, if the 2 f7/2 or 3p3/2

orbital is mainly occupied in N > 82 isotopes, the spin-orbit
contribution leads to the slope above N = 82 mild, but the
kink becomes slightly strong.

In the case of Pb isotopes, below the N = 126 shell gap,
the highest orbital is the 3p1/2 orbital (〈l · σ〉 = −2), which
gives the positive 〈r2〉SOn of N < 126 isotopes, and thus, the
slope below N = 126 becomes steep if the spin-orbit con-
tribution is considered. In contrast, above the N = 126 shell
gap, either the 1i11/2 orbital (〈l · σ〉 = −7), the 2g9/2 orbital
(〈l · σ〉 = +4), and 1 j15/2 orbital (〈l · σ〉 = +7) are mainly
occupied. If the 1i11/2 orbital is mainly occupied in N > 126
isotopes, the spin-orbit contribution leads to the slope above
N = 126 steep, and thus the kink becomes strong. On the
contrary, if the 2g9/2 or 1 j15/2 orbital is mainly occupied in
N > 126 isotopes, which leads to the slope above N = 126
mild, the kink becomes weak.
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[72] T. Oishi, G. Kružić, and N. Paar, Role of residual interaction in
the relativistic description of M1 excitation, J. Phys. G: Nucl.
Part. Phys. 47, 115106 (2020).
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