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Wave-function-based emulation for nucleon-nucleon scattering in momentum space
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Emulators for low-energy nuclear physics can provide fast and accurate predictions of bound-state and scat-
tering observables for applications that require repeated calculations with different parameters, such as Bayesian
uncertainty quantification. In this paper, we extend a scattering emulator based on the Kohn variational principle
(KVP) to momentum space (including coupled channels) with arbitrary boundary conditions, which enable the
mitigation of spurious singularities known as Kohn anomalies. We test it on a modern chiral nucleon-nucleon
(NN) interaction, including emulation of the coupled channels. We provide comparisons between a Lippmann-
Schwinger equation emulator and our KVP momentum-space emulator for a representative set of neutron-proton
(np) scattering observables, and also introduce a quasi-spline-based approach for the KVP-based emulator. Our
findings show that while there are some trade-offs between accuracy and speed, all three emulators perform well.
Self-contained Jupyter notebooks that generate the results and figures in this paper are publicly available.
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I. INTRODUCTION

Nucleon-nucleon (NN) scattering has long been used to
fix parameters of microscopic Hamiltonians designed for
ab initio few- and many-body calculations. But the uncertainty
in most existing nuclear models has been underestimated
because they have lacked two key ingredients: a rigorous ac-
counting of Hamiltonian uncertainty and a complete estimate
of parameter uncertainty.

In the case of chiral effective field theory (χEFT) [1–4],
Hamiltonian uncertainty manifests as a truncation error, which
has been statistically modeled in Refs. [5–8]. A holistic
parameter estimation study would then both account for trun-
cation errors in the likelihood, and estimate and propagate all
plausible values of the low-energy constants (LECs) rather
than finding a single parameter value maximizing the like-
lihood. Bayesian statistical methods are particularly suitable
for these tasks [9–13], but are computationally demanding,
especially when generalizing to include few-body forces.
Emulators—surrogate models that allow for fast and accu-
rate (but approximate) model predictions—have the potential
to alleviate some of these demands [14]. In this paper, we
extend our recent explorations of emulators for NN scatter-
ing [15–17] to momentum-space wave functions and coupled
channels, and test against a representative set of neutron-
proton (np) scattering observables.
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The demand for emulators has led nuclear physics to the
general field of parametric model order reduction (PMOR),
where the goal is to extract the relevant information from a
model while reducing the computational cost significantly. An
efficient offline-online decomposition is crucial to construct
an efficient emulator. In the offline stage, the emulator is
trained with high-fidelity calculations1 for selected sets of pa-
rameters, also known as snapshots, while making predictions
for any other set of parameters are performed in the online
stage. The end result is a reduced-order model (ROM) that
serves as an emulator. For general overviews of the litera-
ture on PMOR techniques and their applications, we refer
the reader to Refs. [19,20]. A pedagogical introduction to
projection-based emulators for both scattering and bound-
state calculations, including interactive, open-source PYTHON

code, can be found in Ref. [21].
A particular snapshot-based ROM known as the reduced

basis method (RBM)2 has emerged as an efficient emulator for
the prediction of both bound state and scattering observables
[15,22,23]. The foundation of the first emulators for scattering
is the Kohn variational principle (KVP) (e.g., for the K ma-
trix), whose snapshots are based on scattering solutions to the
Schrödinger equation [24,25]. It has been demonstrated for a
variety of real and optical potentials that such emulators can

1Following the terminology of Ref. [18], we will refer to the cal-
culational machinery that generates high-fidelity solutions (e.g., LS
equation solver) as a simulator.

2The RBM has been rediscovered in the low-energy nuclear theory
community as eigenvector continuation (EC). See Ref. [19] for more
details.
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be trained for two- and three-body3 scattering in coordinate
space, then evaluated in the form of matrix inversions with
low-dimensional matrices [15,16,26].

Subsequently, an emulator of the Lippmann-Schwinger
(LS) equation using the Newton variational principle (NVP)
[27] was introduced in Ref. [17]. In contrast to the KVP
emulator, the variational trial basis is composed of scattering
matrices (e.g., K matrices) rather than scattering wave func-
tions. Both approaches were shown to quickly and accurately
predict the np phase shifts from a chiral Hamiltonian across
a range of parameter values. In this paper, we compare a
momentum-space KVP-based emulator, including emulation
of coupled channels and allowing for arbitrary boundary con-
ditions, to the NVP emulator for a representative set of np
observables. For a comparison of the KVP and NVP emulators
in a Galerkin framework and a survey on other emulators see
Ref. [21].

The paper is organized as follows. In Sec. II, we review the
underlying formalism of the KVP emulators and its extension
to momentum space and coupled channels. We then show
results for the momentum-space KVP emulator and compare
them to the K matrix (NVP) emulator in Sec. III. We demon-
strate that spurious singularities known as Kohn (or Schwartz)
anomalies [28,29] are mitigated using methods from Ref. [16].
Section IV has a summary and outlook and additional details
of the implementation are given in several appendices. The
self-contained set of codes that generate all results and figures
shown in this paper is publicly available [30].

II. FORMALISM

Our goal is to emulate the partial-wave Schrödinger equa-
tion for NN scattering at the center-of-mass energy E > 0,

Ĥ (θ)|ψ s〉 ≡ [T̂ + V̂ (θ)]|ψ s〉 = E |ψ s〉, (1)

where the vector θ is composed of parameters used by the
theoretical model to match results with experimental observa-
tions (e.g., the LECs of χEFT). Building our snapshot-based
MOR emulator begins by writing Eq. (1) in integral form.
Here, we choose the general (constrained4) KVP, which is
based on the functional [16,31]

Lss′
[ψ̃] = L̃ss′

E − 2μk0

det u
〈ψ̃ s|Ĥ (θ) − E |ψ̃ s′ 〉, (2)

where ψ̃ is a trial scattering wave function, L̃ss′
E is a generic

trial scattering matrix, u is a nonsingular matrix [16,31] used
to parametrize the asymptotic boundary condition associated
with L̃ss′

E (see Appendix A), and k0 = √
2μE is the on-shell

energy with μ being the reduced mass.5 More details can be

3In Ref. [26], the offline training stage involves calculations in both
momentum and coordinate space.

4For a description of constrained and unconstrained emulators see
Ref. [21].

5Throughout this paper we use boldface symbols to indicate vectors
in parameter-space, arrows to indicate vectors in snapshot-space,
natural units in which h̄ = c = 1, and follow the conventions for
scattering matrices in Refs. [25,32].

found in Ref. [16] and Appendix A. Table I summarizes the
notation we use in this work. Note that we adopt the conven-
tion that the wave functions in a bra symbol 〈·| in bra-ket
notation are not complex conjugated [e.g., 〈ψ̃ s| in Eq. (2)]
[15,16,33].

In Eq. (2), the superscripts s and s′ index the coupled chan-
nels (e.g., 3S1 and 3D1); for the uncoupled case this reduces
to a single equation with s′ = s. Each combination of (s′, s)
will have their own distinct emulator in our formulation. As
an example, for a coupled-channel np interaction in Eq. (2),
the (s′, s) pair could be one of 3S1−3S1, 3S1−3D1, 3D1−3S1, or
3D1−3D1, and for an uncoupled channel s′ = s could be 1S0.
We use the np spin-triplet coupled channels as an exemplary
case, but the general emulation procedure applies to general
channel coupling (including spin-singlet spin-triplet np cou-
pling [34]).

