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Structure of neutron-rich He � hypernuclei using the cluster orbital shell model
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We calculated the energy spectra of the neutron-rich He � hypernuclei with A = 6 to 9 within the framework
of an α + � + Xn (X = 1–4) cluster model using the cluster orbital shell model. The employed constituent
particles reproduce their observed properties. For resonant states of core nuclei such as 5He, 6He, and 7He, the
complex scaling method is employed to obtain energies and decay widths. The calculated ground states of 6

�He
and 7

�He are in good agreement with published data. The energy levels of 8
�He and 9

�He are predicted. In 9
�He,

we find one deeply bound state and two excited resonant states, which are proposed to be produced at the Japan
proton accelerator research complex (J-PARC) by the double-charge-exchange reaction (π−, K+) using a 9Be
target.
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I. INTRODUCTION

In unstable, nonstrange nuclear physics, nuclei near the
proton and neutron drip lines produce interesting phenomena
involving a neutron halo exotic structure. For instance, He
isotopes with A = 3 to 10 have been observed. From these
observations, we find that the ground state of 6He has a halo
structure, the ground state of 8He is bound (the edge of the
drip line of the He isotopes is 8He), and the ground states of
9He and 10He are unbound.

In hypernuclei, it is also interesting to search for the neu-
tron and proton drip lines. Because there is no Pauli principle
acting between nucleons and a � hyperon, inserting a � into
a nucleus gives rise to more bound states due to the attractive
nature of the �N interaction. Thus, if a � particle is added to a
neutron-rich nucleus with weakly bound or resonant neutrons,
the resulting hypenucleus will be more stable against neutron
decay. (This phenomenon is called a “glue-like” role.) Thanks
to this effect, there is a chance to produce a hypernuclear
neutron (proton) halo state, if the core nucleus has a weakly
unbound (resonant) state with an appropriate energy above
the particle decay threshold. In fact, when a � is added
to He isotopes, the binding energies of all the resulting He
hypernuclei (4

�He, 5
�He, 6

�He, and 7
�He) become larger than

the binding energies of their core nuclei, as one should an-
ticipate. In particular, 7

�He was observed using the (e, e′K+)
reaction at Jefferson Laboratory (JLAB) in 2013, and a �

separation energy of B� = 5.68 ± (stat.) ± 0.25(sys.) MeV
was reported [1]. After this discovery, the experiment was re-
peated with five times more statistics, and the observed ground
state B� was reported to be 5.55 ± 0.10(stat.) ± 0.11(sys.)
[2]. The first excited state of 7

�He was also observed with B�

is 3.65 ± 0.20(stat.) ± 0.11(sys.)[2]. Theoretically, we have
studied these hypernuclei, 5

�He, 6
�He, and 7

�He, using α�,

α�N , and α�nn two-body, three-body, and four-body cluster
models, respectively [3–5]. According to Ref. [3], although
the core nucleus 5He is unbound, due to the attractive nature
of the �N interaction (resulting in the glue-like role of a �

particle), the ground state of 6
�He is a weakly bound state

with respect to the 5
�He + n threshold. As a result, this hy-

pernucleus exhibits an extended valence neutron density, or
neutron halo. It is well known that the ground state of 6He is
a halo state. Thus, the 7

�He hypernucleus is more bound with
the addition of a �, and there is no neutron halo. However,
with the addition of a �, the 2+ excited state of 6He becomes
a weakly bound state in 7

�He.
Another important goal in the study of neutron-rich �

hypernuclei is to extract information about �N-�N coupling
and to obtain how much � probability is contained in hyper-
nuclei. In fact, to obtain information on �N-�N coupling,
intensive theoretical calculations of 4

�H and 4
�He have been

performed [6–8] using realistic hyperon-nucleon (Y N) inter-
actions. In Ref. [6], 4

