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In two recent articles we have formulated nuclear mean-field theory predictions of existence of a new
form of magic numbers, referred to as fourfold magic numbers. These predictions stipulate the presence of
strong shell closures at the neutron numbers N = 136 (actinide region) and N = 196 (superheavy region)
simultaneously at nonvanishing all four octupole deformations α3μ=0,1,2,3 �= 0. In contrast to the traditional notion
of magic numbers, the new notion refers to simultaneous nonspherical configurations (α3μ �= 0, α2μ = 0). In this
article we study the nuclear equilibrium deformations with α33 �= 0 combined with nonvanishing quadrupole
deformation, α20 �= 0. One easily shows that such geometrical shapes have a threefold symmetry axis and
are invariant under the symmetry operations of the D3h point group. We employ a realistic phenomenological
mean-field approach with the so-called universal deformed Woods-Saxon potential and its recently optimized
parametrization based on actualized experimental data with the help of the inverse problem theory methods. The
presence of parametric correlations among 4 of 12 parameters in total was detected and removed employing
Monte Carlo approach leading to stabilization of the modeling predictions. Our calculations predict the presence
of three nonoverlapping groups of nuclei with D3h symmetry, referred to as islands on the nuclear (Z, N) plane
(mass table). These islands lie in the rectangle 110 � Z � 138 and 166 � N � 206. The “repetitive” structures
with the D3h symmetry minima are grouped in three zones of oblate quadrupole deformation, approximately, at
α20 ∈ [−0.10, −0.20] (oblate normal deformed), around α20 ≈ −0.5 (oblate superdeformed) and α20 ≈ −0.85
(oblate hyperdeformed). Importantly, the energies of those latter exotic deformation minima are predicted to be
very close to the ground-state energies. We illustrate, compare, and discuss the evolution of the underlying shell
structures. Nuclear surfaces parametrized as usual with the help of real deformation parameters, {αλμ = α∗

λμ},
are invariant under Oxz-plane reflection, the symmetry also referred to as y simplex (Ŝy). For the shapes
with odd-multipolarity (λ → λodd = 3, 5, 7, . . .) it follows that E (−αλodd ,μ) = E (+αλodd,μ). It turns out that
the predicted equilibrium deformations generate symmetric double (or “twin”) minima separated by potential
barriers, whose heights vary with the nucleon numbers, possibly inducing the presence of parity-doublets in the
spectra. To facilitate possible experimental identification of such structures, we examine the appearance of such
doublets solving the collective Schrödinger equation. Implied suggestions are illustrated and discussed.

DOI: 10.1103/PhysRevC.107.054304

I. INTRODUCTION

Studying nuclear structure properties of exotic nuclei with
possibly large numbers of either protons, Z , or neutrons, N ,
or both simultaneously and in particular the issue of their
stability is one of the most actively followed research di-
rections in contemporary subatomic physics. Whereas the
experimental research is being performed in international lab-
oratories using most performant instrumentation and focusing
on the nuclear species which can be produced and detected
contemporarily, theory applications address various methods

*jerzy.dudek@iphc.cnrs.fr

of modeling applied to broader areas of the nuclear mass
table. Extending the theory investigations, sometimes far from
the presently accessible nuclear mass areas, plays an impor-
tant role stimulating the development of possibly even more
performant instrumentations with the help of which, those
today inaccessible zones, could hopefully be accessed in the
future.

There is no place in this article to provide a review of this
rich and fast growing subject but the interested reader might
consult review articles, see, for instance, Refs. [1–6] and
references therein. Instead, it will be instructive to overview
selected aspects of this recent evolution, addressing super-
heavy nuclei—in particular in the areas of nuclear mass table
of interest in this article.
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One of the most important concepts, which allows con-
structing powerful approximate methods of modeling, is the
empirical observation that nuclei governed by short-range
strong interactions can be seen as compact objects with their
volumes close to the sums of the volumes of the participating
nucleons. Moreover, due to the short nuclear interaction range,
the resulting nuclear density distributions decrease to zero ex-
ponentially at the borders of the corresponding systems. This
latter general property justifies introduction of the notions of
the nuclear surface and the corresponding shape, which both
turn out to be the source of the precious and rich information
for testing theory and experiment. This applies in particular
to the issue of identification and examining the nuclear geo-
metrical symmetries with the help of the point-group theory
discussed in the recent Ref. [7].

The presence in nature of compact nuclear bodies with
generally nonspherical shapes brings us to two directly re-
lated notions of capital importance for contemporary nuclear
structure: The issue of the nuclear orientation with the implied
phenomenon of collective rotations and angular momentum
induced transitions and the issue of the shape oscillations and
the phonon and multiphonon excitations. As one can imme-
diately remark, the concept of nuclear shapes is extremely
instructive and rich in various implications with direct rela-
tions to experiment. The corresponding conceptual evolution
and underlying discoveries gave rise to the Nobel Prize to
Bohr, Mottelson, and Rainwater in 1975, cf. also Ref. [8].

Several superheavy nuclei with Z = 114–118 were discov-
ered and their identification confirmed through the hot fusion
processes in the past twenty years or so, see for instance
Refs. [9–12]. Today, the heaviest discovered superheavy el-
ements include 288

114Fl174, 292
116Lv176, and 294

118Og176, Ref. [13].
Attempts to produce or synthesize exotic elements with Z �
120 were discussed in Refs. [14–16]. In their recent review,
Ref. [17], the authors discuss possible reactions producing
superheavy nuclei. According to their estimates, nuclei in
the Z = 120 and N = 178–182 zone are expected to have
lifetimes of more than 90 ms.

The nuclear structure properties and global features of
superheavy nuclei were studied in parallel in many theory
projects over the past 70 years. One of the most important
subjects to address was the stability island of superheavy
nuclei.

Spherical shell closures with proton number Z = 114 and
neutron number N = 184 were predicted for the first time in
the superheavy region in Ref. [18], in 1966. These predic-
tions were reproduced in the later studies in Refs. [19–21];
besides that, spherical magic numbers at Z = 126 and N =
184 were predicted in Ref. [19] within phenomenological
mean field. Predictions employing microscopic techniques
such as self-consistent Skyrme-Hartree-Fock-Bogolyubov ap-
proach within effective density-functional formalism can be
found in Refs. [22,23].

The appearance of the spherical shell gaps at Z = 114,
N = 184, alternatively Z = 120, N = 172 or Z = 126, N =
184, predicted employing spherical relativistic and nonrela-
tivistic mean-field methods was discussed in Ref. [20]. The
hypothetical magic numbers Z = 120 and N = 184 were also
suggested in Refs. [21,24].

In this article we focus specifically on what we refer to as
an archipelago of superheavy nuclei, which present various
forms of the geometrical D3h symmetry. The nuclei in ques-
tion are contained in the mass range defined by the intervals
114 � Z � 132 and 166 � N � 206.

Our calculations were performed employing a realistic
phenomenological mean-field Hamiltonian optimized using
the inverse problem theory of applied mathematics, the ap-
proach employed in a recent study of Ref. [25]. The symmetry
aspects are treated with the help of the group representation
theory used to examine the impact of exotic nuclear point-
group symmetries on the nuclear quantum observables. For
this latter aspect the reader may consult Sec. IV of Ref. [7].

In what follows we present briefly the realization of the
well-known macroscopic-microscopic method of Strutinsky,
Refs. [26,27], in the version employed in this article. Pre-
sentation of the theoretical predictions accompanied by the
discussion and comparisons will be given next. It turns out
that predictions of the static nuclear equilibrium deformations
may be misleading; we address the issue of the dynamical
equilibrium deformations obtained by solving the collective
model of Bohr as the next topic. Mathematical aspects related
to the main focus of the article, D3h molecular symmetry in
subatomic physics, are presented in the Appendixes, where
we address specificities of the spherical harmonics shape rep-
resentation in terms of the real expansion coefficients αλμ

(deformation parameters) and various implied symmetry as-
pects.

II. CALCULATION METHOD and MODELING DETAILS

The prediction of an existence of “an archipelago of
islands” of superheavy nuclei manifesting D3h molecular sym-
metry, which will be presented in this article, can be seen as
an encouraging signal of new, challenging nuclear structure
mechanisms. Related theoretical predictions address deforma-
tion properties of heavy and superheavy nuclei resulting from
large-scale potential-energy calculations in multidimensional
deformation spaces. The obtained information about shapes
and shape competition can be linked with experiment for
instance by examining specific rotational band properties as
proposed in Ref. [7] or through selected electromagnetic tran-
sition properties. Indeed, the latter can be described with the
help of multipole moments, Q̂λμ, calculated from the defor-
mations at the predicted potential-energy minima by deducing
next the reduced transition probabilities and implied lifetimes
directly comparable with experiment.

A. Phenomenological Woods-Saxon mean-field realization
within macroscopic-microscopic method

In the following we present our results of the calcula-
tions of nuclear energies for superheavy nuclei in the mass
range 114 � Z � 132 and 166 � N � 206. We calculate the
nuclear energies using macroscopic-microscopic Strutinsky
method, Refs. [26,27], with a realistic phenomenological
mean-field Hamiltonian. We use a deformed Woods-Saxon
potential in its “universal” parametrization, Refs. [28,29]. The
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adopted realization follows closely the one employed and
described in detail in Refs. [7,25].

According to Strutinsky approach the nuclear energy can
be expressed as the sum of the so-called macroscopic and
microscopic energy terms as follows:

E (Z, N ) = Emac(Z, N ) + δE (π )
mic

({
e(π )
ρ

}) + δE (ν)
mic

({
e(ν)
ρ

})
.

(1)

We use the macroscopic energy term in the FRLDM real-
ization of Refs. [30], and parametrization from Ref. [31].
The so-called microscopic part of the energy expression, is
given by the sum of two terms referred to as “shell” or “shell
correction” and “pairing,” or “pairing correction” terms, re-
spectively,

δE (π,ν)
mic = δE (π,ν)

shell + δE (π,ν)
pair , (2)

according to standard notation.
The nuclear shapes are defined in terms of the spherical

harmonic {Yλμ} expansion of the nuclear surface �:

� : R(ϑ, ϕ; α) = R0c(α)

⎡
⎣1 +

∑
λμ

α∗
λμYλμ(ϑ, ϕ)

⎤
⎦, (3)

with deformation parameters,1 in principle complex, repre-
sented by the spherical tensors {αλμ} ↔ α with non-negative
integer indices λ and μ limited by −λ � μ � λ. The radius
parameter R0 = r0A1/3 (see below) whereas c(α) represents
a deformation-dependent numerical factor assuring that the
volume of the nucleus remains constant, independent of de-
formation.

There are several advantages of using spherical harmonics
in the nuclear shape description. First, they form a com-
plete set of orthogonal functions and thus can be employed
as orthonormal basis. Second, they are the basis functions
of the irreducible representations of the group SO(3), the
group of rotations in three dimensions. The latter plays an
important role, among others in describing the nuclear spatial
orientations. Since the point-groups, and in particular the D3h

one, which are of central interest for the present project, are
subgroups of SO(3), it follows that one can directly derive
the links between the nuclear mean-field geometry and the
nuclear quantum rotor properties related to nuclear orienta-
tion. The latter provide experimental identification criteria of
the point-group symmetries. The reader interested in related
mathematical aspects may consult Sec. IV B of Ref. [7], in
particular, Eqs. (30) and (31) and the surrounding text. Further

1In the following we need to express the energy dependence on
nuclear deformations but the presence of the double index tensor
notation αλμ may occasionally lead to ambiguities. One type of
the energy dependence used below, written as E ({αλμ}) or E (α),
expresses a dependence on the ensemble of all the deformations.
Another form, for instance, relations like E (−α33) = E (α33), em-
phasize a dependence on one deformation among others. Similarly
expressions of the form E (α4μ) or E (αλμ) emphasize dependencies
on a single deformation.

specific mathematical properties related to nuclear geome-
try and exotic symmetries are summarized in Appendixes A
and B.

The ensemble of single-nucleon energies, {eρ}, used in
calculating the Strutinsky energies in Eq. (1), is obtained
by solving numerically the Schrödinger equation with the
Woods-Saxon mean-field Hamiltonian

ĤW S = T̂ + V̂W S + V̂ so
W S + V̂Coulomb, (4)

where T̂ denotes the nucleonic kinetic-energy operator and
V̂W S is the central Woods-Saxon potential given by

V̂W S (�r, α;V c, rc, ac) = V c

1 + exp [dist� (�r, Rc; α)/ac]
, (5)

whereas the spin-orbit potential is defined as usual with the
help of the gradient of the Fermi-type functions by

V̂ so
W S (�r, p̂, ŝ, α; λso, rso, aso) = 2h̄λso

(2mc)2

[( �∇V so
W S

) ∧ p̂
] · ŝ, (6)

where

V so
W S (�r, α;V c, rso, aso) = V c

1 + exp [dist� (�r, Rso; α)/aso]
. (7)

The nucleonic position is denoted by �r ≡ {x, y, z}, the sym-
bols V c, rc, ac, represent central potential depth, radius, and
diffusivity parameters, respectively, whereas λso, rso, aso stand
for spin-orbit potential strength, radius, and diffusivity pa-
rameters, correspondingly. We have Rc ≡ rcA1/3 and Rso ≡
rsoA1/3. The argument dist� (�r ) in the exponentials denotes
the distance between the nucleon position point �r and the
nuclear surface �.

With the two mean-field potentials, one for the protons and
one for the neutrons, we have two Hamiltonians with two sets
of six parameters each,

{V c, rc, ac; λso, rso, aso}π,ν . (8)

The resulting Schrödinger equations for both types of nucle-
ons,

ĤW Sψρ = eρψρ, (9)

are solved numerically employing standard harmonic-
oscillator basis-expansion and diagonalization methods. To
enable numerical applications of a basis composed in prin-
ciple of infinite number of elements, a preselection of a finite
number of them (basis cutoff) assuring an acceptable stability
of the final diagonalization results is necessary. Obviously,
the more the potential of interest deviates from the harmonic
oscillator and the shapes of the nuclear surface from the spher-
ical one, the higher the cutoff needed.