The functional (2) yields Lss′
[ψ̃] = Lss′

E when ψ̃ is the
exact wave function, and provides a stationary approximation
otherwise: Lss′

[ψ + δψ] = Lss′
E + O(δL2). Rather than find-

ing a wave function |ψ〉 that satisfies Eq. (1), our task has
now changed to finding a wave function that makes Eq. (2)
stationary for a given choice of E .

The key to creating an efficient PMOR emulator from
Eq. (2) is to use a snapshot trial wave function,

|ψ̃ s〉 ≡
nb∑

i=1

βi

∣∣ψ s
i

〉
, (3)

where nb is the number of parameter vectors {θi}nb
i=1 in the

training set and {|ψ s
i 〉}nb

i=1 the associated high-fidelity solutions
to Eq. (1), obtained by solving the LS equation directly (see
also Sec. III). These solutions are determined once in the
offline stage. The to-be-determined basis coefficients �β will
not be the same for all the channels, resulting in independent
emulators for each (s′, s) pair (see Appendix B for more de-
tails). For the np spin-triplet coupled channels, this will result
in three distinct variational principles being enforced: one for
each of angular momentum s′ = s = j ± 1 and one for the
off-diagonal component. The other off-diagonal component
can be inferred through the unitarity of the S matrix.6

Upon inserting the snapshot trial wave function (3) into the
functional (2), the functional takes the form [15]

Lss′
[�β ] = βiL

ss′
E ,i − 1

2βi�Ũ ss′
i j β j (4)

with the symmetric matrix

�Ũ ss′
i j (θ) ≡ 2μk0

det u

[〈
ψ s

i

∣∣Ĥ (θ) − E
∣∣ψ s′

j

〉 + (i ↔ j)
]

= 2μk0

det u

[〈
ψ s

i

∣∣V̂ (θ) − V̂j

∣∣ψ s′
j

〉 + (i ↔ j)
]
, (5)

where, as in Eq. (2), s′ and s correspond to the entrance and
exit channels. Equation (4) is a stationary approximation to
the generic L matrix at one energy, hence we build indepen-
dent emulators for each value of an energy grid. Equation (5)

6For (complex-valued) optical potentials with two coupled chan-
nels, one has four (instead of three) distinct variational principles
because the S matrix is not unitary.
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TABLE I. Notation used in this work.

Notation Description

θ Vector of parameters; θi are the parameters for the ith snapshot
s, s′ Indices for the exit and entrance channels of the scattering process, e.g., 3S1 and 3D1

t, t ′ Indices for available channels (summation convention implied)
ψ s

i Wave function in the channel s used for training and associated with the ith snapshot with θi [high-fidelity solution of Eq. (1)]

ψ̃ s Snapshot-based trial wave function in the channel s (3) applied to the KVP functional (2)
Lss′

E A generic scattering matrix at energy E

Lss′ [ψ̃] A functional whose stationary point is an approximation of the generic L matrix; i.e., L[ψ̃ + δψ̃] = Lss′
E + O(δL2)

βi To-be-determined coefficient of the ith snapshot in the trial wave function with
∑

i βi = 1

�Ũ ss′
i j (θ) nb × nb kernel matrix defined in Eq. (5)

is obtained [15] by adding and subtracting V̂i ≡ V̂ (θi ) and
V̂j ≡ V̂ (θ j ) and applying Eq. (1). In this form, the constant
terms in the potentials, such as a long-range Coulomb interac-
tion (assuming the fine-structure constant is not varied), will
cancel, and the matrix elements will only involve short-range
physics.

Emulating the scattering wave function [via Eq. (3)], and
hence Lss′

E ≈ Lss′
[ψ̃] [via Eq. (4)], has now been reduced

to choosing an appropriate training set {θi} and then deter-
mining the values of βi that make Eq. (4) stationary under
the constraint that

∑
i βi = 1. The latter is a consequence

of maintaining a consistent asymptotic normalization for the
scattering wave functions in Eq. (3) as required by the con-
strained KVP [15,21]. A numerically robust solution can be
found by introducing a Lagrange multiplier λ, and solving the
matrix equation [16](

�Ũ ss′ �1
�1 ᵀ 0

)(�β�

λ�

)
=

(�Lss′
E

1

)
, (6)

where �1 is an nb × 1 vector of ones, �Lss′
E are the basis states

used in the offline stage, and �β� is a vector of coefficients of
the trial wave function associated with the KVP’s stationary
approximation. Since Eq. (6) is a linear system, it will be a
highly computationally efficient emulator for scattering sys-
tems if the number nb of basis functions is much smaller than
the size of the high-fidelity wave function ψ .

Thus far we have not specified whether the matrix elements
�Ũ ss′

i j are to be calculated in coordinate space or momentum
space. The only difference between these implementations is
the way we obtain the basis functions ψi used to construct the
trial ansatz in Eq. (3), and thus the manner in which �Ũ ss′

is
evaluated. To formulate a momentum-space wave function ap-
proach to MOR emulators for scattering, we initially solve for
the K matrix and relate ψ to K before using Eq. (5). The scat-
tering wave function in momentum space takes the form [35]

ψ st (k; k0) = 1

k2
δ(k − k0)δst + 2

π
P

Kst (k, k0)/k0

k2 − k2
0

, (7)

which vanishes as k → ∞, but is singular at k = k0 = √
2μE

(the superscripts used for the K matrix in Eq. (7) are opposite
Ref. [35]). Here, Kst is the reactance matrix (or just the K ma-
trix), k0 the on-shell energy, P the Cauchy principal value, and

the labeling st indicates the partial-wave or reaction channels.
One can also write Eq. (5) in the momentum-space represen-
tation by inserting complete sets of states,7 resulting in

�Ũ ss′
i j (θ) =

∫∫ ∞

0
dk dp k2 p2

[
ψ ts

i (k)V tt ′
θ, j (k, p)ψ t ′s′

j (p)

+ (i ↔ j)
]

(8)

with

V tt ′
θ, j (k, p) ≡ 2μk0

det u

[
V tt ′

(k, p; θ) − V tt ′
j (k, p)

]
, (9)

where t and t ′ are summed over the available channels and
the dependence of ψ on k0 is left implicit. Moving forward,
we will drop the channel superscripts on �Ũ .

This is the general form of the momentum-space �Ũ
matrix. Note the ordering of the channel indices (t, s) in
the left-hand wave function in Eq. (8), which follows from
ψ ts(k) ≡ 〈kt |ψ s〉 and the convention that 〈ψ | = |ψ〉ᵀ (with-
out a complex conjugate), so that ψ ts(k) = 〈ψ s|kt〉. Thus, if
ψ has outgoing (ψ (+)), incoming (ψ (−)), or standing wave
(ψ (0)) boundary conditions, then the same version of ψ (x) is
used for both ψ (k) and ψ (p) in Eq. (8). No modification of
Eq. (8) is needed in the case of optical potentials, where again
the left-hand wave function is not conjugated relative to the
right-hand wave function. For more details on how to build
the general KVP emulator we refer the reader to Appendix C.
Different boundary conditions will be used below to mitigate
Kohn anomalies (see Sec. III B).