�H and 4
�He were studied, taking into

account �N-�N coupling explicitly; it was concluded that
�N-�N coupling was important to make these A = 4 �

hypernuclei bound. However, because of the ambiguity in re-
alistic Y N potential models, understanding �N-�N coupling
remains difficult. To obtain further information on �N-�N
coupling, neutron-rich � hypernuclei such as the He isotopes
are well suited. Because � hypernuclei of the He isotopes
with A = 4 to 7 have been observed, systematic study of these
� hypernuclei would be very useful to obtain information
on �N-�N coupling. For the He core nuclear isotopes, it
is well known that 8He is the end of the bound systems. By
injecting an � particle into 8He, the resulting 9

�He would be
more deeply bound. If 9

�He can be observed, it would be also
helpful for the study of �N-�N coupling.
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So far, 9
�He has not been observed. However, plans are

to produce this � hypernucleus at the Japan proton accel-
erator research complex (J-PARC) using the double-charge-
exchange reaction (π−, K+) on a 9Be target. Therefore, it
is timely to study He isotope � hypernuclei. In Ref. [9],
He isotope � hypernuclei together with their correspond-
ing core nuclei have been calculated systematically within
a no-core shell model. The authors employed NN , NNN ,
and Y N potentials based upon chiral effective field theory
[10–12]. Because the authors did not focus on reproducing
the observed binding energies of the hypernuclei and the
core nuclei, it was difficult to predict the energy spectra
of 9

�He.
The aim of the present paper is to predict the energy spectra

of 9
�He within the framework of an α + 4n + � six-body

cluster model using the cluster orbital shell model (COSM),
which has been applied to He isotope nuclei for bound states
as well as resonant states [13]. By combining the COSM with
the complex scaling method, we could obtain decay widths
for resonant states in these nuclei. To demonstrate the validity
of this model approach, we calculate the energy spectra of
5
�He, 6

�He, 7
�He, and 8

�He and those of the corresponding core
nuclei. For He isotope � hypernuclei, we show our theoretical
binding energies are in good agreement with the observed
data using an effective single channel �N interaction, where
the �N-�N couple-channel potential is renomalized into a
single-channel �N potential, because there is no realistic Y N
interaction which reproduces the observed data of light �

hypernuclei.
The paper is organized as follows: In Sec. II, the method

and interactions are outlined. In Sec. III, the results are pre-
sented and discussed. Finally, in Sec. IV, we summarize our
conclusions.

II. MODEL AND INTERACTION

A. Cluster orbital shell model

We describe the neutron-rich � He isotopes assuming an
α cluster represents the strongly bound 4He central core. We
explain the six-body cluster model of 9

�He with α+n + n +
n + n + � in the cluster orbital shell model (COSM) [14,15].
The relative coordinates of the five valence particles around
the α cluster are {ri} with i = 1, . . . , 5 as shown in Fig. 1. The
coordinate r5 is that of the � particle. The Hamiltonian is

H = tα +
Av∑

i=1

ti + t� − TG +
Av∑

i=1

vαn
i +

Av∑
i< j

vnn
i j

+ vα� +
Av∑

i=1

vn�
i (2.1)

=
Av∑

i=1

(
p2

i

2μαn
+ vαn

i

)
+

Av∑
i< j

(
pi · p j

Aαm
+ vnn

i j

)

+ p2
�

2μα�

+ vα� +
Av∑

i=1

(
pi · p�

Aαm
+ vn�

i

)
, (2.2)

where Av and Aα are the number of valence neutrons and a
mass number of the α particle, respectively. The mass m is a

FIG. 1. Coordinate system of α + n + n + n + n + � in the
COSM.

nucleon mass. The kinetic energy operators tα , ti, t�, and TG

are those of the α, neutron, �, and center-of-mass part, respec-
tively. The operator pi (p�) is the relative momentum between
the α and a valence neutron (�) with the reduced mass μαn

(μα�). The nucleon part of the Hamitonian is the same as used
in the previous studies [13,16,17]. The α-neutron interaction
vαn is given by the microscopic Kanada-Kaneko-Nagata-
Nomoto potential [18]. For the neutron-neutron interaction
vnn, we use the Minnesota central potential [19] and slightly
modify the potential to fit the observed two-neutron separation
energy of 6He. For the �-neutron interaction v�n, we adopt
the phenomenological single-range Gaussian potential, ORG
[20]. For the α-� interaction, we adopt the folding potential
of v�n using the density of the α particle with the s-wave con-
figuration, which reproduces the B� = 3.12 MeV observed in
5
�He [20,21].

