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S matrices of elastic α-12C scattering at low energies in effective field theory
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The elastic α-12C scattering at low energies for l = 0, 1, 2, 3, 4, 5, 6 is studied in effective field theory. I
discuss the construction of the S matrices of elastic α-12C scattering in terms of the amplitudes of subthreshold
bound and resonant states of 16O, which are calculated from the effective Lagrangian. The parameters appearing
in the S matrices are fitted to the phase shift data below the p-15N breakup threshold energy, and one finds that
the phase shifts are well described within the theory.
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I. INTRODUCTION

Radiative α capture on carbon-12, 12C(α, γ ) 16O, is a fun-
damental reaction in nuclear astrophysics, which determines
the C/O ratio along with the triple-α process in the helium
burning process in stars [1]. The radiative capture rate at the
Gamow peak energy, EG = 0.3 MeV, in the stars is, however,
difficult to measure in experimental facilities because of the
Coulomb barrier. One needs to employ a theoretical model, fit
the parameters of the model to the experimental data measured
at a few MeV energy or larger, and extrapolate the reaction
rate down to the Gamow peak energy, EG = 0.3 MeV. Over
the last half century, many experimental and theoretical stud-
ies have been carried out. See, e.g., Refs. [2–7] for review.

The experimental data of elastic α-12C scattering provide
important information about the energies and widths of reso-
nant states of 16O at low energies, which are used to fix some
parameters of theoretical models. The first integrated phase
shift analysis of the elastic scattering for l = 0, 1, 2, 3, 4, 5, 6
was reported with the data taken at the Ruhr-Universität
Bochum by Plaga et al. in 1987 [8]. The upgraded precise
phase shift analysis for partial waves, l = 0, 1, 2, 3, 4, 5, 6,
was reported with the data taken at the University of Notre
Dame by Tischhauser et al. in 2009 [9] where the energy
range of the α particle is 2.6 � Eα � 6.62 MeV; Eα is the α

energy in the laboratory frame. In this work, I study the elastic
α-12C scattering at low energies by employing an effective
field theory (EFT).

To construct an EFT, one first needs to introduce a large
momentum scale, �H . An EFT is constructed by using the
relevant degrees of freedom at low energy, below the large
momentum scale, �H . Then, the theory provides a perturba-
tive (derivative) expansion scheme in powers of Q/�H where
Q is a typical momentum scale in a reaction in question. The
coefficients of the effective Lagrangian are fixed by using ex-
perimental data, though, in principle, they can be determined
from its mother theory [10]. An EFT is constructed for few-
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body nuclear systems, known as pionless EFT, in which the
pions are regarded as irrelevant degrees of freedom, and one
has �H = mπ , where mπ is the pion mass [11]. In addition, the
dibaryon fields, which have the baryon number B = 2, are in-
troduced in the theory to expand the terms around the unitary
limit [12–14]. This expansion scheme turns out to reproduce
the effective range expansion [15]. Furthermore, one can natu-
rally extend the formalism to the studies of reactions involving
photoemission [16–18], β emission [19–21], and neutrino re-
actions [22,23]. In the previous studies, I constructed an EFT
for the 12C(α, γ ) 16O reaction at the Gamow-peak energy,
EG = 0.3 MeV, and studied the elastic α-12C scattering at low
energies for l = 0, 1, 2, 3 with and without the subthreshold
bound states of 16O [24,25]. I subsequently studied the E1
transition of the 12C(α, γ ) 16O reaction [26] and the β-delayed
α-emission from 16N [7] in the EFT.

The inclusion of a resonant state in EFT has been stud-
ied by many authors, e.g., by Gelman [27] and by Habashi,
Fleming, and van Kolck [28]; one needs to sum the leading
order interactions up to the infinite order in the vicinity of
resonant energy, where in most cases one considers a resonant
state and a background contribution. In real situations, on
the other hand, a number of resonant states are involved. In
the previous work, I studied the elastic α-12C scattering for
l = 2 including the subthreshold 2+

1 state and two resonant
2+

2 and 2+
3 states of 16O, in which the S matrix is constructed

from the amplitudes of those subthreshold and resonant states;
the amplitudes are derived from the effective Lagrangian and
represented in terms of the effective range parameters [29]. In
the present work, I apply the method to the study of the elastic
α-12C scattering at low energies for l = 0, 1, 2, 3, 4, 5, 6. The
parameters in the S matrices are fitted to the phase shift data
below the p-15N breakup threshold energy, and one finds that
the phase shifts are well described within the theory. Then, I
discuss the implication of the result for the application of EFT
to the study of nuclear reactions in stellar evolution.