The efficient evaluation of �Ũ across a range of θ values
is critical to the applicability of the emulator. If the Hamil-
tonian operators have an affine (i.e., factorizable) parameter
dependence, denoted as

Ĥ (θ) =
∑

n

hn(θ)Ĥn, (10)

then matrix elements of the Hn operators in a given basis only
need to be calculated once in the offline stage rather than for
every parameter set θi. Chiral NN interactions have the form

7For example, for np scattering as in Sec. III, the complete set of
states are relative-momentum partial-wave states with orbital angular
momentum and spin coupled to total J and MJ .
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of Eq. (10) and, when varying only the contact LECs, can even
be cast into the form8

V̂ (θ) = V̂ 0 + θ · ̂V
1
, (11)

so that Eq. (5) can then be written as

�Ũ (θ) = �Ũ 0 + θ · �˜U
1
. (12)

The matrices V̂ 0 and �Ũ 0 and vectors of matrices ̂V
1

and
�˜U

1
, can now be precalculated during the emulator’s offline

stage, allowing for considerable speed-up factors in the online
stage where the value of �Ũ (θ) at any new parameter value is
efficiently constructed.

III. RESULTS

In this section, we apply the KVP momentum-space emu-
lator to calculate np scattering observables. We use the Reinert
et al. semilocal momentum-space (SMS) regularized chiral
potential at N4LO+ with the momentum cutoff 
 = 450 MeV
[36], which is a state-of-the-art chiral NN interaction. The pa-
rameters θ are composed of the NN contact LECs contributing
to this potential.

A. Emulator overview

The snapshots used in the offline stage are the scattering
solutions given by Eq. (7). The K matrices used to calculate
the second term in Eq. (7) are obtained from numerically
solving the LS equation. The LS equation is reduced to a set of
linear equations by approximating the integral as a sum over
N quadrature points obtained from Gauss-Legendre rules with
corresponding weights (see Refs. [35,37]). If the potential was
calculated merely on the quadrature points, without appending
the on-shell values, interpolation must be performed to obtain
the (half-)on-shell potential so that one can (1) account for the
singularity of the Green’s function when solving the LS equa-
tion [37], and (2) integrate the delta distribution in Eq. (7).

To generate the figures in this paper, we use a three-
segment compound Gauss-Legendre quadrature mesh with
a total of N = 80 momentum points. Half of the points
are placed in the first segment (0–3 fm−1) and the other
half split between the second (3–6 fm−1) and third segment
(6–∞ fm−1). The total number of points was informed by
prior experience solving the Lippmann-Schwinger equa-
tion for similar potentials. Furthermore, tests on a separable
potential indicated that the relative error between the exact
and simulator solutions begins to saturate around that point.
We emphasize that the momentum mesh is only relevant
in the offline stage since this directly affects the precision
of the high-fidelity solutions from the simulator used to build
the basis, and therefore the precision of the emulator with
respect to the exact solution (solution as N → ∞). The choice

8Note that hn(θ) would include higher-order polynomials when also
emulating the pion-nucleon coupling c2 (at N3LO) and axial coupling
constant gA (already at LO). Nevertheless, the Hamiltonian remains
affine and thus the emulators discussed here are directly applicable.

of mesh does not affect the emulator’s implementation in the
online stage, e.g., it does not affect the size of the �Ũ matrix
in Eq. (5). For the observables, we use a laboratory energy
range of 0.1 to 350 MeV with 350 points. For the partial waves
plots, we use a fine energy mesh of 3500 points over the same
energy range.

When performing the KVP emulation, we calculate Eq. (5)
two different ways. The first is by inserting Eq. (7) into Eq. (5)
and analytically integrating the δ distribution, which corre-
sponds to appending the exact on-shell value of the potential.
The remaining integrals are then solved numerically (see Ap-
pendix C). We refer to this method as the standard method.
The second is based on the global Glöckle spline interpolation
[38], which belongs to the family of quasispline methods that
perform the mapping∑

k

f (k)Sk (k0) ≈ f (k0), (13)

for smooth functions f (k) sampled on a grid k that en-
compasses k0 using the cubic spline polynomials Sk (k0)
constructed in Ref. [38]. This allows us to calculate Sk (k0)
once in the offline stage and save the result for the online
stage since it has no dependence on f (k) itself. Using this
method, we interpolate the solutions to the integrals that ap-
pear in Eq. (5) (i.e., k0 does not need to be appended to the
mesh as opposed to the standard method), thus decreasing the
computational cost needed in the offline stage significantly
at the expense of accuracy. We compare the KVP emulator
results using the Glöckle and standard method and compare
those results to the NVP emulator described in Ref. [17].

To reduce numerical errors in both the simulator and em-
ulator, we compute snapshots {Ki} of the LS equation using
non-interpolated potentials for partial waves that have a LEC-
dependence and interpolated potentials for LEC-independent
partial waves. When referring to interpolated potentials, we
mean calculating the potential using only the momentum
mesh and then using an interpolation method (such as the
bivariate Glöckle spline method) to interpolate the potential
to k0. By noninterpolated, we mean that each k0 is ap-
pended to the momentum mesh and the potential evaluated at
these points, which improves the accuracy of our potentials
compared to interpolating the potential to k0. We chose to
use noninterpolated potentials for the LEC-dependent partial
waves since these are the only ones used to calculate Eq. (5)
in the offline phase. The same LEC-independent partial waves
are employed by the simulator and emulator. All potentials
used for the emulators and simulator are precalculated for
efficiency.

The simulator used in this paper numerically solves the LS
equation for each partial wave. The accuracy of our simulator
was tested by comparing the simulator results to the analytical
solution of a Gaussian separable potential, producing relative
errors of ≈10−7 or better. Additionally, the simulator’s speed
was roughly 4× slower when we doubled the mesh size from
N = 80 to N = 160 quadrature points (by doubling the points
in each segment).

The accuracy of emulated observables depends on the size
of the basis (see Sec. III C); here, we use a basis size nb = 2na,
where na is the number of LECs associated with a given
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partial wave channel. The training points θi are randomly
sampled within an interval of [−5, 5] using a Latin-hypercube
for each partial wave, with the fitted coupling constants and
appropriate units given in Ref. [36].

The matrix �Ũ is increasingly ill-conditioned as the basis
size nb increases. One can reduce numerical noise by (1)
adding a regularization parameter (“nugget”) to the diago-
nal elements of the near-singular matrix [15], or (2) using
a solver that performs some type of regularization. For the
KVP emulator results in the figures, we use NumPy’s least-
squares solver linalg.lstsq() [39] with a cut-off ratio for
small singular values of 10−10 [16]. For the NVP emulator,
we add a nugget of 10−10 to the diagonal and use NumPy’s
linalg.solve().

The general KVP functional may not always provide
a (unique) stationary approximation, giving rise to spuri-
ous singularities known as Kohn (or Schwartz) anomalies
[28,29]. The energies at which those anomalies occur de-
pends on the training parameters θ used in the offline stage
and the evaluation set used in the online stage. Reference
[16] proposed detecting and mitigating these numerical in-
stabilities by considering an array of KVPs with different
boundary conditions (i.e., scattering matrices) within a par-
tial wave and using the emulator solutions to obtain an
estimated S matrix by a weighted sum of averages (see
also Refs. [31,40]).