The total wave function with spin J of the He isotopes with
� is given by the superposition of the configurations �J

c in the
COSM as

�J =
∑

c

CJ
c �J

c , �J
c =

Av∏
i=1

a†
pi

a†
p�

|0〉, (2.3)

where the vacuum |0〉 indicates the α cluster. We adopt the
(0s)4 configuration of the harmonic oscillator wave function
for the α cluster. The range parameter of the 0s orbit is 1.4 fm
to reproduce the charge radius of 4He. The operator a†

pi
cre-

ates a single-particle state pi of a valence neutron with the
coordinate ri in a j j-coupling scheme. For the �, the creation
operator is a†

p�
with the coordinate of r5 in Fig. 1. The index

c is the set of {pi} and p� for valence particles and specifies
the configuration �J

c . For valence neutron states, we impose
the orthogonality condition, in which the relative 0s orbit is
removed in the state φp.

We expand the radial part of φp(r) with a finite number of
Gaussian functions u(r, b) for each single-particle state:

φp(r) =
N� j∑
q=1

dq
p u� j

(
r, bq

� j

)
, (2.4)

u� j
(
r, bq

� j

) = r�e−(r/bq
� j )

2/2 [
Y�(r̂), χσ

1/2

]
j, (2.5)

〈φp|φp′ 〉 = δp,p′ = δn,n′ δ�,�′ δ j, j′ . (2.6)
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The label q specifies the Gaussian range parameter bq
� j with

q = 1, . . . , N� j , where N� j is a basis number. The parame-
ters {bq

� j} are given in the geometric progression [22]. The
coefficients {dq

p} in Eq. (2.4) are determined using the or-
thogonality condition of the basis states {φp} in Eq. (2.6),
where n is the label to distinguish the radial part of φp(r).
The number N� j is determined to get the convergence of
the solutions and we use N� j = 10 at most with the range
of bq

� j from 0.3 to around 30 fm. In the COSM, each of
the configurations �J

c in Eq. (2.3) becomes the product of
the single-particle basis states φp. Using the Gaussian ba-
sis states with various range parameters, we can describe
the weak-binding state of the multivalence particles in the
COSM and also treat the resonances by applying complex
scaling.

For the single-particle states φp, we include the orbital
angular momenta � � 2. We use 173.7 MeV for the repulsive
strength of the Minnesota potential vnn instead of the origi-
nal 200 MeV to reproduce 0.975 MeV for the two-neutron
separation energy of 6He. This condition is the same as used
in the previous works [13,17,23] and reproduces the energy
spectra of the He isotopes and their mirror proton-rich nuclei.
For 9

�He, due to the large model space of the configuration
mixing, we limit the spin and parity of the core nucleus of
8He to be the 0+ state, because the excitation energy of the
first excited state of 8He (2+) is 3.4 MeV, which is rather high
in the present discussion of the binding energy of the � in
9
�He.

We combine the available configurations �J
c with the am-

plitude of CJ
c in Eq. (2.3). The Hamiltonian matrix elements

are calculated analytically using the COSM configurations
with Gaussian basis states. One finally solves the eigenvalue
problem of the Hamiltonian matrix as

∑
c′

〈
�J

c

∣∣H ∣∣�J
c′
〉
CJ

c′ = EJCJ
c , (2.7)

∑
c

(
CJ

c

)2 = 1. (2.8)

We obtain the amplitudes {CJ
c } and the energy eigenvalues

EJ of the He isotopes with �, measured from the six-body
threshold energy of 4He +n + n + n + n + �.