It turns out that increasing deformation parameters αλμ

leads directly to increasing the complexity in the spatial de-
pendence of the potentials in Eqs. (5)–(7) and the need of
larger and larger number of the harmonic-oscillator basis
states to stabilize the final result: the single-nucleon energies.
Since the richness of the nodal structure of the single nucleon
wave function increases with increasing nucleon energy, these
are the states with the highest-lying single-particle energies
which are, on the average, the most sensitive with respect
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to the basis cutoff. Combining the two properties, we opti-
mized the deformed harmonic-oscillator (HO) basis adapting
the basis cutoff in such a way that the highest single-particle
energies at the extremities of the used deformation space
(extremities of the tesseract) change with increase of the basis
cutoff not stronger than at the third decimal place.

B. Selected symmetry properties: Nuclear surfaces
and mean-field Hamiltonians

In the present project we employ multidimensional de-
formation spaces, in which the quadrupole deformation
subspace {α20, α22} is combined with the octupole defor-
mation subspace {α30, α31, α32, α33}, supplemented with the
hexadecapole one composed of α40, α42, and α44. Within
our deformation space the D3h-symmetric nuclear surfaces
involve either deformation α33 pure, or combined with axial
quadrupole, α20 and/or axial hexadecapole α40 deformations.
Higher-order-λ spherical harmonics with μ = ±3 may also
generate the D3h symmetry. We verified that they do not have
any significant impact in the present context and therefore
were not included in the calculations.

Under certain conditions, cf. Appendix A, the nuclear sur-
faces defined by the deformation parameters, αλμ, and its
opposite, −αλμ, represent exactly the same geometrical fig-
ures except for the orientation with respect to the original
reference frame. As a consequence, for any single deforma-
tion with this property, the corresponding nuclear mean-field
Hamiltonians satisfy the symmetry

Ĥmf (−αλμ) = Ĥmf (+αλμ) (10)

and it follows that the same is valid for the resulting nuclear
energies

E (−αλμ) = E (αλμ). (11)

Therefore one can limit numerical calculations, e.g., to a
positive, αλμ > 0 semi-axis of the related deformation, thus
gaining a factor of two in terms of the computing time.

The symmetry relations in Eqs. (10) and (11), apply in
particular to all the four octupole deformations α3;μ=0,1,2,3

discussed in this article so that

E (−α3μ) = E (α3μ), μ = 0, 1, 2, 3, (12)

in particular for the nuclei for which we find the equilibrium
deformations with the shapes invariant under the D3h symme-
try point group. In the simplest variant, i.e., all deformations
vanishing except for α33 �= 0, and recalling that α33 = −α3−3,
cf. Appendix A, the corresponding D3h symmetric surface
takes the form

R(θ, ϕ; α33) ∝ {1 + α33[Y33(ϑ, ϕ) − Y3−3(ϑ, ϕ)]}. (13)

Results of our macroscopic-microscopic calculations sug-
gest that molecular point-group symmetry D3h appears as the
shape-symmetry of many heavy and superheavy nuclei. An-
ticipating the detailed presentation of the calculation results
later in the article it will be instructive to illustrate at this point
some of the corresponding elementary geometrical features,
cf. Fig. 1.

FIG. 1. Illustration of D3h symmetric nuclear surfaces corre-
sponding to local minima of the potential energies discussed in this
article. Red, green, and blue arrows represent Ox , Oy, and Oz axes,
respectively. (upper panel) Example of a shape referred to as “normal
deformed,” here with α20 = −0.20 and α33 = 0.10. (middle panel)
Strong, oblate deformation referred to as superoblate with α20 =
−0.60 and α33 = 0.20 and (bottom panel) using similar terminology,
hyperoblate one, with α20 = −0.90 and α33 = 0.20. The vertical axis
coincides with the highest rank threefold symmetry axis, Ĉ3 operation
with the rotation angle 2π/3 (or 120◦).

From the experimental symmetry-identification view point,
the studied D3h configurations might influence the quan-
tum mechanism engaged in experiment quite differently. For
instance some collective vibrations may signal their pres-
ence via inherent parity doublet excitations, cf. Sec. IV. The
strongly oblate (super- or hyperdeformed) shapes are expected
to have relatively low decay barrier; we avoid using at this
point the term “fission barrier” because with the shapes pre-
dicted (see illustrations in Fig. 1, especially the middle and
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bottom panels) the expected decay mode via barrier penetra-
tion will be that of a tripartition. Consequently, observation of
three fragments of comparable masses could serve as a pre-
cious experimental identification help in the present project.

III. MULTIDIMENSIONAL POTENTIAL ENERGIES:
RESULTS AND DISCUSSION

Let us begin by presenting typical results obtained us-
ing our realization of the macroscopic-microscopic method
with the help of selected representative examples of nuclear
potential-energy surfaces.

A. Main characteristics of two-dimensional energy projections
in the deformation space employed

In the preceding sections we introduced the nuclear defor-
mations with the help of the multipole expansion and the basis
of spherical harmonics, {Yλμ}, together with the associated
deformation parameters {αλμ}. We need to provide an optimal
selection of the retained multipolarities by beginning with the
lowest-λ terms and adding the higher ones within the cutoff
imposed by the computing systems at our disposal. Such a
step by step approach is supported also by arguments based
on the liquid drop model, Ref. [31] and references therein. In-
deed, it turns out that the liquid-drop surface-energy increases
significantly faster for a higher λ than for a smaller one. In
other words: On average, αλμ with higher order λ, produce
much faster growing contributions of the macroscopic energy
as compared with lower λ contributions and can often be ne-
glected when addressing the lowest energies. Some practical
criteria in decision taking within a semiquantitative trial and
error multipolarity optimization search can be schematized as
follows.

To begin we selected the following reference deformation
sets: {αref}μ = {α20, α22, α3μ=0,1,2,3, α40}, one set per each
octupole deformation α3μ, and calculated the corresponding
energy landscapes, which generally contain competing local
minima. We verified that in the discussed (Z, N ) mass table
area, the nonaxial quadrupole deformation α22 does not lead
to lowering the energies of the minima of principal interest,
whereas α33 �= 0 (in contrast to α30, α31 and α32) generates
low-lying minima.

Next we examined possible impacts of alternative defor-
mation(s). Profiting from the fact that α22 was shown to play
only a secondary role we replaced it and considered the sets
of the structure {α20, α33, α40, αλ′,μ′ } with αλ′,μ′ chosen as α42,
α44, α50, or α60 and tested the impacts of the newly added
components on the local minima and the heights or widths of
the potential barriers separating the competing minima. After
comparisons, we retained {α20, α22, α33, α40} selection for all
the energy minimizations illustrated in this article.

We begin with the results for three representative nuclei:
302
118Og184, 292

124Ubq168, and 318
130Utn188, Fig. 2, each one illustrat-

ing its group of neighbors forming the three “islands of the
archipelago,” with the following properties:

(i) case 302
118Og184: D3h-symmetric, oblate, normal de-

formed nuclei, α33 �= 0 and α20 ∈ [−0.15,−0.20];

(ii) case 292
124Ubq168: D3h-symmetric, oblate, superde-

formed nuclei, α33 �= 0 and α20 ∈ [−0.50,−0.60];
(iii) case 318

130Utn188: D3h-symmetric, oblate, hyperde-
formed nuclei, α33 �= 0 and α20 ∈ [−0.80,−0.90].

Our approach leads to four-dimensional (4-D) potential-
energy landscapes. To present them as contour plots in the
different figures of this article, we have minimized the energy
according to the other deformation parameters. For example,
to determine Fig. 2, we have minimized the energy according
to α33 and α40 while keeping α20 and α22 (the axes of the
figure) constant.

At this point, commenting about graphical conventions
followed in this article will be in place. First, we wish to
avoid causing false interpretation of, e.g., structures of the
barriers, energy valleys, etc., possibly caused by the fact that
the units on the horizontal and vertical axes are different, e.g.,
set arbitrarily by the plotting system. Therefore we assure that
the step sizes on the x and y axes representing dimensionless
variables αλμ and αλ′μ′ are strictly the same. Consequently, the
landscape characteristics such as for instance widths of the
potential barriers separating the minima remain comparable
from one plot to another. In other words, they appear with-
out distortions introduced by random choices of the scaling
factors of the axes—possibly reflecting the author sense of
aesthetic.

Another remark is related specifically to the potential-
energy landscapes in Figs. 2 and 3: Given strong differences
in the quadrupole deformation ranges for the upper, middle,
and bottom panels, 1.2, 1.5, and 1.8, respectively, the sizes of
the y axes of the plots were adjusted appropriately to obey the
convention of equal unit lengths on both axes.

The projections on the quadrupole deformation plane
(α20, α22) are equivalent, in terms of the so-called Bohr
(β, γ ) representation to β � 0 and γ ∈ [0◦, 360◦], Fig. 2. We
do not employ here the limitation sometimes referred to as
“camembert sectors,” with γ ∈ [0◦, 60◦] diagrams frequently
seen in the literature. This is because we use simultaneously
quadrupole and other deformations for which case such a
limitation would have been misleading or even wrong.

Nuclear potential energies illustrated in Fig. 2 are pro-
jected on the (α20, α22) quadrupole deformation plane, after
minimization over α33 and α40—for 302

118Og184, 292
124Ubq168, and

318
130Utn188. The three specific nuclei were selected for the
present comparison for two reasons. First, all presented cases
will be shown to manifest the D3h symmetry in the ground
or lowest-excited states. Second, each of them can be seen
as representing an ensemble of several surrounding nuclei
combining a certain common feature: An increasing degree
of flattening in terms of the quadrupole deformation α20 com-
bined with α33 deformation.

From Fig. 2 we can verify directly that the lowest-lying
minima correspond to vanishing quadrupole triaxiality, α22 =
0, combined with α20 ≈ −0.15 (upper panel), representing
302Og and its several neighbors in the mass table, as compared
with α20 ≈ −0.50 (middle panel), 292Ubq and its neighbors,
and finally α20 ≈ −0.90 (bottom panel), representative for
318Utn and its neighbors. The α22 vs α20 projection does not
allow us to deduce directly whether the minima correspond
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FIG. 2. Two-dimensional projections on the (α20, α22) plane of the nuclear potential energies calculated originally in the four-dimensional
space of variables {α20, α22, α33, α40}. Each point represents the result of minimization over α33 and α40. Whereas the diagrams show rather
rich shape coexistence, which in itself is worth interest, here we would like to focus on the α22 = 0 lowest energy minima: For 302Og at
α20 ≈ −0.15, for 292Ubq at α20 ≈ −0.50 and for 318Utn at α20 ≈ −0.85, corresponding to configurations referred to as oblate normal-, super-,
and hyperdeformed, respectively. All three mentioned minima will be shown in the following figure to correspond to significant α33 �= 0, and
thus to D3h-symmetry configurations. The quadrupole nonaxial symmetry minima at α22 �= 0, slightly higher in energy, can be considered of
general nuclear structure interest, however, they are not relevant for our discussion of the D3h symmetry aspects.
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FIG. 3. Illustration analogous to the one in Fig. 2 but with modified role of deformation parameters: Projection on the two-dimensional
plane of variables α33 vs α20 after minimizing over the remaining two variables, α22 and α40. Let us emphasize the presence of the D3h-symmetry
minima with α33 ≈ −0.10 superposed with oblate normal deformed component α20 ≈ −0.15 in 302Og (upper panel) and superdeformed one
with α20 ≈ −0.50 in 292Ubq (middle panel), respectively, compared with the 318Utn case (bottom panel), with α33 ≈ −0.20 combined with
α20 ≈ −0.90, thus referred to as hyperdeformed. Everyone among these three examples should be considered as representative for an ensemble
of several nuclei in their respective neighborhoods in the mass table.

054304-7



J. YANG et al. PHYSICAL REVIEW C 107, 054304 (2023)

to the nonvanishing α33 shape component. Therefore this in-
formation is provided in Fig. 3, which shows double (twin)
minima satisfying the condition E (−α33) = E (+α33), here
combined with decreasing α20 ≈ −0.15,−0.50 and −0.90.
The figure shows total-energy projections for the same nuclei
but with the projection (α20, α22) replaced by the projection
(α20, α33).

We conclude that by allowing for the minimization over
α33 and α40 within each (α20, α22) projection, the double
minima gain approximately as follows: 302Og, about 2 MeV
at α20 = −0.15; 292Ubq, about 1 MeV at α20 = −0.50 and
318Utn, about 5.5 MeV at α20 = −0.90. Since each of the
three nuclei is representative for dozens of similar cases in
the neighborhoods, we conclude that the new symmetry can
be sought experimentally in some dozens of nuclei in the
corresponding zones, see also comparisons in Figs. 7–10 in
the next sections.

Our calculations suggest yet another mechanism represent-
ing the properties of coupling or decoupling between various
multipolarities. To see explicitly what is meant, we compare
the next selection of two-dimensional (2-D) illustrations, pro-
jections on the (α33, α22)-plane presented in Fig. 4. These
results indicate that the D3h-symmetry structures do not cou-
ple at all with the quadrupole-triaxial ones. Information of this
type is very useful, when investigating a possible perturba-
tion of the D3h symmetry by other geometrical forms: In the
present case we are allowed to ignore coupling with α22 at
least to an approximation.

Yet another independence helping to simplify the interpre-
tation of the shape correlations (or, following an alternative
language, the “multipolarity independence”) is shown in
Fig. 5 suggesting that the D3h geometry does not couple with
the other octupole degrees of freedom, i.e., neither α30, nor
α31, nor α32. Indeed, this can be immediately seen from the
projections (α30, α20) vs (α31, α20) vs (α32, α20) shown in the
upper, middle, and bottom panels, respectively. This type of
information can be interpreted as “good news” for program-
ming experiments, which aim not only at finding the signals
of the corresponding superheavy nuclei but also identification
of the D3h symmetry in these nuclei via rotational band prop-
erties discussed in detail in Ref. [7].