For our KVP emulator, the mitigation process involves
first calculating Eq. (5) using the K matrix boundary con-
dition. Once we have calculated �Ũ , the terms in Eq. (4)
are rescaled to match the boundary conditions we want to
emulate (here, L = K , K−1, and T ). The anomalies are then
detected by applying a consistency check to the (independent)
emulated solutions of the different boundary conditions. The
emulator solutions that do not pass this check are discarded
while those that pass are averaged to obtain an anomaly-free
scattering matrix (here, the S matrix). All KVP emulator
results in this paper are shown with anomaly mitigation
unless otherwise stated. So far, such a mitigation protocol
has not been implemented for the NVP emulator. However,
one approach would be to use multiple emulators based
on different variational principles [21] instead of multiple
boundary conditions. See Appendix A for our implementa-
tion and Ref. [16] for more information on emulation with
arbitrary boundary conditions and ways to mitigate Kohn
anomalies.

B. Emulation of phase shifts

We first apply the emulators to the uncoupled 1S0 channel
using Eq. (5) to calculate �Ũ (see Appendix C for explicit
expressions). At N4LO+, this channel depends on na = 3
nonredundant LECs [36], and thus we choose our basis to
be composed of nb = 6 training points. Figure 1 shows the
phase shifts calculated using our simulator (black line) and
the KVP emulator standard method prediction (orange dots)
as a function of the laboratory energy in the top panel. The
phase shifts associated with the training points are depicted
by the light gray lines. In addition, the bottom panel shows

FIG. 1. Simulated (black solid line) and KVP emulated Standard
method (orange dots) 1S0 phase shifts for the N4LO+ SMS poten-
tial with 
 = 450 MeV (top panel). The bottom panel shows the
relative errors between the simulated and emulated phase shifts for
the Glöckle method (red dashed line), Standard method (blue solid
line), and NVP emulator (green dotted line), respectively. The spike
at Elab ≈ 270 MeV is due to the phase shift crossing zero.

the relative errors

Rel. Error = 2

∣∣∣∣Simulator − Emulator

Simulator + Emulator

∣∣∣∣ (14)

between the simulated and emulated phase shifts for the
Glöckle method (red dashed line), Standard method (blue
solid line), and NVP emulator (blue dotted line). We find
that our KVP emulator accurately reproduces the high-fidelity
phase shifts over a large energy range for both methods, but
the standard method is much more accurate than the Glöckle
method. On average, the relative error for the Glöckle method
is on the order of ≈10−6–10−5, while the standard method
has a relative error on the order of ≈10−12 for the same basis
size. The NVP emulator’s relative error is similar to the KVP
Standard method, with an error of ≈10−13.

We now turn to the coupled 3S1−3S1 channel. This chan-
nel depends on na = 6 nonredundant LECs [36] at N4LO+,
which means that our basis will be composed of nb = 12
training points. Figure 2 shows the on-shell K matrix for the
simulator calculation (black lines) and KVP emulator predic-
tion (orange dots) as a function of the laboratory energy for
each different partial-wave component. The errors are similar
to the 1S0 channel, with the standard method being much more
accurate than the Glöckle method, and the NVP emulator’s
relative error being slightly better than the standard method. In
all cases, we see a spike in the relative error at Elab ≈ 20 MeV
where the K matrix is singular.

The small spikes seen in the standard method error are not
Kohn anomalies, but can be attributed to a numerical insta-
bility of the principal value integral in the LS equation. These
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FIG. 2. As in Fig. 1, but for the on-shell K matrix in the coupled 3S1−3D1 as a function of the laboratory energy. From left to right: pure
D wave, pure S wave, and mixed S-D wave component.

spikes are mesh-dependent and appear when a k0 value is close
to a momentum mesh point, thus causing the denominator of
the Green’s function to approach zero faster than the numer-
ator. A way to decrease the relative error produced by these
spikes is to not allow the k0 values to be close to momentum
mesh points by moving energies that are close to any momen-
tum mesh point until the relative distance is greater than some
threshold value; e.g., ε � 10−2 MeV (see Appendix D for
details). The oscillations that appear in the Glöckle method’s
relative errors plots are potential-dependent, and increase in
number, but decrease in separation, when increasing the mesh
size.

Overall, the emulators accurately predict the partial waves
for the uncoupled 1S0 and coupled 3S1−3D1 channels. When
comparing the Glöckle method emulation with the standard
method, we see that the relative error for the standard method
is much less than the Glöckle method. For both partial waves
shown, the NVP emulator is the one that most accurately
reproduces its high-fidelity solution. Results for the other
channels are similar to the ones presented here, with the only
difference being that the relative error decreases as na gets
smaller. This can be further explored with the Jupyter note-
books provided [30].

C. Emulation of scattering observables

Next, we examine the performance of the emulator for
nuclear observables. As a demonstration, we use the SMS
regularized chiral potential at N4LO+ for np scattering with
partial waves having total momentum quantum numbers j �
jmax = 20. Overall, there are a total of 25 parameters in θ

that are being sampled using a Latin-hypercube design. As
previously mentioned, the basis size is chosen as nb = 2na,
where na is the number of LECs associated with the specific
partial wave, for a total of 50 training points. Since these pa-
rameters are only present in the channels j � 4, the emulator
only needs to be trained over these channels. The remaining
channels do not change as the parameters are varied, there-
fore, they do not undergo a training process and need to be
calculated only once by solving the LS equation directly.

The emulation of observables is carried out by combining
multiple emulators across different partial-wave channels. The
total np cross section can be calculated using

σtot(k0) = π

2k2
0

jmax∑
j=0

(2 j + 1) Re{Tr[S j (k0) − 14]}, (15)

where S j = 14 − 2i(1 − iKj )−1Kj is the S matrix, Kj is the
predicted on-shell K matrix, and Tr[·] denotes the trace. Both
S j and Kj are 4 × 4 matrices that contain both the triplet-
triplet and the singlet-triplet channels.

Figure 3 shows the simulator and emulator prediction for
the total np cross section, which are calculated using the fit
values for the LECs determined in Ref. [36]. The inset in
Fig. 3 depicts the mean relative errors for all three emulators
when randomly sampling 500 different combinations of np
LECs (chosen within the same range as the training points),
using these to calculate the emulated and simulated total cross
section, and comparing the results. On average, the relative
errors for all three emulators are similar to those for the
partial-wave calculations discussed in Sec. III B. Although
the mean relative errors for the Standard method and NVP
emulators are very similar, the NVP emulator seems to be the
one that most accurately reproduces its simulator.

As mentioned in Sec. III A and following Ref. [16], the
Kohn anomalies found in the calculation were mitigated by
emulating with different boundary conditions and building the
estimated S matrix. Figure 6 in Appendix D shows a total
cross section emulation result with one boundary condition,
hence no anomaly mitigation. From the figure, we see that
anomalies contribute to the Standard method mean relative
error at higher energies with a magnitude of approximately
10−3. These spikes are reduced to approximately 10−9 with
mitigation. The Glöckle method result exhibits anomaly con-
tributions of order 10−3 at lower energies, which get reduced
to approximately 10−5−10−7 with mitigation. For additional
information, see the discussion in Appendix D. Although the
NVP emulator is subject to anomalies, they are not evident
in the figures shown in this section, even though no mitiga-
tion strategy was applied. An example of noticeable anomaly
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FIG. 3. Simulated (black solid line) and emulated (orange dots)
np cross section with jmax = 20 for the N4LO+ SMS potential with

 = 450 MeV as a function of the laboratory energy. The inset
shows the relative mean errors between the emulator and the simula-
tor using the Glöckle, Standard method, and NVP emulator for 500
different sets of np LECs obtained from Latin-hypercube sampling.
See the main text for details.

contributions as large as 10−3 in the NVP emulation are seen
in Fig. 7 in Appendix D.