B. Complex scaling method

We explain the complex scaling method to treat resonances
and continuum states in the many-body systems [16,24–27].
The resonance is defined to be the eigenstate having the com-
plex eigenenergy with the outgoing boundary condition and
the continuum states are orthogonal to the resonances. In the
complex scaling, all of the particle coordinates {ri} as shown
in Fig. 1 are transformed using a common scaling angle θ

as

ri → ri eiθ , pi → pi e−iθ . (2.9)

The Hamiltonian in Eq. (2.2) is transformed into the complex-
scaled Hamiltonian Hθ , and the complex-scaled Schrödinger

equation is written as

Hθ�
J
θ = EJ

θ �J
θ , (2.10)

�J
θ =

∑
c

CJ
c,θ�

J
c . (2.11)

The eigenstates �J
θ are obtained by solving the eigenvalue

problem in Eq. (2.10). The total wave function �J
θ has a θ

dependence, which is included in the expansion coefficients
CJ

c,θ in Eq. (2.11). We obtain the energy eigenvalues EJ
θ of

the bound and unbound states on a complex energy plane,
which are governed by the ABC theorem [28]. From the ABC
theorem, the asymptotic boundary condition of resonances is
transformed to the damping behavior. Due to the boundary
condition of the resonances with the complex scaling, we
can use the same numerical method as the one to obtain the
bound states in the calculation of resonances. In the complex
scaling, the Riemann branch cuts are commonly rotated down
by 2θ in the complex energy plane, in which each of the
branch cuts starts from the corresponding threshold energy.
On the other hand, the energy eigenvalues of the bound and
resonant states are independent of θ from the ABC theorem.
From these properties, one can identify the resonances with
complex energy eigenvalues as Er − i�/2, where Er and �

are the resonance energies and the decay widths, respectively.
The scaling angle θ is determined in each resonance to give
the stationary point of the energy eigenvalue on the complex
energy plane.

For the resonance wave function, it is proved that its
asymptotic condition becomes the damping form if 2θ >

| arg(ER)| in the complex energy plane [28]. Hence, the res-
onance wave functions can be expanded in terms of the L2

basis functions because of the damping boundary condition,
and the amplitudes of resonances are normalized with the
condition of

∑
c (CJ

c,θ )
2 = 1. It is noted that the Hermitian

product is not adopted due to the biorthogonal property of the
complex-energy eigenstates including resonances [26,27,29].

III. RESULTS

First, let us discuss the energy spectra of He isotope nuclei
as shown in Fig. 2. The energies are weakly bound states
and resonant states. Regarding resonant states, we utilize the
complex scaling method to obtain energies and decay widths
as explained in Sec. II.B. We see that the calculated energy
spectra (red lines) of 5He, 6He, and 7He are in good agreement
with the observed data (black lines) well. In the case of 8He,
the observed binding energy is −3.1 MeV while the calculated
one is −3.21 MeV, which is consistent with the data. Also, we
calculate other excited states with decay widths for 8He. We
see that the calculated excited states are not inconsistent with
the observed states. To show the reliability of our model, we
also illustrate the rms radii of the bound states among the He
isotopes, namely, ground states in 6He and 8He in Fig. 3. We
see that the calculated rms radii are in good agreement with
the data. This means that we obtain reliable wave functions for
6He and 8He. Next, we discuss on the energy spectra of 5

�He,
6
�He, 7

�He, 8
�He, and 9

�He as shown in Fig. 4. The detailed
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FIG. 2. The calculated energy spectra of the He isotope nuclei
together with experimental data. Black lines are experimental data
and red line are calculated values. The experimental data are taken
in Refs. [30–34]. Numbers above the red lines are values of decay
widths. The energies are measured with respect to α + Xn (X = 1–4)
threshold.

results for these hypernuclei together with corresponding core
nuclei are listed in Table I.