B. From magic shell gaps in single-particle
spectra to shell energies

Discussions of an occurrence and competition between
nuclear potential-energy minima are often accompanied in the
literature by illustrations presenting openings in the single-
particle energy spectra (shell-gaps). The presence of such gaps
and of the shell-energy minima goes hand-in-hand accord-
ing to the theorem by Strutinsky—the single-particle energy
diagrams having advantage of a relative compactness and
simplicity.

Figure 6 illustrates the single-nucleon energy levels cor-
responding to varying octupole deformation α33 and thus
suggesting the presence of the shell effects, which are ex-
pected to generate the nuclear energy minima carrying the
D3h-symmetric structures. The diagrams show the presence of
some gap openings in the vicinity of N = 196 and 202–206

FIG. 4. Illustration of yet another type of total-energy projection,
(α33, α22), manifesting what we call a decoupling of the quadrupole
triaxiality α22 deformation, from the D3h-symmetry-imposing α33 de-
formation. Observe that the D3h minima at α33 �= 0 are well localized
at vanishing α22 (null quadrupole triaxiality).

or Z around 118–122 suggesting that the corresponding nuclei
are expected to play a leading role—but the diagrams of this
kind cannot provide more quantitative suggestions.
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FIG. 5. Diagrams illustrating the properties of coexistence (or rather lack of coexistence) between the D3h-symmetry octupole forms
α33 �= 0 and the remaining octupole deformations. Indeed, whereas 302Og manifests well pronounced α33 �= 0 minima, cf. Fig. 3, none of the
competing octupole deformations leads to static minima as seen from the three projections. Results seen are characteristic for many nuclei in
the mass range discussed in this article.
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FIG. 6. (upper panel) Single-neutron energy levels obtained using the universal mean-field Hamiltonian discussed in this article—as
functions of the D3h-symmetry generating deformation α33 at α20 = 0, for details see the text. Whereas certain gaps open with increasing
α33, cf. neutron number N = 196 as well as at N = 202, 204, and 206—at N = 178 and 184 they manifest a certain independence of α33

(remain approximately constant). (bottom panel) Similar to the preceding one but for the protons. Characteristic sequence of the octupole
shell-openings at Z = 118, 120, and 122 and the flatness at Z = 124 deserve noticing.

In these diagrams we fix the quadrupole deformation equal
to zero, and this despite the fact that nuclei discussed in this
project have by definition at least two significant nonvan-
ishing deformations: α33 responsible for D3h symmetry and
quadrupole-oblate, either hyper-deformed, or superdeformed
or normal-deformed. The idea behind fixing α20 = 0 is a
“pedagogical” one, since as it turns out, the pure octupole

deformations present the underlying characteristic octupole
shell-gap structures in the clearest fashion—the gaps are the
largest. In this way one should be able to reveal the leading
shell effects in the simplest fashion and present the anal-
ogous octupole tendencies superposed with the quadrupole
distortions using the shell energies rather than single-particle
energies.
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FIG. 7. (upper panel) Neutron shell energies defined as sums of the Strutinsky and pairing correction energies, for the isotopes labeled
with the neutron numbers at fixed proton number Z = 118. Observe the strongest D3h-symmetry driving effects at N ≈ 202 compared with the
opposite effect at N ≈ 168. (bottom panel) Analogous illustration for the protons at fixed neutron number N = 184 selected as a representative
case.

It will be instructive to compare directly the size of
the shell effects, specifically for the protons and the neu-
trons in the nuclei corresponding to the cited big-gap
generating particle numbers and their neighbors. This will
allow us to learn reading the single-particle energy dia-
grams like those in Fig. 6 by providing direct quantitative

comparisons with the nuclear energies. Indeed, Fig. 7, up-
per diagram, shows the sums of the neutron shell and
pairing energy contributions to the macroscopic energy
in the framework of the macroscopic-microscopic ap-
proach, whereas the lower one illustrates the same for the
protons.
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FIG. 8. (upper panel) Nuclear potential energy cross sections for fixed Z0 = 118 and the neutron number varying in the interval 174 � N �
190 as functions of α33 deformation. The energies are normalized to zero at the minimum. All the nuclei presented have the quadrupole α20

components at the equilibrium close to α20 ≈ −0.20 (“normal oblate”). Observe that in the case of N = 190 the nucleus gains nearly 3 MeV
by becoming D3h symmetric. The corresponding weakest variation (at N = 174) is nearly three times smaller. (bottom panel) Analogous to the
preceding one but for varying proton number at fixed central neutron number N = 184. Observe again an energy gain of about 3 MeV, when
allowing for the α33 variation in the case of the proton number Z = 126.

More precisely, the upper diagram in Fig. 7 shows the
nuclear shell-energies for isotopes of the Z = 118 (Og) nu-
cleus covering the neutron number range N ∈ [166, 208].
The strongest variation (lowering) of the shell energies with

α33 growing from 0 to about 0.2, corresponds indeed to
the neutron numbers in the subinterval [196,206] as seen
by reading the occupation numbers in Fig. 6, upper dia-
gram. These neutron shell effects can be considered “huge”
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FIG. 9. Results similar to those in the preceding figure but for the D3h-symmetric configurations with oblate quadrupole components
α20 ≈ −.50 (“superdeformed oblate”). (upper panel) Total energies for the varying neutron numbers as displayed, for the central nucleus with
proton number Z0 = 124. We remark that the energy gain due to increasing α33 deformation is markedly less significant and amounts to about
1.5 MeV at, and close to the central neutron number N0 = 204. (bottom panel) Similar to the above but for varying proton number at the fixed
central neutron number N0 = 168.

given the fact that the strongest variation, at N = 202, corre-
sponds to over 7 MeV energy gain, thus a 7 MeV decrease,
with growing α33. Conversely, a comparable increase in the
shell energy is observed for neutron numbers in the vicinity
of N = 172.

C. Archipelago of D3h-symmetric superheavy nuclei:
An overview of D3h-symmetry islands

In preceding sections we have pointed out to the pres-
ence of three groups of D3h-symmetric nuclei centered at
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FIG. 10. Results analogous to those in the two preceding figures, the present collection focusing on the “hyper-deformed oblate” nuclei.
Calculations predict an existence of the whole group of nuclei manifesting D3h-symmetry minima at the quadrupole deformation α20 ≈ −0.90
(“hyper-deformed oblate”). The effects of the D3h symmetry can be considered huge in the present case: The isotope with N = 180, upper
panel, gains nearly 7 MeV with a33 varying between 0 and ±0.20, the deformation which can be considered significant in the context. (bottom
panel) Analogous results for the proton number varying between 124 and 138 at fixed central neutron number, N = 188.

three different zones of increasing nuclear flatness, viz., at
α20 ∈ [−0.10,−0.20], α20 ≈ −0.50 and α20 ≈ −0.85, here
called “islands” and referred to as normal, super- and hy-
perdeformed, respectively—in addition to the fourth one
corresponding to vanishing α20, the latter discussed in detail

in Ref. [32] and thus not included here. All these nuclear
structure elements were introduced employing the guideline
examples, i.e., examples of nuclei in which the effects in
questions appear as the strongest, possibly dominating. The
latter nuclei are referred to as central, specified by their proton
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and neutron numbers, Z0 and N0. The decisive question is How
these effects propagate from the central nucleus “in the middle
of the island” down to the island’s shores.

In this section we present more systematically the evo-
lution with varying Z and N of the symmetry-generating
mechanisms from the centers to the outskirts of each given
island. The graphical presentation technique used so far and
based on the contour plotting had several advantages allowing
to compare directly the competition of various shape effects
at the same time or various families of shapes by adapting
the particular projections used. But a big disadvantage in the
present context consists in the needs of considerable space
in the article. In this section we introduce a compromise re-
placing illustrations based on the contour-plot projections, by
appropriately selected families of curves—thus loosing cer-
tain details. However, in this way the space-consuming maps
are replaced by sets of curves like those presented in Fig. 7.
In this way we obtain the possibility of comparing numerous
nuclei at the same plot. Despite loosing certain details we
gain in an overview in terms of the Z and N evolution of the
structural behavior in a given mass zone.

The upper diagram in Fig. 8 illustrates the comparison of
the total-energy curves for fixed central nucleus proton num-
ber, Z0 = 118, while varying the neutron number around the
central value N0 = 184—under the condition that all nuclei
included, present a normal deformed oblate form. Comparison
shows that the central nucleus gains nearly 3 MeV of potential
energy while deforming from α33 = 0 to α33 = ±0.08. In
comparison, the N = 174 isotope gains a little below 1 MeV
only.

The partner-set of curves presented in Fig. 8, bottom, illus-
trates the structural evolution with varying proton numbers of
the N0 = 184 isotones. Incidentally, the strongest manifesta-
tion of the discussed symmetry corresponds to the similar gain
of about 3 MeV of the energy for the α33 deformation varying
from α33 = 0 to α33 = ±0.08.

Let us emphasize that the energy variations predicted by
the present modeling are strong, since lowering energy by
about 3 MeV may significantly strengthen the stability of the
superheavy nuclei in question and thus increase the chances
for the experimental identification.

Passing to the results related to the next island, Fig. 9, the
one characterized by the presence of the superoblate α20 ≈
−0.50 components, one notices that the gain in energy accom-
panying the transition α33 = 0 → α33 = ±0.08, is relatively
modest but still non-negligible, of the order of 1.5 MeV for
the most favorable cases.

The latter trend is significantly strengthened in the last
island corresponding to the hyper-oblate shapes, cf. Fig. 10
(for the shape illustration, see Fig. 1) with α20 ≈ −0.90. In-
deed, in the most favorable cases we note huge energy gains
corresponding to about 7 MeV, when the D3h-symmetric de-
formation reaches relatively large values of α33 ≈ ±0.20.

All the cases discussed can be seen as representing a num-
ber of common features:

(i) In all the cases cited, there exist local potential-energy
minima with nonvanishing α33 deformations, typi-
cally in the interval α

eq
33 ∈ [0.10, 0.20].

(ii) Similarly, in all the cases the nonvanishing α33

deformations are accompanied by nonvanishing
quadrupole axial deformation component.

(iii) Again in all the cases, the potential-energy min-
ima are generated at the oblate shape configurations
(αeq

20 < 0) with no exceptions.
(iv) By acquiring the D3h-symmetry shapes the oblate

hyper-deformed nuclei gain in the strongest manner,
that is to say up to 7 MeV.

Let us emphasize that the discussed results are indicative
for big numbers of nuclei. Indeed, whereas the illustrations
were limited to the variations over N for the fixed Z0-central
and vice versa, variations over Z for fixed N0-central, similar
pictures apply for many other (Z, N ) combinations, even if
with less significant energy gains. This means that we are
addressing the D3h-symmetry effects in over 150 nuclei, out
of which at least some can be populated in forthcoming ex-
periments.

Let us return to the issue of an experimental identification
of the discussed structures. Certain mechanisms could facili-
tate identification of predicted structures if more than one state
or transition could be identified. For instance, hyperdeformed
configurations are expected to generate very large moments
of inertia and thus low rotational transition energies—even
if population of such states via nuclear reactions could be
difficult. Another, in a way most direct manner of identifying
nuclear point-group symmetries, cf. recent Ref. [7], leads
via detecting unique degeneracy patterns in the correspond-
ing rotational spectra. Yet another mechanism, perhaps easier
to observe, would be the decay into three comparable frag-
ments (tripartition), as the result of the threefold symmetry,
cf. Fig. 1.

IV. NUCLEAR PROPERTIES BASED ON SOLUTIONS OF
COLLECTIVE SCHRÖDINGER EQUATION

FOR D3h VIBRATIONS

Experimental research in the domain of superheavy nuclei
often encounters an extra difficulty, not necessarily present
in the studies of lighter or not exotic nuclei: the difficulties
in populating or detecting the presence of several transitions
or states in the decay schemes. Indeed, in the research of
superheavy nuclei, an identification of just one new state or
transition can often be considered as a significant contribution
to the progress.

In this article we discuss possible existence of superheavy
nuclei satisfying D3h symmetry in relatively broad sectors of
the nuclear mass table. It has been shown in Ref. [7] using
group theory methods that nuclear states with point-group
symmetries can be identified through measurements of ro-
tational bands predicted to contain numerous characteristic
degenerate levels. The latter provide unique identification cri-
teria if a sufficient number of such levels can be observed. It
then becomes clear that in the domain of superheavy nuclei,
this type of symmetry identification will not be straightfor-
ward to apply simply because of the very limited numbers of
the observed transitions.
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Consequently, it will be instructive to address the issue
of possible presence of any other structure effects which
could become the experimental signals of the symmetries
of interest. A natural suggestion consists in exploring the
theory of nuclear collective oscillations, which provides a
number of specific spectroscopic features generated by the
nuclear potentials with double or triple potential-energy min-
ima separated by various types of barriers. The corresponding
approach is necessarily based on the microscopic theory of
nuclear collective inertia which provides methods of effective
construction of the so-called inertia tensor, see below, needed
to write down (and solve) the collective Schrödinger equa-
tion within the Bohr theory.

Recently a significant progress has been achieved in
this domain via formulating new principles of nuclear
adiabaticity—the latter serving as the underlying concept of
microscopic theory of nuclear collective inertia, Ref. [33].
Significant mathematical improvements of the theory have
been proposed allowing to totally remove the well-known
instabilities of the previous formulations based on the pertur-
bation theory and caused by the crossing of single-particle
levels as functions of varying deformation. As the con-
sequence, vanishing energy differences appearing in the
denominators of certain mathematical expressions cause
divergencies of the resulting inertia tensors with the corre-
sponding impact on the solution of the collective Schrödinger
equation.