The remaining spikes in Fig. 3 (e.g., at Elab ≈ 140 MeV)
can be traced back to singularities in the on-shell K matrix for
the 3S1−3D1 channel at those energies and are only seen for
a few (specific) LEC values out of the 500 sampled (see also
Fig. 2). The mesh-induced spikes seen in the standard method
relative error were also reduced in magnitude by preventing
the on-shell k0 value from being too close to a momentum
mesh value (see Fig. 8 for result comparisons).

We now turn our attention to spin-dependent observables
for nonidentical particles. A detailed description of NN ob-
servables and their different conventions can be found in
Refs. [34,41–45]. In general, one can write the spin ob-
servables in terms of Saclay parameters, which are complex
functions of the center-of-mass energy and angle θ . Here,
we only consider the differential cross section and analyzing
power:

dσ

d�
= 1

2
[|a|2 + |b|2 + |c|2 + |d|2 + |e|2 + | f |2], (16)

dσ

d�
Ay = Re(a∗ e + b∗ f ), (17)

where dσ/d� is the unpolarized differential cross section and
Ay the analyzing power (also known as Pb). For identical
particles, one has f = 0. More information on the description
of the spin observables can be found in Refs. [43,44]; see also
Appendix D, which contains our emulation results for more
spin observables. The Saclay parameters can be obtained from

the spin-scattering M = M(θ, φ) matrix written in singlet-
triplet space,

M =

⎛⎜⎜⎜⎜⎝
M11 M10e−iφ M1−1e−2iφ MST e−iφ

M01eiφ M00 M0−1e−iφ 0

M−11e2iφ M−10eiφ M−1−1 MST eiφ

MST eiφ 0 −MST e−iφ MSS

⎞⎟⎟⎟⎟⎠,

(18)

where the subscripts SS and ST represent the singlet-singlet
and singlet-triplet channel, respectively [42]. Equation (18)
can be calculated using spherical harmonics and Clebsch-
Gordan coefficients, and can be related to the Saclay
parameters from the expressions

a = 1

2
(M11 + M00 − M1−1), (19)

b = 1

2
(M11 + Mss − M1−1), (20)

c = 1

2
(M11 − Mss − M1−1), (21)

d = − 1√
2 sin θ

(M01 + M01), (22)

e = i

2
(M10 − M01), (23)

f = −i
√

2MST . (24)

The emulation process is performed similarly to the one for
the total cross section, where multiple trained emulators are
combined across different partial-wave channels. Figures 4
and 5 show the simulator and emulator prediction for the
differential cross section and analyzing power at three dif-
ferent energies calculated using the fit values for the LECs
determined in Ref. [36]. The relative mean errors shown are
obtained by randomly sampling 500 different combinations
of np LECs (the same LECs used for the sampled relative
error calculation in Fig. 3) and comparing them against their
respective simulator calculation. On average, the spin observ-
ables emulator has a relative mean error on the order of ≈10−5

when employing the Glöckle method and ≈10−14−10−11

when using the standard method and NVP emulators, which
are similar to the total cross section results. The results are
similar to those obtained over the entire energy grid and for
other observables (see Appendix D).

Table II details the angle-averaged relative errors between
the simulator and KVP emulators (base-10 logarithm) for
different spin observables with varying basis size at a variety
of energies. As can be seen, when training the emulator with
basis size nb = na both the standard and Glöckle method
emulators have large relative errors of roughly 10−1 when
compared to the high-fidelity model calculation. However,
if we increase the basis size by doubling the parameters
used per partial-wave, nb = 2na, the relative mean errors are
significantly smaller, roughly 10−12−10−9 and 10−6−10−3,
respectively. According to Ref. [46], the relative errors given
by nb = 2na are below experimental uncertainties. When in-
creasing the basis size to nb = 4na, the mean errors have
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FIG. 4. Simulated (solid lines) and emulated (dots) unpolarized
differential cross section for the N4LO+ SMS potential with 
 =
450 MeV as a function of the center-of-mass angle at the three
energies 60, 160, and 320 MeV (top panel). The bottom panel shows
the mean relative errors between the emulators and their respec-
tive simulators for 500 different sets of np LECs obtained from
Latin-hypercube sampling. The colors for the relative mean errors
correspond to the energies in the top panel. The gray arrows point
from the label associated with the emulator to its error. See the main
text for details.

mostly saturated and the improvement in accuracy is insignif-
icant compared to the basis size nb = 2na. Note that although
only four energies are shown, these results are similar over the
entire energy grid.

FIG. 5. As in Fig. 4, but for the analyzing power Ay (also known
as Pb). See the main text for details.

The speed-up between the emulators and the simulator
is highly implementation dependent (e.g., to-be-considered
factors are the desired accuracy, idiosyncrasies of the solver,
programming language, level of parallelization, hardware,
etc.). The emulator speed-up will depend on the size of the
quadrature mesh used by the simulator to obtain the high-
fidelity solution. For reproducing the total cross section using
the NVP emulator, Ref. [17] states an emulator speed-up
factor of >300× faster than the simulator in CPU time.
When doubling the quadrature mesh size this factor becomes
>1000×. When comparing the KVP and NVP emulator
speeds using one boundary condition (no anomaly checking)
for the 1S0 uncoupled partial wave, the KVP emulator is

TABLE II. Comparison of the angle-averaged relative errors (base-10 logarithm) between high-fidelity model and emulator for various
angular observables with different basis size for 500 sets of np LECs using the N4LO+ SMS potential [36] with momentum cutoff 
 =
450 MeV (rounded to two significant figures). These results are similar over the entire energy mesh. Here, “Std.” refers to the standard method
emulator. See the main text for details.

dσ/d� D Ay Ayy A

Basis size E (MeV) Std. Glöckle Std. Glöckle Std. Glöckle Std. Glöckle Std. Glöckle

nb = na 5 −1.2 −1.2 −0.93 −0.93 −0.46 −0.46 −0.72 −0.72 −0.78 −0.78
100 −0.73 −0.73 −0.47 −0.47 −0.12 −0.12 −0.20 −0.20 −0.28 −0.28
200 −0.54 −0.64 −0.30 −0.30 −0.028 −0.028 −0.035 −0.035 −0.12 −0.12
300 −0.49 −0.49 −0.24 −0.24 −0.066 −0.066 −0.037 −0.037 −0.043 −0.043

nb = 2na 5 −10 −7.0 −8.8 −6.1 −8.8 −5.6 −8.5 −5.8 −8.3 −5.9
100 −12 −6.3 −11 −5.1 −10 −4.9 −10 −4.9 −11 −5.3
200 −10 −4.0 −8.8 −3.2 −7.8 −2.7 −8.4 −2.9 −8.0 −3.0
300 −12 −4.9 −11 −4.0 −11 −3.9 −9.9 −3.8 −11 −3.9

nb = 4na 5 −10 −7.3 −8.8 −6.4 −8.8 −6.1 −8.5 −6.4 −8.3 −6.1
100 −13 −6.5 −12 −5.3 −11 −5.1 −11 −5.0 −11 −5.4
200 −10 −4.4 −9.3 −3.6 −8.5 −3.0 −8.8 −3.3 −8.8 −3.3
300 −12 −5.1 −11 −4.0 −10 −4.1 −10 −3.8 −11 −4.0
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slightly slower due to the Lagrange multiplier in Eq. (6) and
numerical operations needed to solve Eq. (4). Mitigation of
Kohn anomalies (by emulating multiple boundary conditions)
will further contribute to slowing down the KVP emulator, or
any other emulator.