The α� potential is adjusted so as to reproduce the ob-
served binding energy of 5

�He. For the energies of the A = 6
to 9 � hypernuclei, we have no adjustable parameters. For the
ground state of 6

�He, the observed biding energy is 4.18 MeV
with respect to the 5He + � threshold, which is consistent
with our result, 4.26 MeV. This state was considered to have
a neutron halo since the observed binding energy is weakly
bound by 0.17 MeV from the lowest threshold, 5

�He + �.
Other theoretical states, Jπ = 2−, 1−

2 , 0− states are resonant
states.

7
�He is one of the lightest neutron-rich � hypenuclei whose

core nucleus is the well-known neutron halo nucleus 6He.
Our calculated B�s of the ground state and excited states for
Jπ = 1/2+, 3/2+, and 5/2+ are 5.51, 3.34, and 2.87 MeV, re-
spectively. Our ground-state energy is in good agreement with
the data. Regarding the excited state, although it is not clear
which excited state, 3/2+ or 5/2+, is observed, our averaged
energy of two states of 3/2+ and 5/2+ is not inconsistent with
the data.

FIG. 3. The calculated rms radii of 6He and 8He for matter (Rm,
circle) and charge (Rch, triangle) with red solid symbols together with
experimental data. The data are taken from Refs. [35–39].

FIG. 4. The calculated energy spectra of the He isotope hypenu-
clei. The energies are measured with respect to the AHe+� (A =
4,5,6,7,8) thresholds.

For 8
�He, there have been six events by emulsion data and

the observed B� is 7.16 ± 0.7 MeV [40,41], which has large
error bar. Our theoretical calculation in this hypernucleus is
shown in Fig. 4. The core nucleus, the ground state of 7He, is
a resonant state with a very narrow decay width. By addition
of a � the ground state, 1− in the resultant hypernucleus
8
�He, becomes a weakly bound state, 0.05 MeV, with the
respect to the lowest threshold, 7

�He +n. Our theoretical B�

is also listed in Table I, 5.95 MeV, which is much less binding
than observed data. For A = 8 hypernuclei, there are other
observed � hypernuclei such as 8

�Li and 8
�Be. These observed

B�s are 6.80 ± 0.03 and 6.84 ± 0.05 MeV for 8
�Li and 8

�Be,
respectively. It should be noted that these two observed B�s
are larger than that of 8

�He. The ground states of core nuclei,
7Li and 7Be, are bound while that of 7He is the resonant
state. Generally speaking, by participation of a � state, B�

for the bound ground state is larger than that for the resonant
ground state. We can see this tendency for 7

�He, 7
�Li (Bexp.

� =
5.58 ± 0.03 [40,41]), and 7

�Be(Bexp.

� = 5.16 ± 0.08 [40,41]).
For 8

�He, there have been six events for this event by emulsion
data. Then, we need more data to confirm the binding energy
of this hypernucleus. Other states in 8

�He are resonant states.
In this system, we obtained resonant states using a bound-state
approximation. Thus, the energies are reported without decay
widths.

Finally, let us consider the energy spectra of 9
�He. The core

nucleus, 8He, has one bound state and several resonant excited
states. As mentioned before, our calculated energy levels of
this core nucleus are in good agreement with the observed
data. With the addition of a � particle, the ground state of
9
�He becomes deeply bound, having a � separation energy of
B� = 7.09 MeV. The first excited state of 8He, a 2+ state, is
a resonant state at 0.32 MeV with � = 0.66 MeV. Even if the
� particle is injected into this state, the �N attraction is not
enough to make this state bound. The resulting states, 3/2−
and 5/2− states, are narrow resonant states (less than 100-keV
widths). Thus, the relative energy (≈4.7 MeV) between the
1/2+ and the average of 3/2+ and 5/2+ in 9

�He is larger
than the energy (≈3.5 MeV) between 0+ and 2+ in 8He.
Therefore, we have one deeply bound state for 9

�He. Currently,
it is planned to produce this hypernucleus at J-PARC using
the (π−, K+) reaction on a 9Be target with a resolution of
about 3 MeV. According to our calculation, the relative energy
between the ground state and excited state is 4.6 MeV. Then, it
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TABLE I. Calculated energies of the low-lying states of 6
�He, 7

�He, 8
�He, and 9

�He together with those of the corresponding states of 5He,
6He, 7He, and 8He, respectively. E stands for the total interaction energy among constituent particles. The energies in parentheses are decay
widths for resonant states.