In what follows we present, in a simplified manner, the
nuclear collective Schrödinger equation and the characteristic
features of its solutions in the context discussed in our article.
The purpose is to identify certain quantum features of the
collective solutions, which can become helpful in identifica-
tion of predicted collective motion properties of the discussed
superheavy nuclei. The mechanism of interest will be related
to what is referred to in the literature as “parity doublets,”
with often close-lying-, sometimes nearly degenerate levels—
the type of information which can become very useful when
trying to identify the sought symmetry manifestations.

Let us introduce a simplified notation according to which
the spherical tensor notation, as in {αλμ}, will be abbreviated
by αλμ ↔ qn and their full ensemble {qn} ↔ q, the latter vari-
ables playing roles of generalized coordinates in analytical
mechanics; here n = 1, 2, . . . , d with d denoting the dimen-
sion of the considered space. With this simplified notation
it will be instructive to recall the general form of a classical
Lagrangian of the motion with {q̇n} treated as generalized ve-
locities. The corresponding Lagrangian has the general form

L(q, q̇; τ ) =
d∑

m,n=1

1

2
Bnm(q; τ )q̇nq̇m − V (q), (14)

in which position-dependent functions Bnm(q; τ ) are general-
ized inertia coefficients forming a matrix referred to as inertia
tensor; V (q) will be identified with the nuclear potential en-
ergy here obtained using Strutinsky method. The advantage of
the expression in Eq. (14) is that it allows us to apply directly
the standard quantization procedures leading to the expression
of the Laplacian � in the corresponding d-dimensional

curvilinear space

� =
d∑

m,n=1

1√|B|
∂

∂qn

(√
|B|Bnm ∂

∂qm

)
, (15)

where |B| denotes the determinant of the matrix Bnm. The
collective Schrödinger equation has the form

Ĥcol�col;i = Ecol;i�col;i, (16)

in which the collective Hamiltonian is defined with the help
of Eq. (15) by

Ĥcol = − h̄2

2
� + V (q). (17)

The central information point in the present context is
that Ref. [33] indicates how to construct in a realistic man-
ner the nuclear inertia tensor, Bnm(q), with the help of the
phenomenological mean-field Hamiltonian; illustrations are
presented in the cited reference. Therefore, the mass tensor
can be considered known for all the calculations needed,
even if obtained numerically after application of an algorithm,
which is far from trivial.

The new derivation introduces a new realization of the
adiabaticity concept addressing explicitly the timescales of
the slow (collective) and the fast (single-nucleonic) motion
together with a scale factor relating the two modes. Since
components of the tensor of inertia are expressed with the
help of matrix elements involving the derivatives of the mean-
field Hamiltonian, the underlying microscopic information
does not involve any new adjustable parameters. It has been
demonstrated, as an illustration of the new approach, that it
reproduces collective vibration energies 3−

1 , 2+
1 , and 0+

2 in
the 208Pb nucleus with the standard (unmodified) mean-field
Hamiltonian. This latter result can be seen as very encourag-
ing for the future large-scale applications of the new method.

However, the issue of solving collective Schrödinger equa-
tion of motion in multidimensional spaces like in the case
of our project is yet another problem of high complexity
requiring detailed solutions, usually treated on the case by
case basis, for each nucleus of interest. This is a prob-
lem for another, specialized study, which is in progress and
whose results will be published elsewhere. In what follows
we will illustrate briefly characteristic structural properties of
the lowest-energy collective-vibrational solutions using one-
dimensional projections.

More precisely, the idea consists in formulating semiquan-
titative theory criteria of identifying signals coming from
the collective oscillations of the nuclei with twin-minimum
potential wells, without necessity of solving the full multidi-
mensional Bohr model (which is the subject of an independent
study). With this goal in mind we will show that the presence
of some close-lying levels of opposite parities in experimental
results at an excitation energy close to the top of the potential
barrier separating the twin minima, cf. Fig. 11, can be used as
an identifying signal. More details are formulated below.

We are interested in the problem of collective oscillatory
motion associated with the potential-energy minima involving
α33 deformation and possibly α20 partner one. As it turns
out, certain properties of the lowest energy solutions can be
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FIG. 11. An example of a one-dimensional projection of the
double-minimum potential well together with the parabolic poten-
tial used to generate HO basis serving in solving the collective
Schrödinger equation via diagonalization method. The parameters of
the HO potential are adjusted to provide maximum overlap with the
studied one.

examined using approximate separable forms of the poten-
tial: V (α20, α33) ≈ V2(α20) + V3(α33). With this guideline in
mind we are going to focus on the one-dimensional form of
the collective Schrödinger equation obtained from the one in
Eq. (17), projected on the α33 ↔ q axis. It can be shown that
implied one-dimensional collective Schrödinger equation has
the form[

− h̄2

2

(
1√

B(q)

d

dq

)(
1√

B(q)

d

dq

)
+ V (q)

]
�i(q)

= Ei�i(q), with q = α33, (18)

where B(q) represents the position dependent “effective-mass
parameter.” One can demonstrate that the solution of the above
equation can be facilitated by an auxiliary transformation
equivalent to changing the variables, leading to the new form
of the equation with a constant effective inertia parameter.

Let us consider a double-minimum potential like the one
in Fig. 11, representing a typical projection of the multi-
dimensional potential-energy surface of a given nucleus on
the α33-deformation axis. To solve the corresponding one-
dimensional Schrödinger equation we would need to know
the realistic theory predictions for the inertia parameters like
those calculated numerically in Ref. [33]. Instead, we will
find out, how structural characteristics of solutions, such as
wave functions, eigenenergies, most probable deformations,
etc., are influenced—on a semiquantitative level—when the
average inertia (constant mass parameter) increases.

It is well known from general quantum mechanics that
there exist characteristic inter-relations among the lowest-
lying solutions with double-well potentials, cf. Ref. [34] and
references therein. They depend on the energy distance be-
tween the top of the potential barrier separating the twin
minima and the lowest solution. We will illustrate the struc-
ture of the wave functions of the lowest vibration energies

FIG. 12. Wave functions of the two lowest energy solutions of
the collective Schrödinger equation, E0 and E1, with the constant
mass parameter, BMass, adjusted in such a way that E0 is of the order
of 1/2 of the barrier (visible in Fig. 11) separating the twin minima.
The meaning of the other symbols is discussed in the text.

comparing solution with energies lying markedly below the
barrier top with those close to the top and finally, those lying
markedly above the barrier. Another goal will be to estimate
the dynamical equilibrium deformations.

Let us consider first what we call the “low-energy limit,”
here defined by choosing the mass parameter, B(q) ↔ BMass,
in such a way that the lowest-energy solution satisfies approx-
imately E0 ∼ (1/2)VB, where VB denotes the barrier height
separating the twin minima, cf. Fig. 11. The two wave func-
tions corresponding to the lowest solutions E0 = 0.51 MeV
and E1 = 0.579 MeV (with BMass = 720h̄2 MeV−1) are illus-
trated in Figs. 12–14. Let us notice that the energies are nearly
degenerate, and both wave functions lead to the minima of
the probability density functions at the origin of the reference

FIG. 13. Illustration analogous to the preceding figure but with
the inertia parameter adjusted in such a way that E0 is of the order of
the barrier height separating the twin minima. For further comments
see the text.
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FIG. 14. Illustration analogous to the preceding figure but in this
case with the inertia parameter adjusted in such a way that E0 is of the
order of the double of the barrier height separating the twin minima.
For further comments see the text.

frame. Experimental identification of this situation would lead
to the search of the opposite-parity doublet at the relatively
low excitation energies.

As the next step we will compare analogous properties
in the case of the higher-energy solutions, with the mass
parameter adjusted in such a way that E0 ≈ VB. This has been
obtained by choosing BMass = 80h̄2 MeV−1. Let us notice
that the splitting between the two lowest energies is incom-
parable with the one in the previous case, with E1 more
than double of the E0 value in the present case. Also, the
probability density (∝�∗�) behavior near the origin of the
reference frame is different compared with the previous case:
We notice the maximum for the �0 solution and the minimum
for the �1 solution. Finally, the ground-state solution wave
function has a one-extremum (probability shows a maximum)
characteristic for the harmonic oscillator type solutions. Thus
the experimental confirmation of the second scenario should
correspond to relatively higher excitation energies and a sig-
nificant splitting between E0 and E1.

As the last example we have chosen what we call the
“high-energy limit” with the E0 ∼ 2VB. By setting BMass =
20h̄2 MeV−1, we arrive at E0 = 1.958 MeV, much lower
compared with the first-excited state with E1 = 5.738 MeV.
In contrast, the behavior of the two discussed wave functions
is very similar to the previous case.

Finally let us pass to the discussion of the behavior of
the so-called dynamical equilibrium (or most probable) de-
formations associated with the α33 ↔ q deformations. One of
the often employed choices of the measure of such a most
probable shape is by selecting the expected values of the
corresponding variable:

〈α〉0,1
df .=

∫
�∗

0,1(α)α�0,1(α)dα. (19)

However, one notices immediately that such a measure of the
most probable deformation is unacceptable in the present con-
text because Eq. (19) implies 〈α〉0 ≡ 0 for positive parity (E0)

TABLE I. Example of an evolution of energies of D3h-symmetry
minima, here chosen as hyper-oblate α20 ≈ −0.85 configurations,
for N = 188 isotones. The second column shows excitation energy
above the ground-state minimum, vanishing values signifying that
the D3h minimum is the ground-state one. Columns 2, 3, and 4 show
the equilibrium values of the deformations indicated. The last column
gives the height of the potential barriers, VB, separating the twin
minima at a given α33 and −α33. In view of the discussion of the
properties of the solutions of the Bohr collective model presented in
this section, the displayed barrier heights can be seen as a guideline
in anticipating semiquantitatively the presence of the parity doublets
in the excitation patterns.

N = 188 D3h minimum Barrier

Z Energy α20 α33 α40 VB

126 3.59 −0.80 0.20 0.10 1.72
128 2.10 −0.85 0.20 0.15 2.72
130 0.16 −0.85 0.20 0.15 3.75
132 0.00 −0.85 0.21 0.15 4.40
134 0.00 −0.85 0.21 0.15 4.63
136 0.00 −0.90 0.18 0.15 4.62

solutions with symmetric wave functions, whereas the laps
of time spent by the system in the vicinity of the null-value
deformation is maximum (the probability density function has
the maximum at α = 0).

We may consider two alternative measures of the most
probable deformations used in the literature, the root-mean-
square one defined by (〈α2〉)1/2 for the two considered
solutions

〈α2〉0,1
df .=

∫
�∗

0,1(α)α2�0,1(α)dα, (20)

or the most probable absolute value

|α|0,1
df .=

∫
�∗

0,1(α)|α|�0,1(α)dα. (21)

It turns out that both considered measures of the most proba-
ble deformation are close to each other, at least in the typical
deformation ranges considered in this article. It follows from
numerical calculations using definitions in Eqs. (20) and (21)
that

|α|0,1 <
√

〈α2〉0,1. (22)

Calculations show that both measures of the dynamical-
equilibrium shapes increase with increasing energy of the
collective solutions.

Suppose, as a working hypothesis, that the octupole vi-
brations in the examined range of nuclei correspond to some
typical value, for instance Evib ≈ 1 MeV. Comparing the vari-
ation of the predicted barriers VB with Z and N and following
our supposition, we should be able to predict—even if in a
semiquantitative manner—the expected structure of the lowest
vibrational excitations. For instance, for relatively high bar-
riers, which separate the twin minima, say VB ≈ 2 MeV or
higher, the E0 and E1 energies are likely to lie lower or sig-
nificantly lower than the top of the barrier. When this happens
we should expect two nearly degenerate vibrational states of
opposite parities. Identifying such states experimentally can
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be used as a support of the D3h-symmetry identification via
collective D3h vibrations.

Results presented in Table I give an example of a typical
variation of the positions of the D3h twin minima and of
the separating barrier heights in a few selected nuclei for
illustrative purposes. Extended list of results for all the nuclei
and the competition between D3h-symmetric hyperdeformed,
superdeformed, and normal-deformed configurations and the
other ones, mainly axially symmetric quadrupole deformed
minima are collected in the summary tables in Appendix D.

V. SUMMARY AND CONCLUSIONS

In this article we study selected structural properties of
heavy and superheavy nuclei predicted to manifest molecular
D3h point-group symmetry. In the range of the mass table
discussed, this symmetry manifests itself via simultaneous
presence of at least two nonvanishing multipole shape compo-
nents. These are: an exotic, nonaxial octupole α33 deformation
assuring the presence of a threefold symmetry axis among the
nuclear symmetry elements and quadrupole α20 < 0 axially
symmetric deformation, adding an oblate shape component.

We begin the article by recalling briefly nuclear struc-
ture results published by various authors addressing nuclear
potential-energy calculations for heavy and superheavy nu-
clei. Next we present in a compact manner our realization of
the well-known macroscopic-microscopic method with a real-
istic phenomenological, so-called “universal” Woods-Saxon
potential. Our approach takes into account the newest opti-
mization of the Hamiltonian parameters employing inverse
problem theory of applied mathematics to eliminate para-
metric correlations known to destroy the predictive power of
mathematical modeling. This allows for a better control of
uncertainties of the modeling and its predictive power.

The D3h symmetry has been discussed together with a
number of other nuclear point-group symmetries accompa-
nying exotic octupole deformations α31, α32, and α33 in the
recent Ref. [7]. The cited article shows, using point-group rep-
resentation theory, that the most straightforward identification
of the discussed nuclear symmetries leads via identification
of the specific collective rotational band properties. The latter,
in contrast with properties generated by the usual ellipsoidal
rotors, manifests characteristic multiple degeneracies of ro-
tational energies. Moreover, they involve both parities in a
single band. Unfortunately, in the domain of superheavy nu-
clei, information about rotational bands is usually scarce. We
introduce and discuss an alternative identification via collec-
tive oscillation properties of D3h-symmetric nuclei employing
collective Bohr model. We show that, in many cases, iden-
tification of nearly degenerate parity doublets may provide
helpful support for symmetry identification.