IV. SUMMARY AND OUTLOOK

We showed that the coordinate space KVP emulator for
NN scattering [15,16] can be extended to momentum space
and coupled channels, and demonstrated its efficiency in
accurately reproducing phase shifts and np observables us-
ing a modern chiral interaction at N4LO+. In addition, we
provided two methods to implement the emulator, with the
Glöckle spline interpolation method having a faster offline
stage, but less accurate online stage than the standard method.
By emulating (independent) scattering solutions associated
with different asymptotic boundary conditions in each partial
wave and weighting the results (e.g., for the S matrix), spuri-
ous singularities known as Kohn anomalies were successfully
mitigated for the KVP-based emulators [16].

We also constructed an NVP-based emulator and assessed
how well the three emulators reproduced their respective
high-fidelity solution for the 1S0 and 3S1−3D1 partial waves,
total and differential cross sections, and analyzing powers.
While all emulators produced errors well below experimental
errors [46], the KVP Standard method and NVP emula-
tors most closely reproduced the simulator, while the KVP
Glöckle spline interpolation emulator was overall the least
accurate. The KVP emulator was found to have a slower
online stage than the NVP emulator because it has to eval-
uate a higher-dimensional matrix and perform overall more
numerical operations. We stress, however, that the emulators’
speed-ups are highly implementation dependent and should be
further investigated. Extensions of the NVP-based emulator
for anomaly mitigation with minimal computational cost, sim-
ilar to the KVP-based emulators, should also be investigated
[17]. An alternative procedure for mitigating anomalies would
be constructing the estimated S matrix using solutions from
emulators based on different variational principles, as opposed
to emulating multiple boundary conditions. Reference [21]
provides further perspectives regarding different emulators
(KVP- and NVP-based included) and efficient offline-online
decompositions.

Although we considered here only χEFT NN potentials
for np scattering, the constructed emulators are generally
applicable to two-body scattering, including pp scattering
and nuclear reactions with complex-valued optical poten-
tials. To help implement these fast and accurate scattering
emulators in Bayesian parameter estimations, we provide self-
contained set of codes that generate all results and figures
shown in this paper [30]. Furthermore, we have written a
pedagogical introduction to projection-based emulators [21]
with interactive, open-source PYTHON code to facilitate im-
plementations of fast and accurate emulators even further.
However, taking full advantage of emulators for uncertainty
quantification in nuclear scattering and reaction calculations
will require generalizations to higher-body scattering and non-

affine potentials. Recent advances in this direction are already
promising [26].
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APPENDIX A: MITIGATING KOHN ANOMALIES

We follow the method developed in Ref. [16] to detect and
mitigate Kohn anomalies (see also Ref. [31]). The estimated
S matrix is calculated from the emulator solutions by using a
weighted sum of averages. Letting L1 and L2 be two indepen-
dent KVP functional solutions, this weighted sum is computed
by first calculating the relative residuals

γrel(L1, L2) = max

{∣∣∣∣S(L1)

S(L2)
− 1

∣∣∣∣, ∣∣∣∣S(L2)

S(L1)
− 1

∣∣∣∣}, (A1)

for all emulated KVP solutions without repetitions to avoid
the trivial case where L1 = L2. Using a consistency check,
γrel < εrel, with εrel = 10−1, we select the set of pairs P =
{(L1, L2)} that satisfies this check. If at least one consistency
check passes, the S matrix is now estimated by the weighted
sum of averages

[S](mixed)
KVP =

∑
(L1,L2 )∈P

ω(L1, L2)
S(L1) + S(L2)

2
, (A2)

ω(L1, L2) = γrel(L1, L2)−1∑
(L′

1,L
′
2 )∈P γrel(L′

1, L′
2)−1

. (A3)

If no consistency check passes, one could change the basis
size to shift the position of the Kohn anomalies in the pa-
rameter space. However, we found that using Eq. (A2) was
sufficient to mitigate Kohn anomalies in our applications.

We first calculate Eq. (5) using Eq. (7), then rescale Eq. (5)
using the relations from Appendix B of Ref. [16],

�Ũ (u′ ) = C′−1(Li )C′−1(Lj )
det u
det u′ �Ũ (u), (A4)

C′(L) = det u
det u′

u′
11 − u′

10K (L)

u11 − u10K (L)
. (A5)

Here, u and u′ are nonsingular matrices parametrizing the
scattering boundary conditions; the K , K−1, and T scattering
matrices, respectively, are given by

uK =
(

1 0
0 1

)
, uK−1 =

(
0 1
1 0

)
, uT =

(
1 0
i 1

)
.

(A6)
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The u matrix parametrizes the initial boundary condition as-
sociated with L, while the u′ parametrizes the final boundary
condition associated with L′.

The snapshots used in the emulator’s offline stage are trans-
formed using the Möbius transform [16]

L′(L) = −u′
01 + u′

00K (L)

u′
11 − u′

10K (L)
. (A7)

Once we obtain an emulator solution, we transform that solu-
tion back into its K matrix form using

K (L) = u01 + u11L

u00 + u10L
. (A8)

For the estimated S calculation, the KVP solution pairs
(L1, L2) being evaluated are the K matrix solutions ob-
tained from the different boundary conditions used [e.g.,
γrel(K (K ), K (K−1)), γrel(K (K ), K (T )), and γrel(K (K−1),
K (T ))]. See Ref. [16] for more details.

APPENDIX B: FORMALISM DETAILS

Here, we provide clarifying remarks about how Eq. (4)
arises in the coupled case. In particular, we focus on two
questions about the specific manner in which the coefficients
�β enter into Eq. (4).

Why canLss′
be emulated separately for each ss′ pair rather

than with one global set of coefficients for the coupled block?
For uncoupled channels, each partial wave is independent

of one another, thus they can be emulated individually using
trial wave functions and coefficients that are specific to the
channel under consideration. Without loss of generality, let us
consider two uncoupled channels labeled as s = 0 and s = 1,
and let �β (0) and �β (1) denote the independent sets of coefficients
found by making each channel’s KVP stationary. To move to-
ward the coupled regime, imagine adiabatically turning on the
coupling between these two originally uncoupled channels.
The coefficients for each channel should remain nearly fixed
to their previously uncoupled values, but the coupling will
introduce a new set of coefficients �β (01) �= �β (0) �= �β (1) that
must be determined. Hence, each independent channel in the
coupled case will have its own set of coefficients. Attempting
to force a global set of coefficients for a coupled system
would be inconsistent with the treatment in the uncoupled case
and also degrade accuracy in general. A more technical an-
swer follows from the (Petrov-)Galerkin procedure described
below.