5He(αn) 6
�He(αn�)

Jπ 3/2− 1/2− 1− 2− 1− 0−

E (MeV) 0.75 (0.59) 2.14(5.84) −3.35 −2.94(0.06) −0.74(3.62) −0.67(3.71)
E exp (MeV) 0.798(0.648) 2.07(5.57)
B� (MeV) 4.10 3.69 1.49 1.42
Bexp

� (MeV) 4.18 ± 0.10
6He (αnn) 7

�He (αnn�)

Jπ 0+ 2+ 1/2+ 3/2+ 5/2+

E (MeV) −0.975 0.879(0.132) −6.48 −4.37 −3.84
E exp (MeV) −0.975 0.822(0.113)
B� (MeV) 5.51 3.34 2.87
Bexp

� (MeV) 5.55 ± 0.10(stat.) 3.65 ± 0.20(stat.)
±0.11(sys.) ±0.11(sys.)

7He (αnnn) 8
�He (αnnn�)

Jπ 3/2− 1/2− 1− 2− 1− 0−

E (MeV) −0.58(0.048) 0.42(2.77) −6.53 −6.33 −4.31 −4.27
E exp (MeV) −0.53(0.15) 0.37(1.0)
B� (MeV) 5.95 5.75 3.73 3.69
Bexp

� (MeV) 7.17 ± 0.7
8He (αnnnn) 9

�He (αnnnn�)

Jπ 0+ 2+ 1/2+ 3/2+ 5/2+

E (MeV) −3.21 0.32(0.66) −10.29 −5.69(<0.1) −5.53(<0.1)
E exp (MeV) −3.11 0.43(0.89)
B� (MeV) −7.09 2.49 2.33

would be possible to separate the ground state and first excited
state. Experimentally, there was a pioneering experiment, a
double-charge-exchange reaction (π−, K+) on a 10B target to
produce 10

� Li, although it was difficult to obtain significant
discrete peaks due to the small cross section [42]. With this
experience, it should be possible to produce 9

�He at J-PARC.
This hypernucleus, 9

�He, would be a most exotic system.

IV. SUMMARY

Motivated by the recently observed neutron-rich � hy-
pernucleus 7

�He and future plans to produce 9
�He, we have

studied the series of He isotope � hypernuclei, from 6
�He

to 9
�He within the framework of an α + Xn + � (X = 1–4)

cluster model. The interactions employed between constituent
particles are based upon the observed data. The calculated
energy spectra of the core nuclei with A = 5 to 8 are consistent
with the published data. For the resonant states of 5He, 6He,
and 7He, we employ the complex scaling method to obtain
energies and decay widths, and our results are consistent with
the observed resonant states. Our results for 6

�He and 7
�He are

in good agreement with the available data. We also compared
our results of 8

�He and data by emulsion data. We see that
theoretical binding energy is less bound with the data. How-
ever, due to large error bar and small number of events for it,

we need more precise data to discuss on this hypernucleus.
Within the present theoretical framework, we predict a very
weakly bound ground state, 1− (50 keV bound with respect to
the 7

�He +n threshold) and three resonant states. We have also
calculated the energy levels of 9

�He. We obtain one deeply
bound state, a 1/2+ state, and two narrow resonant states,
3/2+ and 5/2+. It is planned to produce the � hypernucleus
9
�He at J-PARC utilizing the (π−, K+) reaction on a 9Be
target. Because the calculated ground-state binding energy is
about 4 MeV below the lowest threshold, 7

�He +n, and there
are no states around the threshold, it should be possible to
identify the state. If 9

�He is observed at J-PARC, its binding
energy would be a useful constraint, along with those of the
lighter � hypernuclei, in modeling �N-�N coupling.
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[23] T. Myo, R. Ando, and K. Katō, Phys. Lett. B 691, 150 (2010).
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