We found three separate islands of nuclei with D3h sym-
metry differing by their average α20 < 0 deformations. We
referred to the corresponding configurations in a rather de-
scriptive manner as archipelago of three islands, each island
determined by its typical α20 shape:

(a) hyperdeformed oblate nuclei with α20 ≈ −0.85;
(b) superdeformed oblate ones, with α20 ≈ −0.50; and

FIG. 15. Ground-state quadrupole deformation α20 for the nuclei
studied. Observe that the largest (smallest-negative) oblate defor-
mations, corresponding to α20 ≈ −0.85 or so are associated with
Z ∈ [128, 136] and N ∈ [178, 198] nuclei. Comparison shows that
they also correspond to the largest α33 (“strongest D3h symmetry”)
as seen from the following figure. The next in size, superdeformed
oblate shapes correspond to nuclei with the proton numbers in the
overlapping Z range, Z ∈ [122, 134] and either N < 174 or N >

196. The normal-oblate deformed shapes dominate, as one can see
by following the light-green, yellow, and orange in the diagram.

(c) normal-deformed oblate with α20 ≈ −0.20 to −0.10.
For the reader’s convenience, typical discussed shapes
of nuclear surfaces are illustrated in Fig. 1.

The word “islands” refers to groups of nuclei on the
(Z, N ) plane distributed in a nonoverlapping manner. Indeed,
calculations show what we consider as a rather unusual occur-
rence pattern, that the quadrupole deformations of the local
potential-energy minima are grouped as listed above “with
nearly no cases in between.” This situation is illustrated in
Fig. 15 where one can see that certain colors are totally

FIG. 16. Illustration of the repartition of the D3h symmetry gen-
erating α33 shapes on the Z vs N plane. The corresponding partner
α20 quadrupole deformations are illustrated in the analogous plot in
Fig. 15. It deserves noticing that α33, like all other deformations with
odd λ satisfy the symmetry relation E (−αλodd ,μ) = E (+αλodd ,μ) so
that the diagram is restricted to positive α33 values.
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missing in the diagram, emphasizing separations and justify-
ing the term islands.

The D3h symmetry shapes are predicted to occur in a
rectangle 110 � Z � 138 and 166 � N � 206. The corre-
sponding repartition among the nuclei studied is illustrated in
Fig. 16 indicating that the strongest manifestations of the D3h

symmetry correspond to α33 ≈ ±0.20, with Z ∈ [128, 136],
whereas the dominating α33 values, prevailing in majority of
the presented nuclei are close to α33 ≈ ±0.10.

It turns out that the predicted exotic shapes dominate in the
whole considered zone of the mass table bringing significant
gains in terms of the binding energies thanks to the D3h sym-
metry generated by the nonaxial octupole deformation α33. It
is worth emphasizing that energy gains due to D3h symmetry
approaches 7 to 8 MeV in several nuclei, and smaller but still
significant energy gains in many others. As a consequence one
should expect that some superheavy nuclei may exist, or be
produced, thanks to the D3h symmetry.
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APPENDIX A: SELECTED GEOMETRICAL FEATURES OF
THE MEAN-FIELD POTENTIAL

Even though spherical harmonics employed by us to
parametrize the nuclear shapes belong to the best known spe-
cial functions of applied mathematics, it will be instructive to
recall a number of mathematical features, which are relatively
seldom addressed in the literature, related to the description
of nuclear geometry and combining various symmetries. With
this goal in mind it will be important to recall the selection
of the phase conventions and specific nuclear structure con-
ventions related to the expansion coefficients {αλμ} in the
definition of R(ϑ, ϕ; {αλμ}), of Eq. (3).

a. Limitations imposed by the nuclear surface equation.
The nuclear surface is by definition a real function of its
arguments,

R∗(ϑ, ϕ; {αλμ}) = R(ϑ, ϕ; {αλμ}). (A1)

The latter condition has direct implications resulting from the
definition and properties of the spherical harmonics. Follow-
ing Chap. 5 of the monograph [35], one finds

Y ∗
λμ(ϑ, ϕ) = (−1)μYλ−μ(ϑ, ϕ). (A2)

One can easily show that, in order to satisfy Eq. (A1) it is
sufficient to impose

α∗
λμ = (−1)μαλ−μ. (A3)

b. Next limitation: Only real deformation parameters. Even
though condition in Eq. (A1) can be satisfied using complex
{αλμ} in Eq. (A3)—in nuclear structure physics, the choice
of the deformation parameters is restricted to the real values
only, thus causing further limitations:

α∗
λμ = αλμ → αλμ = (−1)μαλ−μ. (A4)

Thanks to this limitation, results of the nuclear energy cal-
culations can be presented in the form of two-dimensional
“geographical maps,” used abundantly in the literature. Fol-
lowing Eq. (A2), to assure that for μ �= 0 nuclear surfaces
remain real functions of their arguments we combine αλμ and
αλ−μ contributions as below:

[αλμYλμ + αλ−μYλ−μ]∗

= α∗
λμ(−1)μ︸ ︷︷ ︸

αλ−μ

Yλ−μ + α∗
λ−μ(−1)μ︸ ︷︷ ︸

αλμ

Yλμ

= αλ−μYλ−μ + αλμYλμ ↔ real function. (A5)

Therefore, in what follows, these spherical harmonics will
appear in pairs.

c. Odd-λ and mean-field inversion-symmetry breaking.
With the inversion operator denoted P̂ we may write

P̂ : (ϑ, ϕ) → (π − ϑ, π + ϕ) → Yλμ → (−1)λYλμ, (A6)

cf. Sec. 5.5.2 of Ref. [35]. Consequently, for odd-λ, each
couple of spherical harmonics in Eq. (A5) transforms under
inversion as follows:

1 + [αλ−μYλ−μ + αλμYλμ]
P̂→ 1 − [αλ−μYλ−μ + αλμYλμ],

(A7)

and since the left-hand side is not equal to the right-hand side,
the original surface before and after applying the inversion
operator differs, cf. e.g., the monograph by Bohr and Mottel-
son, Ref. [36], page 16; compare with comments surrounding
Eq. (A12) below.

d. Ŝy-simplex: A universal symmetry for real {αλμ}. El-
ementary discrete symmetries such as inversion, single axis
rotations through the angle of π , R̂κ (π ), where κ refers to x,
y, and z axes—and their direct combinations giving rise to the
plane reflections, Ŝκ ≡ P̂ · R̂−1

κ , were introduced to nuclear
structure long ago, cf. e.g., Ref. [36], Sec. 4-2f, where spec-
troscopic consequences for the properties of rotational bands
of some of these symmetries are discussed. After Ref. [37],
we refer to the latter three operations as x, y, and z simplexes.

Below we will focus on the y simplex which, according to
its very definition, implies a mirror reflection in the Oxz plane:

Ŝy{x, y, z} = P̂R̂−1
y {x, y, z} = P̂{−x, y,−z} = {x,−y, z},

(A8)

or equivalently, in terms of spherical coordinates:

Ŝy{r, ϑ, ϕ} = {r, ϑ,−ϕ}. (A9)

From elementary properties of spherical harmonics:

Yλμ(ϑ,−ϕ) = (−1)μYλ−μ(ϑ, ϕ), (A10)

after Ref. [35], and consequently, for the real deformation
parameters, any surface represented by Eq. (3) remains y
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simplex invariant, since

Ŝy[αλμYλμ(ϑ, ϕ) + αλ−μYλ−μ(ϑ, ϕ)]

ϕ→−ϕ−→ αλμ(−1)μ︸ ︷︷ ︸
αλ−μ

Yλ−μ(ϑ, ϕ) + αλ−μ(−1)μ︸ ︷︷ ︸
αλμ

Yλμ(ϑ, ϕ)

= αλ−μYλ−μ(ϑ, ϕ) + αλμYλμ(ϑ, ϕ). (A11)

e. Mean-field symmetry: Ĥmf (−αλμ) = Ĥmf (+αλμ). Under
certain conditions, which will be specified below, nuclear
surfaces defined by the deformation parameters αλμ and their
opposites −αλμ represent exactly the same geometrical fig-
ure except for the orientation with respect to the original
reference frame. As a consequence, the corresponding nuclear
energies satisfy the symmetry

E (αλμ) = E (−αλμ), (A12)

which allows us to limit numerical calculations accordingly.
To be able to examine the conditions of applicability of

these symmetry relations it will be instructive to examine ele-
mentary isometry operations such as reflections and rotations
through a fixed angle about certain specific axes, P̂ , R̂κ , and
Ŝκ introduced earlier in this section. We begin by general
considerations to arrive, as a particular case, at the octupole
and hexadecapole shapes, which are of special interest in this
article.

Let us emphasize that, according to the well-known group
theory rules, the result of combining two or more group ele-
ments to construct another element may represent a symmetry
of a given object, even if some or none of the combined opera-
tions alone are symmetry operations of the object considered.
An example is provided by the y-simplex operation, which
is the universal symmetry of any surface represented by real
αλμ, cf. Eq. (A11). Indeed, Ŝy ≡ P̂ · R̂−1

y is expressed with

the help of inversion P̂ , even though any odd-λ deformation
breaks the inversion.

f. Reflection in Oxy-plane: z → −z (case of z simplex).
Following the above condition written using the spherical
coordinates, we find (ϑ, ϕ) → (π − ϑ, ϕ), wherefrom:

Yλμ(ϑ, ϕ) → Yλμ(ϑ − π, ϕ) = (−1)λ+μYλμ(ϑ, ϕ), (A13)

cf. Ref. [35], and it follows that for μ-even and λ-odd the
spherical harmonics change signs so that

[αλμYλμ(ϑ, ϕ) + αλ−μYλ−μ(ϑ, ϕ)]|(ϑ→−ϑ,α→−α)

= −αλμ[Yλμ(π − ϑ, ϕ)] − αλ−μ[Yλ−μ(π − ϑ, ϕ)]

= [αλμYλμ(ϑ, ϕ) + αλ−μYλ−μ(ϑ, ϕ)], (A14)

and by the same token showing the symmetry

E (αλμ) = E (−αλμ), for λ-odd and μ-even. (A15)

g. Reflection in Oxz-plane: y → −y (case of y simplex).
Since, for this transformation, in spherical coordinates we
have (ϑ, ϕ) → (ϑ,−ϕ), one finds after Ref. [35]:

Yλμ(ϑ, ϕ) → Yλμ(ϑ,−ϕ) = (−1)μYλ−μ(ϑ,−ϕ), (A16)

and it follows that for odd-μ:

[αλμYλμ + αλ−μYλ−μ]|(ϕ→−ϕ,α→−α)

= −αλμ[−Yλ−μ(ϑ,−ϕ)] − αλ−μ[−Yλ+μ(ϑ,−ϕ)]

= +αλμ Yλ−μ(ϑ,−ϕ)︸ ︷︷ ︸
Yλμ(ϑ,ϕ)

+αλ−μ Yλ+μ(ϑ,−ϕ)︸ ︷︷ ︸
Yλ−μ(ϑ,ϕ)

= [αλμYλμ + αλ−μYλ−μ], (A17)

thus demonstrating the sought equality, from where one finds
the symmetry

E (αλμ) = E (−αλμ) ∀ λ, μ-odd. (A18)

h. Particular application for octupole deformations. The
general symmetry relations just obtained, when limited to the
particular case λ = 3 imply that all the four octupole deforma-
tions α3;μ=0,1,2,3 are good illustrative examples of discussed
symmetry properties since

E (α3μ) = E (−α3μ), μ = 0, 1, 2, 3. (A19)

We focus next on the nuclei for which we find the equi-
librium deformations with the shapes invariant under the
D3h-symmetry point-group.

APPENDIX B: ABOUT NUCLEAR D3h GEOMETRY

Results of our macroscopic-microscopic calculations sug-
gest that molecular point-group symmetry D3h appears as
the shape symmetry of many heavy and superheavy nuclei.
As calculations show, the corresponding leading octupole de-
formation, α33, is superposed with axial-symmetry negative
quadrupole (oblate) and axial hexadecapole deformations. It
will be instructive to present here some of the correspond-
ing mathematical point-group-related elementary properties
explicitly.

Point group D3h is composed of 12 symmetry elements,
the neutral one denoted 1I and the leading one, threefold ro-
tation operation denoted Ĉ3, usually referred to as vertical.
It is accompanied by a perpendicular plane reflection thus
called horizontal, σ̂h, which can be identified with the Oxy

mirror, alternatively z → −z reflection or z simplex, and three
perpendicular plane reflections referred to as vertical, σ̂ (1)

v ,
σ̂ (2)

v , and σ̂ (3)
v . The latter are associated with planes passing

through the vertical axis, one of them coinciding with the
y-simplex or Oxz-reflection operation. The list is completed
by the three horizontal second-order rotation axes with op-
erations traditionally denoted Û (1), Û (2), and Û (3). All these
symmetry elements can be collected as follows:

D3h :
{
Ĉ3, Ĉ2

3 , Ĉ3
3 = 1I, Ĉ3 ◦ σ̂h, Ĉ2

3 ◦ σ̂h, Ĉ3
3 ◦ σ̂h = σ̂h,

Û (1), Û (2), Û (3), σ̂ (1)
v , σ̂ (2)

v , σ̂ (3)
v

}
.