Should not each of |ψ s′ 〉 and 〈ψ s| have its own basis
expansion with their own independent coefficients?

No, there is only one set of coefficients that enter quadrati-
cally in Eq. (4). A way of understanding how the coefficients
enter in Eq. (4) follows from the (Petrov-)Galerkin orthogo-
nalization procedure (see also Ref. [21]). Rather than starting
with a variational principle, the (Petrov-)Galerkin approach
starts with the Schrödinger equation. Like the variational ap-
proach, it expands |ψ s′ 〉 as a linear combination of known
functions, but determines the basis coefficients by enforcing
orthogonality against a set of test functions. For the diagonal
channels, the test functions are chosen to have the same exit

channel as the trial functions (standard Galerkin approach).
On the other hand, the test functions for the off-diagonal
channels are chosen to have a different exit channel (s) than
the trial functions (s′) (Petrov-Galerkin approach). The result-
ing set of linear equations is equivalent to those that follow
from making the KVP stationary for each combination of
(s′, s) independently. Thus by following the (Petrov-)Galerkin
procedure we can determine how the coefficients are to enter
in Eq. (4).

We now show how a Petrov-Galerkin procedure can be
used to determine the KVP coefficients. This discussion will
follow closely that of Ref. [21], however using coupled-
channel notation and more general boundary conditions
consistent with the general KVP. Starting from (the strong
form of) the Schrödinger equation

Ĥ (θ)|ψ s′ 〉 = E |ψ s′ 〉, (B1)

we can derive its weak form after multiplying by a test func-
tion 〈ψ s|,

〈ψ s|Ĥ (θ) − E |ψ s′ 〉 = 0. (B2)

This can be considered a Petrov-Galerkin approach because
s �= s′ in general. The boundary conditions can be made ex-
plicit via the relationship

0 = 〈ψ s|Ĥ (θ) − E |ψ s′ 〉

= 〈ψ s|Ĥ†(θ) − E |ψ s′ 〉 −
∑

t

W (rψ ts, rψ ts′
; r)

2μ

∣∣∣∣∣
∞

r=0

,

(B3)

where Ĥ† denotes the operator acting to the left (via integra-
tion by parts) and where we have used ψ ts(r) = 〈rt |ψ s〉 =
〈ψ s|rt〉 and defined the Wronskian

W (φ,ψ ; r) ≡ φ(r)ψ ′(r) − φ′(r)ψ (r). (B4)

The wave function rψ vanishes at the origin, so that only the
limit as r → ∞ contributes. By adding Eqs. (B3) and (B2),
we have

〈ψ s|Ĥ (θ) − E |ψ s′ 〉 + 〈ψ s|Ĥ†(θ) − E |ψ s′ 〉

=
∑

t

W (rψ ts, rψ ts′
; r)

2μ

∣∣∣∣∣
∞

r=0

. (B5)

This is the weak form for general |ψ s′ 〉 and 〈ψ s|. We can arrive
at the discrete form by inserting basis states |ψ s

i 〉 that satisfy
the asymptotic boundary conditions

ψ st (r) −−−→
r→∞ δst φ̄

(0)
s (r) + Lst φ̄(1)

s (r), (B6)

where (
φ̄

(0)
� (r)

φ̄
(1)
� (r)

)
∝

(
u00 u01

u10 u11

)(
j�(qr)

η�(qr)

)
. (B7)

With this substitution, we have, for i ∈ [1, nb],

�Ũ ss′
i j β j = Lss′

i

∑
j

β j − Ls′s
j β j, (B8)
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where the expression for �Ũ ss′
i j is given by Eq. (5). We must

now implement the constraint
∑

j β j = 1, which is performed
here by a Lagrange multiplier λ mimicking a variational ap-
proach (see Ref. [19] for details):

λ + �Ũ ss′
i j β j = Lss′

i

∑
j

β j − Ls′s
j β j . (B9)

The sum multiplying Lss′
i can be evaluated using the con-

straint
∑

j β j = 1, and we can make the redefinition λ′ ≡
λ + ∑

j β jLs′s
j without impacting the solution because this

term does not depend on i. Thus, we have

λ′ − �L(E ) + �Ũ �β� = 0, (B10)

which is exactly Eq. (6) found by making the KVP stationary.
This simplification can be understood by noting that if {�β�, λ�}
satisfy Eq. (B9), then we know that {�β�, λ

′
�} is the unique

solution to Eq. (B10). Therefore, we can solve Eq. (B10)
to obtain �β� rather than Eq. (B9). In conclusion, using the
Petrov-Galerkin projection of the homogeneous Schrödinger
equation with trial and test bases of |ψ s′

i 〉 and 〈ψ s
i |, respec-

tively, we were able to obtain the same coefficients as the KVP
in Eq. (6), which yield the same on-shell Lss′

matrix when used
in Eq. (4).

APPENDIX C: KVP EMULATOR
CONSTRUCTION DETAILS

For single channel scattering over a k × p momentum grid
using the K matrix (det u = 1), Eq. (8) becomes

�Ũi j (θ) =
∫∫ ∞

0
dk dp k2 p2[ψi(k)Vθ, j (k, p)ψ j (p) + (i ↔ j)]

(C1)

with Vθ, j (k, p) defined as in Eq (9). We drop the superscripts
for the uncoupled case since s′ = s. Note that ψi is not com-
plex conjugated. For the Glöckle method, one would simply
substitute Eq. (7) into Eq. (C1) and interpolate the solutions
to the integrals with the cubic spline polynomials Sk (k0).
For the standard method, the Dirac δ distribution is analyt-
ically integrated; thus we obtain the following expression
for �Ũi j :

�Ũi j (θ) = Vθ, j (k0, k0) + 2

π

(
I1
i j + I2

i j

) + 4

π2
I3
i j + (i ↔ j)

(C2)

with I1
i j , I2

i j , and I3
i j defined as

I1
i j = P

∫ ∞

0
dk

k2

k0

Ki(k0, k)

k2 − k2
0

Vθ, j (k, k0), (C3)

I2
i j = P

∫ ∞

0
dp

p2

k0
Vθ, j (k0, p)

Kj (p, k0)

p2 − k2
0

, (C4)

I3
i j = P

∫∫ ∞

0
dk dp

k2 p2

k2
0

Ki(k0, k)

k2 − k2
0

Vθ, j (k, p)
Kj (p, k0)

p2 − k2
0

.

(C5)

FIG. 6. As in Fig. 3, but only emulating with the K matrix. The
mesh-induced spikes have been removed for this calculation.