(B1)

In the simplest variant, i.e., all deformations vanishing
except for α33 �= 0, and recalling that α33 = −α3−3, the cor-
responding D3h-symmetric surface takes the form

R(θ, ϕ; α33) ∝ {1 + α33[Y33(ϑ, ϕ) − Y3−3(ϑ, ϕ)]}. (B2)
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Introducing explicitly the spherical harmonics, Ref. [35], one
finds

Y3±3(ϑ, ϕ) = ∓
√

35/64π sin3 ϑe±3iϕ. (B3)

According to the employed conventions and notation, the sim-
plest D3h-symmetric nuclear surface expression takes the form

R(ϑ, ϕ; α33) = R0c(α33)[1 − a33 sin3 ϑ cos (3ϕ)]. (B4)

On can convince oneself by direct substitutions of the op-
erations collected in Eq. (B1) that they indeed represent the
symmetry operations of the nuclear shape with the simplest
D3h-symmetric surface definition of Eq. (B4).

As a simple illustration we may list a few particular exam-
ples such as the following ones:

Ĉ3 : ϑ → ϑ and ϕ → ϕ + 2π/3, (B5)

or

Û (1) : ϑ → π + ϑ and ϕ → ϕ, (B6)

and further

σ̂ (1)
v : ϑ → ϑ and ϕ → 2π − ϕ, (B7)

or

Ĉ3 ◦ σ̂h : ϑ → π − ϑ and ϕ → ϕ + 2π/3, (B8)

all of them transforming R(ϑ, ϕ; α33) into itself in a few
elementary substitutions.

APPENDIX C: MESH SIZE AND CPU ESTIMATES FOR
MULTIDIMENSIONAL GRID CALCULATIONS

Below we address the description of discrete meshes
(grids) involving typically of the order of a few millions of
deformation points in our typical nuclear potential-energy
calculations. The projects of this type aim first of all at de-
termining the presence of competing nuclear potential-energy
minima and the implied shape-coexisting configurations to-
gether with their symmetries. The total nuclear energy
expression is written down as a function of selected multipole
deformations. Denoting their ensemble by {αλμ} ↔ α, we
may write:

E (Z, N ) ↔ E (Z, N ; α) : αmin
λμ � αλμ � αmax

λμ . (C1)

The nuclear energies are tabulated using regular discrete
meshes of points defined as follows:

αλμ = αmin
λμ + n�αλμ; n = 0, 1, . . . , Nλμ. (C2)

In our case of interest a typical deformation subspace is com-
posed of four to five deformations selected within an ensemble
composed of two quadrupole degrees of freedom, α20 and α22,
four octupole ones, α30, α31, α32, and α33, and hexadecapole
ones, α40 and α42.

1. Algorithm properties from the mesh sizes view point

It turns out that the mesh-size parameters, Nλμ, which are
necessary for obtaining stable results are influenced by the

fact that the surface energy in the macroscopic energy expres-
sion depends rather sensitively on the multipolarity λ of the
spherical harmonics. Generally, the bigger the λ the steeper
the surface energy growth with an increase in the correspond-
ing αλμ, implying that for the energy minimization purposes
the corresponding deformation parameters can be kept within
shorter variation intervals. According to our verifications of
stability2 with respect of increasing of the mesh sizes, in most
of the meshes used we can pose for the quadrupole space

αmin
20 = −1.2, αmax

20 = +0.8, and �α20 = 0.025, (C3)

and

αmin
22 = −0.8, αmax

22 = +0.8, and �α22 = 0.025. (C4)

Similarly, for the octupole deformation subspace, we obtain
stable results for μ = 0, 1, 2, 3 with

αmin
3μ = −0.4, αmax

3μ = +0.4, and �α3μ = 0.025. (C5)

For odd multipolarity λ, either the y-simplex or the z-simplex
symmetries apply, cf. Eqs. (A15) and (A18), respectively,
therefore we may profit from the α sign-inversion symmetry
E (−αλμ) = E (+αλμ). In this way we decrease considerably
the numbers of needed mesh points, e.g., for 4-D octupole
space we decrease the number of Hamiltonian calls by about
the factor of eight.

For the typical hexadecapole deformations used we set

αmin
40 = −0.3, αmax

40 = +0.3, and �α40 = 0.025, (C6)

and similarly for α42.

2. Algorithm performance in terms of CPU time costs

It will be instructive to estimate computing times for the
typical mesh sizes, even if the results remain to an extent qual-
itative. As an example consider a 4-D mesh of deformations
(α20, α22, α33, α40) with the numbers of node specifications
N20 = 81, N22 = 65, N33 = 33, cf. Eqs. (C3)–(C5), and N40 =
25, Eq. (C6). Since for octupole deformation the sign-change
symmetry E (−αλ=3μ) = E (+αλ=3μ) applies, we find that
N33 = 33 → 32/2 + 1 = 17, from where the total number of
mesh points Nmesh = N20N22N33N40 = 2 237 625, the number
equal to the number of times we need to diagonalize the
nuclear Hamiltonian.3

2Beginning with the interval [αmin
λμ , αmax

λμ ], we perform the total-
energy calculations and produce the two-dimensional energy projec-
tions (maps) of interest. As the next step we increase the interval
sizes and repeat the projections to make sure that, in the enlarged
areas, there are no low-energy zones competing with the minima
found earlier. Two situations may occur: Either in the enlarged zone
of deformation space there are competing low-energy minima, in
which case we enlarge the space, or there are none and we keep the
last satisfactory [αmin

λμ , αmax
λμ ] intervals.

3Let us emphasize that the term “diagonalize nuclear Hamiltonian”
hides several complex numerical procedures. To start, the Gauss
integration algorithms are activated to define the Gauss nodes and
weights for the integration over the three Cartesian variables {x, y, z},
bringing us to the number NGauss

x NGauss
y NGauss

z i.e., about 100 000 to
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In evaluating the computer work load for grids resembling
the example above, let us assume that calculations for one
deformation point take approximately a minute on a represen-
tative computer processor.4 With the Nmesh = 2 237 625, we
need 37 294 hours to run the mesh on a single processor or,
equivalently 1554 days, therefore 52 months or, finally, close
to 4.5 years as a single processor job. In other words, with
10 000 to 50 000 processor installations we are at, typically,
about 4 to 1 hour of CPU time per “typical 4-D mesh” dis-
cussed. Consequently, stepping up to five-dimensional (5-D)
type meshes brings us to some days of the CPU waiting time
for the physical result.

Needless to say, with a system composed of processors
which are a factor f faster, we will shorten the CPU time
approximately by a factor of f .

It is then easy to convince oneself that the dimension of
the deformation space quickly becomes a prohibitive factor
from the point of view of the CPU time and thus computing
capacities. Indeed, suppose we wish to assure the stability
of the total-energy results with respect to an increase in the
number of multipoles in the nuclear surface definition, Eq. (3).
As a practical illustration let us consider a six-dimensional
(6-D) mesh of points composed of quadrupole and octupole
deformations and apply the estimates of the space dimensions
in terms of the number of mesh-points according to informa-
tion given in Eqs. (C2)–(C6). With N20 = 81 and N22 = 65
as well as N30 = N31 = N32 = N33 = 17(←0.8/0.025/2 +
1) we end up with N6-D

total = 439 738 065 ≈ 0.5 × 109 mesh
points. With a typical CPU performance of processors avail-
able, cf. footnote 4, our estimates bring us, approximately,
to about 840 years execution time with a single processor or
nearly a week for a 50 000-processor system.

According to Eq. (C6), extending further the above
6-D deformation space to an eleven-dimensional (11-D) one
by introducing five extra hexadecapole degrees of freedom
brings us to extending the number of nodes by including
N40 = N41 = N42 = N43 = N44 = 25. However, according to
Eq. (A18), for odd-μ, again the sign-inversion symmetry
E (−αλμodd ) = E (+αλμodd ) applies so that N41 = 25 → 13 and
N43 = 25 → 13. From there, working with 11-D space in
place of the original 6-D one will need to multiply the pre-
ceding estimate of N4-D

total by the factor 2 640 625 ≈ 2.6 × 106,
i.e., equivalent to, approximately, 44 154 ≈ 4.4 × 104 years
execution time with the 50 000-processor system as reference.

150 000 points at which the central potential and spin-orbit potentials
need to be defined. For each {x, y, z} ≡ �r the distance between �r
and nuclear surface needs to be found using nonlinear minimization
procedures, cf. Eqs. (5) and (7). With the Hamiltonian matrix of
the dimensions typically 1000 × 1000, of the order of 106 three
-dimensional integrals need to be calculated. Finally, the so-obtained
Hamiltonian matrices for the protons and the neutrons need to be
diagonalized.

4The order of magnitude estimate proposed, which amounts to
about 1 minute per deformation mesh-node, is based on performance
of the processor selected—Intel RXeonR E5-2650 v3. It happens to be
representative for the processors available for our collaborations in
Europe.

There are several advantages offered by the phenomeno-
logical mean-field techniques with the shapes parametrized
with the help of basis expansions, for instance, employing a
spherical harmonic basis, as discussed in the article. How-
ever, assuring the full stability (i.e., independence of the basis
cutoff) of the predictions related among others to the com-
peting shape minima and the separating barriers cannot be
achieved by a direct increase in the size of the deformation
space because of the accompanying too fast increase in the
CPU requirements. Let us emphasize that the CPU time esti-
mates presented in the above examples of realistic mesh sizes
simply scale with the processor performance, see footnote 4.
Consequently it becomes clear that alternative stability-testing
approaches will be welcome.

3. Alternative manners of examining stability of the {Yλμ} basis

An alternative possibility of testing the stability in terms of
increasing number of multipoles considered is a direct mini-
mization of the mean-field potential energy, E (Z, N ; α), using
standard algorithms known in the literature such as steepest
descent or conjugated gradient methods. Such tests can be
performed in deformation spaces of dimensions, Nmin

def , by-
passing significantly the limitations of five or six dimensions
just discussed. This would allow for the sought stability tests
concerning the numbers of the effectively obtained minima
with an increase of the deformation-space dimension accom-
panying higher and higher multipolarities taken into account.

Let us notice that the mesh-type calculations allow for
determining the presence of all local-energy minima in a
considered deformation space. In contrast, the efficiency of
the minimization methods in finding all the local minima
depends strongly on how dense are the starting points selected
by the algorithm. The minima found are often those close
to the starting points of the iterative minimization process.
Increasing such a density in many dimensions may strongly
increase the CPU time demands. In the realistic applications,
some among the sought minima may be missing and there is
defacto no guarantee of finding all of them.

The method consists in gradually increasing the number of
random restarts of the minimization routine sufficiently big
number of times up to the saturation point and comparing
the coordinates of the so obtained local minimum points with
those obtained with the mesh algorithm. A few scenarios of
testing with a given nucleus can be envisaged:

(i) The number of minima in the Nmin
def dimensional space

is essentially the same as in the case of the mesh-
algorithm with, say Ndef = 6, with small differences
between the equilibrium deformations and the result-
ing energy values obtained with the two approaches,
signifying that the final results are consistent and the
dimensions of the deformation spaces of the mesh
approach acceptable.

(ii) The numbers of minima are the same, but the equi-
librium values obtained by minimization in a richer
space differ from the mesh results. It will be up to a
physicist to decide whether differences are significant
in the context, and how to adapt the dimensionality of
the mesh space.
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Any other test outcome showing unacceptable differences
will signify a need of increasing deformation spaces for the
application of the mesh-tabulation approach.

4. Acceleration of the mean-field performance using smooth
dependence of eigenvalues on Z and N

There exist properties of nuclear phenomenological mean-
field algorithms, which can be used for acceleration of the
mesh calculations. One such property will be briefly recalled
now addressing properties of the single-particle eigenener-
gies, emf

ν , of the mean-field Hamiltonian treated as functions
of the proton and neutron numbers.

Indeed, our phenomenological mean-field Hamiltonian
presented in Sec. II A depends on the nucleon numbers, i.e.,
Ĥmf = Ĥmf (Z, N ; α) and one may show that this type of the
dependence is regular. In principle we should diagonalize
the mean field Hamiltonian for each nucleus, i.e., for each
Z and N pair, separately. However, one can show that the
eigenenergies, emf

ν (Z, N ; α) are usually smooth functions of
Z and N as well and, moreover, this dependence is regular
(similar for all eigenvalues) and weak.

Consequently, the eigenvalues calculated for representative
values of the proton and neutron numbers, say Z = Z0 and
N = N0, can be used as an approximation without modifica-
tions, also for certain neighboring Z and N . It follows that
if we are interested in nuclei with (Z, N ) in the following
sufficiently small intervals

Z ∈ [Zmin < Z0 < Zmax], �Z ≡ Zmax − Zmin, (C7)

and

N ∈ [Nmin < N0 < Nmax], �N ≡ Nmax − Nmin, (C8)

we will be able to produce the results for all

Nnucl = (Nmax − Nmin + 1)(Zmax − Zmin + 1) (C9)

nuclei using the common set of eigenvalues at Z0, N0. For
that purpose we diagonalize the Hamiltonian for the “central

nucleus” with (Z0, N0) given by

Z0 ∼ 1
2 (Zmax + Zmin) and N0 ∼ 1

2 (Nmax + Nmin), (C10)

and employ the Strutinsky method for all the (Z, N )-nuclei in
Eqs. (C7) and (C8) using the Hamiltonian eigenvalues of the
central nucleus. With, say, �Z ≈ 10 and �N ≈ 10, we can
save the CPU time by a factor of �Z�N ≈ 102.

APPENDIX D: LOWEST-ENERGY MINIMA,
EQUILIBRIUM DEFORMATIONS, AND SEPARATING

BARRIERS

In this section we provide a synthetic overview of the
results of this article from the point of view of the two lowest
potential-energy minima. The collection shown manifests two
scenarios: Either both competing minima correspond to the
D3h symmetry, or one of them is D3h symmetric and the
other axially symmetric, oblate, the latter scenario dominates.
In both cases the numerical values of the oblate quadrupole
deformations may strongly differ, contributing to the variety
of predicted scenarios.

Table II shows the competition between the D3h-symmetry
minima corresponding to the hyperdeformed configurations
and the nearest competing minima some of which are also D3h

symmetric but, as it turns out, with α20 ∈ [−0.10,−0.45]. Let
us emphasize that in a big majority of the cases the potential
barrier separating the two D3h-symmetry twin-minima are
larger or significantly larger than 2 MeV what suggests that
in all these cases experimental signals of the configurations
will be those of the low-lying parity doublet vibrational exci-
tations.

Table III contains the results analogous to those in the
preceding one, but with the D3h-symmetric shapes superposed
with the superdeformed (thus less flat) oblate quadrupole de-
formation components. Let us emphasize that for all but two
cases the D3h-symmetric minima represent the ground states.
At the same time, and in contrast to the results of the preceding
table, the potential barriers separating the twin-minima are
negligibly small implying prediction of the absence of parity
doublets and relatively highly positioned vibrational states.

TABLE II. D3h-symmetry minima with α33 deformations superposed with hyperoblate quadrupole deformation components α20 ≈ −0.85.
Column 2 gives the energy of the minimum above the ground-state energy, vanishing values signify that the D3h-symmetric minimum has
become ground-state. Columns 3, 4, and 5 give the static equilibrium deformations of the corresponding minima. Columns 6 and 7 show the
potential barriers, BD3h representing the separation of the twin minima with the D3h-symmetry whereas Bsep gives the barrier separating the two
considered lowest energy minima.

Z = 124 D3h minimum Barrier Competing minimum

N Energy α20 α33 α40 BD3h Bsep Energy α20 α33 α40

188 4.84 −0.80 0.18 0.10 1.06 6.46 0.00 −0.10 0.10 −0.05
190 4.14 −0.80 0.18 0.10 1.85 5.99 0.00 −0.10 0.10 −0.05
192 3.75 −0.80 0.16 0.12 2.02 5.35 0.00 −0.10 0.10 −0.05
194 3.77 −0.80 0.15 0.12 2.17 5.54 0.00 −0.05 0.10 −0.02
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TABLE II. (Continued.)

D3h minimum Barrier Competing minimum

N Energy α20 α33 α40 BD3h Bsep Energy α20 α33 α40

Z = 126

186 4.32 −0.80 0.20 0.15 1.76 4.46 0.00 −0.15 0.10 −0.05
188 3.59 −0.80 0.20 0.10 1.72 4.57 0.00 −0.40 0.00 −0.02
190 3.07 −0.80 0.20 0.13 2.25 4.29 0.00 −0.45 0.00 −0.05
192 2.84 −0.80 0.15 0.12 2.21 4.07 0.00 −0.25 0.00 −0.03
194 1.30 −0.80 0.15 0.13 1.82 4.45 0.00 −0.45 0.04 −0.05
196 1.51 −0.80 0.15 0.13 0.90 4.79 0.00 −0.45 0.05 −0.03

Z = 128

186 2.35 −0.85 0.20 0.15 2.38 3.82 0.00 −0.20 0.10 −0.05
188 2.10 −0.85 0.20 0.15 2.72 3.97 0.00 −0.40 0.00 −0.02
190 1.53 −0.80 0.20 0.13 2.93 3.59 0.00 −0.40 0.00 −0.07
192 1.29 −0.80 0.20 0.12 2.84 3.27 0.00 −0.25 0.00 −0.03
194 1.73 −0.80 0.15 0.13 1.77 3.21 0.00 −0.25 0.00 −0.03
196 2.04 −0.80 0.15 0.13 1.32 3.70 0.00 −0.25 0.00 −0.05

Z = 130

180 2.17 −0.90 0.21 0.13 2.66 4.63 0.00 −0.25 0.00 0.02
182 1.31 −0.90 0.21 0.13 3.13 4.42 0.00 −0.20 0.08 −0.05
184 0.86 −0.85 0.21 0.15 3.39 4.25 0.00 −0.20 0.08 −0.05
186 0.45 −0.85 0.20 0.15 3.52 4.06 0.00 −0.20 0.08 −0.05
188 0.16 −0.85 0.20 0.15 3.75 3.95 0.00 −0.40 0.00 −0.07
190 0.00 −0.85 0.20 0.15 3.51 4.28 0.12 −0.40 0.00 −0.07
192 0.00 −0.80 0.20 0.13 3.30 3.27 0.16 −0.25 0.00 −0.05
194 0.00 −0.80 0.20 0.13 3.23 2.22 0.34 −0.25 0.00 −0.03
196 0.65 −0.85 0.20 0.13 2.00 2.62 0.00 −0.25 0.00 −0.05
198 0.86 −0.85 0.20 0.13 0.85 2.78 0.00 −0.25 0.00 −0.05

Z = 132

176 0.39 −0.90 0.21 0.12 1.98 2.81 0.00 −0.20 0.09 0.00
178 0.00 −0.90 0.21 0.12 2.69 2.87 0.06 −0.25 0.00 −0.03
180 0.00 −0.90 0.21 0.12 3.68 3.80 0.29 −0.25 0.00 −0.03
182 0.00 −0.90 0.21 0.12 4.33 5.81 0.97 −0.35 0.00 −0.06
184 0.00 −0.90 0.21 0.12 4.15 5.28 0.88 −0.40 0.00 −0.09
186 0.00 −0.85 0.21 0.15 4.35 5.27 1.19 −0.40 0.00 −0.09
188 0.00 −0.85 0.21 0.15 4.40 5.73 1.34 −0.40 0.00 −0.09
190 0.00 −0.85 0.21 0.15 4.51 5.83 1.35 −0.40 0.00 −0.09
192 0.00 −0.80 0.18 0.15 3.83 5.77 1.60 −0.35 0.00 −0.09
194 0.00 −0.80 0.18 0.15 3.07 5.16 1.20 −0.25 0.00 −0.06
196 0.00 −0.80 0.18 0.15 2.05 4.33 0.75 −0.25 0.00 −0.06
198 0.00 −0.80 0.18 0.15 1.01 3.42 0.41 −0.25 0.00 −0.06

Z = 134

178 0.00 −0.90 0.20 0.12 3.28 4.84 1.39 −0.30 0.00 −0.03
180 0.00 −0.90 0.20 0.12 3.96 5.85 1.91 −0.25 0.00 −0.03
182 0.00 −0.90 0.21 0.12 4.74 6.69 2.36 −0.35 0.00 −0.06
184 0.00 −0.90 0.21 0.12 4.76 6.35 2.48 −0.35 0.00 −0.06
186 0.00 −0.90 0.21 0.15 4.71 6.05 2.63 −0.40 0.00 −0.09
188 0.00 −0.85 0.21 0.15 4.63 5.85 2.68 −0.40 0.00 −0.09
190 0.00 −0.85 0.21 0.18 4.33 5.94 2.67 −0.40 0.00 −0.09
192 0.00 −0.80 0.18 0.15 3.69 5.91 2.66 −0.25 0.00 −0.06
194 0.00 −0.80 0.18 0.15 2.93 5.82 2.15 −0.25 0.00 −0.06
196 0.00 −0.80 0.18 0.15 1.88 4.97 1.67 −0.25 0.00 −0.06
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TABLE II. (Continued.)

D3h minimum Barrier Competing minimum

N Energy α20 α33 α40 BD3h Bsep Energy α20 α33 α40

Z = 136

184 0.00 −0.90 0.20 0.12 5.48 7.65 4.21 −0.35 0.00 −0.06
186 0.00 −0.90 0.18 0.18 5.69 6.44 4.63 −0.40 0.00 −0.09
188 0.00 −0.90 0.18 0.15 4.62 6.51 4.40 −0.40 0.00 −0.09
190 0.00 −0.85 0.18 0.18 4.53 6.67 4.45 −0.40 0.00 −0.09
192 0.00 −0.85 0.18 0.18 3.07 6.50 4.36 −0.40 0.00 −0.06

Z = 138

182 7.91 −0.90 0.20 0.15 3.11 6.79 0.00 −0.15 0.09 −0.06
184 7.41 −0.90 0.18 0.18 4.27 6.44 0.00 −0.15 0.09 −0.06
186 8.44 −0.90 0.18 0.15 4.22 7.86 0.00 −0.15 0.08 −0.06
188 6.27 −0.90 0.18 0.15 3.64 6.82 0.00 −0.40 0.00 −0.06

TABLE III. Analogous to the preceding table but with the D3h-symmetry minima superposed with superoblate (rather than hyper-oblate)
quadrupole α20 ≈ −0.50 configurations. Let us observe that some of those D3h-symmetric shapes are in a direct competition with the
hyperdeformed ones with axially symmetric quadrupole deformations corresponding to α20 ∈ [−0.80, −0.85].

Z = 122 D3h minimum Barrier Competing minimum

N Energy α20 α33 α40 BD3h Bsep Energy α20 α33 α40

198 0.00 −0.45 0.05 0.02 0.02 1.83 0.63 −0.25 0.00 −0.02
200 0.00 −0.45 0.05 0.02 0.11 2.22 0.86 −0.25 0.00 −0.02
202 0.00 −0.50 0.10 0.00 0.26 2.70 1.66 −0.25 0.00 −0.02
204 0.00 −0.50 0.10 0.00 0.29 2.62 1.98 −0.25 0.00 −0.02
206 0.00 −0.50 0.10 0.00 0.27 2.58 2.17 −0.25 0.00 −0.02

Z = 124

166 0.00 −0.50 0.02 0.05 0.02 2.79 1.13 −0.15 0.00 0.05
168 0.00 −0.50 0.06 0.05 0.79 2.25 0.44 −0.15 0.00 0.02
170 0.93 −0.50 0.06 0.05 1.68 1.52 0.00 −0.15 0.02 0.02
196 0.35 −0.45 0.05 0.00 0.53 1.85 0.00 −0.25 0.00 −0.02
198 0.00 −0.45 0.05 0.02 0.39 2.17 0.28 −0.25 0.00 −0.02
200 0.00 −0.45 0.05 0.02 0.49 2.42 0.86 −0.25 0.00 −0.02
202 0.00 −0.50 0.10 0.00 1.22 2.70 1.50 −0.25 0.00 −0.02
204 0.00 −0.50 0.10 0.00 1.30 3.09 2.18 −0.25 0.00 −0.02
206 0.00 −0.50 0.10 0.00 1.21 3.46 2.72 −0.25 0.00 −0.02

Z = 126

166 0.00 −0.50 0.06 0.05 0.02 3.58 1.60 −0.20 0.00 0.05
168 0.00 −0.50 0.06 0.05 0.52 2.56 0.78 −0.15 0.00 0.02
194 0.00 −0.45 0.04 −0.06 1.03 4.45 1.30 −0.80 0.15 0.13
196 0.00 −0.45 0.06 −0.03 1.12 4.79 1.51 −0.80 0.15 0.13
198 0.00 −0.50 0.05 0.02 0.77 1.95 0.50 −0.25 0.00 −0.05
200 0.00 −0.50 0.05 0.00 0.69 2.24 0.13 −0.25 0.00 −0.05
202 0.00 −0.50 0.05 0.00 0.66 2.52 0.69 −0.25 0.00 −0.04
204 0.00 −0.50 0.10 0.00 0.63 2.90 1.26 −0.25 0.00 −0.03
206 0.00 −0.50 0.10 0.02 0.61 3.33 1.86 −0.25 0.00 −0.02

Z = 128

166 0.00 −0.50 0.04 0.07 0.05 4.53 1.89 −0.20 0.00 0.02
168 0.00 −0.50 0.07 0.07 0.42 3.55 1.90 −0.20 0.00 0.02
170 0.00 −0.50 0.06 0.07 0.33 2.38 1.82 −0.20 0.00 0.02
198 0.00 −0.50 0.05 −0.05 1.31 3.69 2.04 −0.80 0.15 0.13
200 0.00 −0.50 0.05 0.00 0.26 1.18 0.24 −0.80 0.00 0.12
202 0.00 −0.50 0.05 0.00 0.34 1.43 0.59 −0.85 0.00 0.12
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TABLE III. (Continued.)

D3h minimum Barrier Competing minimum

N Energy α20 α33 α40 BD3h Bsep Energy α20 α33 α40

204 0.00 −0.50 0.10 0.00 0.42 1.77 0.64 −0.85 0.00 0.13
206 0.00 −0.50 0.10 0.05 0.41 2.41 0.38 −0.85 0.00 0.13

Z = 130

166 0.00 −0.50 0.04 0.07 0.05 4.53 1.89 −0.20 0.00 0.02
168 0.00 −0.50 0.07 0.07 0.42 3.55 1.90 −0.20 0.00 0.02
170 0.00 −0.50 0.06 0.07 0.33 2.38 1.82 −0.20 0.00 0.02
200 0.00 −0.50 0.05 0.00 0.26 1.18 0.24 −0.80 0.00 0.12
202 0.00 −0.50 0.05 0.00 0.34 1.43 0.59 −0.85 0.00 0.12
204 0.00 −0.50 0.10 0.00 0.42 1.77 0.64 −0.85 0.00 0.13
206 0.00 −0.50 0.10 0.05 0.41 2.41 0.38 −0.85 0.00 0.13

Z = 132

168 0.00 −0.50 0.06 0.06 0.05 3.51 2.36 −0.25 0.06 0.00
170 0.00 −0.50 0.06 0.07 0.03 2.61 1.38 −0.20 0.06 0.02
172 0.00 −0.55 0.08 0.06 0.28 2.88 0.24 −0.20 0.06 0.00
174 0.00 −0.55 0.09 0.09 0.29 2.24 0.30 −0.20 0.06 0.00

Z = 134

170 0.00 −0.50 0.06 0.07 0.17 3.47 2.44 −0.30 0.03 0.02
172 0.00 −0.55 0.06 0.06 0.41 3.42 0.24 −0.20 0.06 0.00
174 0.00 −0.55 0.06 0.09 0.50 3.97 0.30 −0.20 0.06 0.00
176 0.61 −0.55 0.10 0.00 1.01 2.50 0.00 −0.20 0.09 0.00

Tables IV and V present the results analogous to those before but here focusing on the minima with the normal deformed
oblate shape quadrupole contributions.