If V has an affine dependence on the parameters θ, applying
Eqs. (11) and (12) produces

�Ũ 0
i j =

∫∫ ∞

0
dk dp k2 p2

[
ψi(k)V 0

j (k, p)ψ j (p) + (i ↔ j)
]
,

(C6)

�˜U
1

i j =
∫∫ ∞

0
dk dp k2 p2[ψi(k)V 1(k, p)ψ j (p) + (i ↔ j)

]
(C7)

FIG. 7. As in Fig. 3, but for cutoff 
 = 500 MeV.
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FIG. 8. Relative error of the 1S0 channel for a basis size of nb = 2na + 1 for the N4LO+ SMS potential with 
 = 450 MeV as a function
of the laboratory energy. The left panel shows the relative error for an emulator using the K−1 boundary condition. There is a Kohn anomaly
at Elab ≈ 65 MeV for both the standard and Glöckle emulators and mesh-induced spikes present throughout the energy grid. The right panel
shows the relative error for the mixed S-matrix approach presented by Ref. [16] with care taken to avoid the k0 values that correspond with a
mesh point as described in Sec. III B. When comparing both graphs, the Kohn anomaly is no longer present and the mesh-induced spikes are
much smaller in the right panel.

with

V 0
j (k, p) ≡ 2μk0[V 0(k, p) − Vj (k, p)]. (C8)

For coupled-channel interactions (s′ �= s), the details of the
emulation are more complex. In this case, we apply Eq. (4)
to each individual channel in a partial wave, but the real
difference lies in how Eq. (5) is calculated. The usual way
of solving for the phase shifts and mixing angle for the cou-
pled channels involves building a 2 × 2 block matrix for the
potential

V =
(

V 00 V 01

V 10 V 11

)
. (C9)

The same process can be applied to the emulator calculation
when calculating Eq. (5),

�Ũ =
(

�Ũ 00 �Ũ 01

�Ũ 10 �Ũ 11

)
. (C10)

Each of the four blocks in �Ũ has a separate functional,
although there are contributions from the different wave func-
tions and potentials (e.g., for the 3S1 – 3D1 partial wave �Ũ 00

depends on the 3S1 – 3S1, 3S1 – 3D1, and 3D1 – 3D1 wave func-
tions and potentials).

Additionally, Eq. (7) tells us that we can consider the
momentum-space wave function for the individual channels
ψ st . Using Eq. (8) with Eq. (9), the functionals for the indi-
vidual channels in a coupled-channel calculation (using the
3S1 − 3D1 as an example) will be

�Ũ ss′
i j =

∫∫ ∞

0
dk dp k2 p2

[
�uss′

i j + (
i ↔ j

)]
(C11)

with

�u00
i j = ψ00

i

(
V 00

θ, jψ
00
j + V 01

θ, jψ
10
j

)
+ ψ10

i

(
V 10

θ, jψ
00
j + V 11

θ, jψ
10
j

)
, (C12)

�u01
i j = ψ00

i

(
V 00

θ, jψ
01
j + V 01

θ, jψ
11
j

)
+ ψ10

i

(
V 10

θ, jψ
01
j + V 11

θ, jψ
11
j

)
, (C13)

�u10
i j = ψ01

i

(
V 00

θ, jψ
00
j + V 01

θ, jψ
10
j

)
+ ψ11

i

(
V 10

θ, jψ
00
j + V 11

θ, jψ
10
j

)
, (C14)

�u11
i j = ψ01

i

(
V 00

θ, jψ
01
j + V 01

θ, jψ
11
j

)
+ ψ11

i

(
V 10

θ, jψ
01
j + V 11

θ, jψ
11
j

)
, (C15)

where we have suppressed the arguments for compactness.
Note that the weights βi in Eq. (4) are different for each

FIG. 9. As in Fig. 4, but for the depolarization D.
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FIG. 10. As in Fig. 4, but for the spin-flip amplitude A.

channel (i.e., �Ũ 00, �Ũ 11, and �Ũ 01 = �Ũ 10), and are
determined independently of one another. Once Eqs. (C12)
through (C15) are calculated, the steps for the uncoupled
channel calculation are applied to each �Ũ ss′

i j to obtain the
emulator prediction, in particular Eqs. (C2) through (C5),
and the separation of �Ũ ss′

(θ) into parameter-dependent and
parameter-independent pieces as described by Eq. (12).

APPENDIX D: ADDITIONAL RESULTS

Figure 6 shows the relative mean error for the total cross
section using only the K matrix boundary condition. Compar-

FIG. 11. As in Fig. 4, but for the spin-correlation amplitude Axx .

FIG. 12. As in Fig. 4, but for the spin-correlation amplitude Ayy.

ing to Fig. 3, where we apply the weighted sum (mixed) S
approach, we see that for one boundary condition the relative
mean error has Kohn anomalies (see Elab ≈ 270 MeV and
≈315 MeV for the standard method and Elab ≈ 40 MeV and
≈130 MeV for the Glöckle method) and a more spread-out er-
ror. From Fig. 8 and comparing to Figs. 3 and 6, we conclude
that the mixed S approach is indeed successful in mitigating
the Kohn anomalies.

Figure 7 shows the relative mean error for the total cross
section with momentum cutoff 500 MeV. The weighted sum
(mixed) S approach is used for the KVP emulator results.

FIG. 13. As in Fig. 3, but for cutoff 
 = 550 MeV.
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FIG. 14. As in Fig. 3, but for cutoff 
 = 550 MeV.

Here, the anomalies found in the NVP emulation are notice-
able.

Figure 8 shows the relative errors for the KVP emulators
in the 1S0 channel. The figure on the left shows the rela-
tive error when emulating with the K−1 boundary condition
and the one on the right shows the weighted sum (mixed) S
errors. In the figure on the left we can see a spike around
Elab ≈ 65 MeV, which disappears when using the weighted
sum S approach. This is a clear example of the weighted sum
S approach helping to mitigate these anomalies. Additionally,
there are other smaller mesh-induced spikes (i.e., not anoma-
lies) present throughout the energy grid in the figure on the left
that are not in the figure on the right. These were mitigated by
not allowing the k0 values to be close to any momentum mesh
points. See Sec. III for a more detailed description.

Figures 9–12 show emulator results for the following spin
observables:

dσ

d�
D = 1

2
[|a|2 + |b|2 − |c|2 − |d|2 + |e|2 + | f |2], (D1)

dσ

d�
A = −Re(a∗ b − e∗ f ) sin

(
α + θ

2

)
+ Re(c∗ d ) sin

(
α − θ

2

)
− Im(b∗ e + a∗ f ) cos

(
α + θ

2

)
, (D2)

FIG. 15. As in Fig. 3, but for cutoff 
 = 550 MeV.

dσ

d�
Axx = Re(a∗ d ) cos(θ )+Re(b∗ c)−Im(d∗ e) sin(θ ), (D3)

dσ

d�
Ayy = 1

2
[|a|2 + |b|2 − |c|2 − |d|2 + |e|2 + | f |2], (D4)

where D is the depolarization parameter, A is the spin-flip
amplitude, Axx and Ayy are the spin-correlation amplitudes,
and α a relativistic spin rotating angle that vanishes in the non-
relativistic case [8]. For identical particles, f = 0. The results
and conclusions are similar to those described in Sec. III C.

Figure 13 shows emulator results for the total cross sec-
tion for the N4LO+ SMS potential with momentum cutoff
550 MeV. The results and conclusions are similar to the ones
described in the text for the 450 MeV momentum cutoff (see
Sec. III C).

Figures 14 and 15 show emulator results for the differential
cross section and analyzing power Ay for the N4LO+ SMS
potential with momentum cutoff 550 MeV. The results and
conclusions are similar to the ones described in the text for the
450 MeV momentum cutoff (see Sec. III C). These results and
conclusions also extend down to momentum cutoff 400 MeV.
The spin observables at 500 MeV show larger errors on order
of 10−7 for the NVP emulator at particular energies, which
may come from Kohn anomalies at one or more of the sam-
pled parameter sets (see Fig. 7); nevertheless, the errors are
still well below experimental uncertainties [46].
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