TABLE IV. Similar to the preceding table but with the D3h-symmetry minima combined with the normal-oblate quadrupole α20 ≈ −0.20
components, with Z ∈ [110, 120].

Z = 110 D3h minimum Barrier Competing minimum

N Energy α20 α33 α40 BD3h Bsep Energy α20 α33 α40

186 0.00 −0.10 0.08 −0.02 1.51 2.98 0.12 0.35 0.00 0.00
188 0.00 −0.10 0.10 −0.02 1.89 1.37 1.20 −0.40 0.00 −0.05
190 0.00 −0.05 0.10 −0.02 2.67 1.80 1.39 −0.40 0.00 −0.05
192 0.00 −0.05 0.10 −0.02 3.11 2.08 1.84 −0.40 0.00 −0.05

Z = 112

186 0.00 0.00 0.06 −0.02 1.05 1.38 1.06 −0.35 0.00 −0.02
188 0.00 −0.10 0.10 −0.02 1.35 1.38 0.96 −0.40 0.00 −0.05
190 0.00 −0.05 0.10 −0.02 1.68 1.44 0.89 −0.40 0.00 −0.05
192 0.00 −0.05 0.10 −0.02 2.13 1.70 1.30 −0.40 0.00 −0.02

Z = 114

188 0.00 0.00 0.06 −0.02 0.95 1.26 0.72 −0.40 0.00 −0.02
190 0.00 −0.10 0.10 −0.02 1.10 1.34 0.60 −0.40 0.00 −0.02
192 0.00 −0.05 0.10 −0.02 1.03 1.19 0.69 −0.40 0.00 −0.02

Z = 116

182 0.00 −0.05 0.06 −0.02 0.23 1.69 0.54 −0.15 0.08 −0.02
184 0.00 0.00 0.06 −0.00 0.30 2.52 1.13 −0.15 0.08 −0.02
186 0.00 −0.15 0.10 −0.02 1.55 1.84 1.67 −0.40 0.00 −0.02
188 0.00 −0.10 0.10 −0.02 1.60 1.05 0.49 −0.40 0.00 −0.02
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TABLE IV. (Continued.)

D3h minimum Barrier Competing minimum

N Energy α20 α33 α40 BD3h Bsep Energy α20 α33 α40

190 0.00 −0.10 0.10 −0.05 1.78 1.22 0.35 −0.40 0.00 −0.02
192 0.00 −0.10 0.10 −0.05 1.46 0.99 0.18 −0.40 0.00 −0.02
194 0.00 −0.05 0.10 −0.02 2.22 1.30 0.25 −0.40 0.00 0.00
196 0.00 −0.05 0.10 0.00 2.19 1.02 0.19 −0.40 0.00 0.00

Z = 118

174 0.00 −0.20 0.06 0.05 0.86 2.95 1.97 −0.35 0.00 0.02
176 0.00 −0.20 0.08 0.02 0.74 2.51 1.85 −0.35 0.00 0.02
178 0.00 −0.15 0.08 0.00 1.25 1.79 1.56 −0.35 0.00 0.00
180 0.00 −0.15 0.08 −0.02 1.02 1.82 0.21 −0.35 0.00 0.05
182 0.00 −0.15 0.08 −0.02 1.07 1.99 0.96 −0.35 0.04 0.05
184 0.00 −0.15 0.08 −0.05 0.50 1.63 0.59 0.00 0.00 0.00
186 0.00 −0.15 0.10 −0.02 1.10 1.39 0.97 −0.40 0.00 −0.02
188 0.00 −0.10 0.10 −0.02 1.17 1.15 0.21 −0.40 0.00 −0.02
190 0.00 −0.10 0.10 −0.05 1.36 1.32 0.64 −0.40 0.00 −0.02
192 0.00 −0.10 0.10 −0.02 0.44 1.30 0.18 −0.40 0.00 0.00
194 0.00 −0.05 0.10 −0.02 0.32 1.25 0.72 −0.40 0.00 0.00
196 0.00 −0.05 0.10 0.00 0.32 1.16 0.66 −0.40 0.00 0.00
198 0.00 0.00 0.10 0.00 0.42 1.09 0.57 −0.40 0.00 0.02
200 0.00 0.00 0.15 0.02 0.93 1.11 0.31 −0.45 0.00 0.02
202 0.00 0.00 0.15 0.02 0.98 1.34 0.22 −0.45 0.00 0.02

Z = 120

174 0.00 −0.20 0.06 0.02 0.89 9.96 1.49 0.40 0.00 0.05
176 0.00 −0.20 0.08 0.02 0.65 9.22 0.94 0.40 0.00 0.05
178 0.00 −0.15 0.08 0.00 0.15 9.66 0.63 0.40 0.00 0.00
180 0.00 −0.15 0.08 −0.02 2.01 1.65 0.21 −0.25 0.00 −0.02
182 0.00 −0.15 0.08 −0.02 2.07 1.22 1.20 −0.25 0.04 0.05
184 0.00 −0.15 0.08 −0.05 1.81 1.94 1.81 0.00 0.00 0.00
186 0.00 −0.15 0.10 −0.05 1.38 2.08 1.07 −0.40 0.00 0.00
188 0.00 −0.10 0.10 −0.05 0.87 0.96 0.63 −0.40 0.00 −0.02
190 0.00 −0.10 0.10 −0.05 0.91 1.23 0.20 −0.40 0.00 −0.02
192 0.00 −0.10 0.10 −0.02 0.80 1.41 0.57 −0.40 0.00 0.00
194 0.00 −0.10 0.10 −0.02 0.66 1.49 0.68 −0.20 0.00 −0.02
196 0.00 −0.05 0.10 0.00 0.77 2.04 0.52 −0.20 0.00 0.00
198 0.00 −0.05 0.10 0.00 1.25 2.15 0.63 −0.25 0.00 −0.02
200 0.00 −0.05 0.15 0.02 1.37 2.03 0.46 −0.25 0.00 −0.02
202 0.00 0.00 0.15 0.02 1.96 2.98 0.65 −0.25 0.00 0.00
204 0.00 0.00 0.15 0.02 0.72 2.97 1.74 −0.45 0.00 0.02

TABLE V. Follow-up of the preceding table for Z ∈ [122, 138].

Z = 122 D3h minimum Barrier Competing minimum

N Energy α20 α33 α40 BD3h Bsep Energy α20 α33 α40

170 0.00 −0.15 0.02 0.02 0.03 7.38 0.82 0.40 0.00 0.05
172 0.00 −0.20 0.06 0.02 0.73 8.91 0.84 0.40 0.00 0.05
174 0.00 −0.20 0.06 0.02 0.95 10.36 0.94 0.40 0.04 0.05
176 0.00 −0.20 0.08 0.00 0.74 10.08 0.35 0.40 0.04 0.05
178 0.00 −0.15 0.08 0.02 0.55 9.74 0.32 0.40 0.00 0.00
180 0.00 −0.15 0.08 −0.02 0.06 1.41 0.06 −0.25 0.00 −0.05
182 0.00 −0.15 0.08 −0.02 1.06 2.02 1.06 −0.25 0.04 0.05
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TABLE V. (Continued.)

D3h minimum Barrier Competing minimum

N Energy α20 α33 α40 BD3h Bsep Energy α20 α33 α40

184 0.00 −0.15 0.10 −0.05 1.99 2.67 2.34 −0.40 0.00 0.02
186 0.00 −0.15 0.10 −0.05 1.38 1.49 0.86 −0.40 0.00 0.02
188 0.00 −0.10 0.10 −0.05 1.03 1.06 0.21 −0.40 0.00 −0.02
190 0.00 −0.10 0.10 −0.05 0.54 1.25 0.06 −0.40 0.00 −0.02
192 0.00 −0.10 0.10 −0.05 0.20 1.20 0.21 −0.40 0.00 0.00
194 0.00 −0.05 0.10 −0.02 0.18 1.68 0.73 −0.20 0.00 −0.02
196 0.00 −0.05 0.10 0.00 0.19 1.93 1.07 −0.40 0.00 0.00

Z = 124

170 0.00 −0.20 0.02 0.02 0.04 2.10 0.93 −0.50 0.06 0.05
172 0.00 −0.20 0.06 0.02 0.58 9.22 0.94 0.40 0.00 0.05
174 0.00 −0.20 0.06 0.02 0.77 10.31 1.06 0.40 0.00 0.05
176 0.00 −0.20 0.08 0.00 0.75 10.21 0.56 0.40 0.02 0.02
178 0.00 −0.25 0.08 0.00 0.19 9.13 0.58 0.40 0.03 0.02
180 0.00 −0.15 0.08 −0.02 0.10 8.51 0.70 0.40 0.00 0.02
182 0.00 −0.15 0.10 −0.05 0.87 8.78 0.89 0.40 0.00 0.02
184 0.00 −0.15 0.10 −0.02 1.67 2.48 2.24 −0.40 0.00 −0.05
186 0.00 −0.15 0.10 −0.05 0.78 1.89 1.25 −0.40 0.00 −0.05
188 0.00 −0.10 0.10 −0.05 0.32 1.31 0.06 −0.40 0.00 −0.05
190 0.00 −0.10 0.10 −0.05 0.21 1.38 0.09 −0.40 0.00 −0.02
192 0.00 −0.10 0.10 −0.05 0.24 2.42 0.24 −0.40 0.00 0.00
194 0.00 −0.05 0.10 −0.02 1.26 2.49 1.26 −0.25 0.00 −0.02
196 0.00 −0.05 0.10 0.00 1.10 2.37 1.17 −0.45 0.05 0.00

Z = 126

170 0.00 −0.15 0.02 0.02 0.07 2.16 0.67 −0.50 0.06 0.05
172 0.00 −0.20 0.06 0.02 0.29 3.01 2.36 −0.50 0.06 0.07
174 0.00 −0.20 0.06 0.00 0.52 9.49 0.89 0.40 0.00 0.05
176 0.00 −0.20 0.08 0.00 0.69 10.01 0.47 0.40 0.00 0.02
178 0.00 −0.20 0.08 0.20 0.14 2.43 4.15 0.05 0.00 −0.02
180 0.00 −0.15 0.08 −0.02 0.13 3.43 4.41 0.05 0.00 −0.02
182 0.00 −0.15 0.10 −0.05 0.62 4.18 3.65 0.05 0.00 −0.02
184 0.00 −0.15 0.10 −0.05 1.39 2.21 1.68 −0.40 0.00 −0.07
186 0.00 −0.15 0.10 −0.05 0.67 1.62 0.76 −0.40 0.00 −0.05

Z = 128

170 0.00 −0.20 0.02 0.00 0.21 2.26 0.25 −0.50 0.06 0.07
172 0.00 −0.20 0.06 0.00 0.45 3.04 1.89 −0.50 0.06 0.07
174 0.00 −0.20 0.06 0.00 0.83 4.27 3.55 −0.55 0.08 0.07
176 0.00 −0.20 0.08 0.00 1.02 9.68 1.97 0.40 0.00 0.02
178 0.00 −0.20 0.08 −0.20 0.18 2.89 4.77 0.05 0.00 0.00
180 0.00 −0.20 0.08 −0.02 0.17 3.79 4.98 0.05 0.00 0.00
182 0.00 −0.20 0.08 −0.05 1.39 4.57 4.07 0.05 0.00 0.00
184 0.00 −0.20 0.08 −0.05 1.44 1.73 0.85 −0.40 0.00 −0.05
186 0.00 −0.20 0.08 −0.05 0.99 1.36 0.21 −0.40 0.00 −0.05

Z = 130

172 0.00 −0.20 0.06 0.00 0.38 2.84 0.88 −0.55 0.08 0.07
174 0.00 −0.20 0.06 0.00 0.77 3.45 2.36 −0.55 0.10 0.07
176 0.00 −0.20 0.08 0.00 0.60 4.74 3.24 −0.55 0.10 0.07
178 0.00 −0.20 0.08 −0.20 0.15 3.66 2.78 −0.90 0.22 0.12
180 0.00 −0.20 0.08 −0.02 0.51 4.87 2.31 −0.90 0.22 0.12
182 0.00 −0.20 0.08 −0.05 0.39 4.44 1.32 −0.90 0.22 0.12
184 0.00 −0.20 0.08 −0.05 0.67 1.01 0.26 −0.40 0.00 −0.05
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TABLE V. (Continued.)

D3h minimum Barrier Competing minimum

N Energy α20 α33 α40 BD3h Bsep Energy α20 α33 α40

Z = 132

176 0.00 −0.20 0.09 0.00 0.91 2.81 0.39 −0.90 0.21 0.12

Z = 134

176 0.00 −0.20 0.09 0.00 1.57 4.82 1.65 −0.90 0.21 0.12

Z = 136

180 0.00 −0.20 0.09 0.03 0.72 1.43 1.53 −0.35 0.00 0.06
182 0.00 −0.15 0.09 0.06 1.27 1.37 1.27 −0.35 0.00 0.06

Z = 138

182 0.00 −0.15 0.09 0.06 1.43 1.09 1.31 −0.35 0.00 0.06
184 0.00 −0.15 0.09 0.06 1.57 1.54 1.20 −0.35 0.00 0.06
186 0.00 −0.15 0.09 0.06 1.88 1.03 1.88 −0.40 0.00 0.09

Let us notice that in all the results presented in Tables IV and V, the D3h-symmetry minima present the ground states, whereas
the competing minima at about 1 to 5 MeV excitations may correspond to extreme oblate shapes. Again the barriers separating
the twin minima are often negligibly small, significantly below 1 MeV. Returning to the discussion in Sec. IV we may suggest
that the experimental manifestations of those structures via collective vibrations will have the form of relatively high lying
0-phonon and 1-phonon structures with the separate excitation energies (in contrast with the parity doublets).
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