The present work is organized as the following. In Sec. II
an expression of the S matrices is introduced and the effective
Lagrangian is presented, and in Sec. III the elastic scattering
amplitudes of the subthreshold and resonant states for the lth
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TABLE I. Bound and resonant (lπ
ith) states of 16O, which are

used to construct the S matrices for lth partial wave states of elastic
α-12C scattering; the resonant states in the third column appear in the
energy range, 2.6 � Eα � 6.62 MeV, and those in the fourth column
appear at Eα > 6.62 MeV.

l (Bound states) 2.6 � Eα � 6.62 MeV Eα > 6.62 MeV

0 0+
2 0+

3 0+
4

1 1−
1 1−

2 1−
3

2 2+
1 2+

2 , 2+
3 2+

4

3 3−
1 3−

2 3−
3

4 4+
1 , 4+

2 4+
3

5 5−
1

6 (bg) 6+
1

partial wave states are derived from the Lagrangian. In Sec. IV
I discuss the numerical results of the parameter fit to the phase
shift data for l = 0, 1, 2, 3, 4, 5, 6, and finally in Sec. V the
results and a discussion of this work are presented.

II. S MATRICES AND EFFECTIVE LAGRANGIAN

The construction of the S matrix of the elastic α-12C scat-
tering for l = 2 was discussed in Ref. [29]. In this section, I
review the method to extend it to the cases for lth partial wave
states. The S matrices of the elastic α-12C scattering for lth
partial wave channels are given as

Sl = e2iδl , (1)

where δl is the phase shift of elastic scattering for the
lth partial wave channel whose experimental data for l =
0, 1, 2, 3, 4, 5, 6 at 2.6 � Eα � 6.62 MeV are reported by
Tischhauser et al. [9].1 The scattering amplitude Ãl is related
to the S matrix as2

Sl = 1 + 2ipÃl . (2)

Various resonant states of 16O appear in the phase shift
data, and the subthreshold bound states and resonant states
at high energy (above the maximum energy of the data) may
give contributions to the S matrices of elastic α-12C scattering.
In Table I, I present a list of the subthreshold bound states,
the resonant states appearing in the phase shift data, and the
resonant states as background contributions from high energy
for the partial wave states of α-12C system. By employing
those states in Table I. I construct the S matrices of the elastic
α-12C scattering.

To construct an S matrix, Sl , I may decompose a phase shift
δl , for example, in the case of a subthreshold bound state and
two resonant states, as [27]

δl = δ
(bs)
l + δ

(rs1)
l + δ

(rs2)
l , (3)

1The α energy labeled by Eα is in the laboratory frame, and the
other energies are given in the center-of-mass frame.

2There is a common factor difference between the expression of
the amplitude Ãl and the standard form of the amplitude Al ; Al =
2π

μ
(2l + 1)e2iσl Ãl , where σl is the Coulomb phase shift for l , e2iσl =

	(l + 1 + iη)/	(l + 1 − iη) with η = κ/p.

where δ
(bs)
l is a phase shift from a subthreshold bound state,

and δ
(rsN )
2 with N = 1, 2 are those from resonant states. I now

assume that each of those phase shifts may have a relation to
a corresponding scattering amplitude as

e2iδ(ch)
l = 1 + 2ipÃ(ch)

l , (4)

where ch (channel) = bs, rs1, rs2, and Ã(bs)
l and Ã(rsN )

l with
N = 1, 2 are the amplitudes for the binding part and the first
and second resonant parts of the amplitudes, which will be
constructed from the effective Lagrangian in the next section.
Thus, the total amplitude Ãl for the nuclear reaction part in
terms of the three amplitudes, Ã(bs)

l and Ã(rsN )
l with N = 1, 2,

is

Ãl = Ã(bs)
l + e2iδ(bs)

l Ã(rs1)
l + e2i(δ(bs)

l +δ
(rs1)
l )Ã(rs2)

l . (5)

I note that the total amplitudes, Ãl , are not obtained as the
summation of the amplitudes, Ã(bs)

l and Ã(rsN )
l with N = 1, 2,

but have the additional phase factors to Ã(rsN )
l with N = 1, 2,

and the order of the three amplitudes, Ã(bs)
l and Ã(rsN )

l with
N = 1, 2, are exchangeable.

To study the elastic α-12C scattering at low energies in
EFT, I choose the p-15N breakup threshold energy as the
high energy scale. For the relevant degrees of freedom of
the theory, the ground 0+ states of α and 12C are chosen as
elementary-like scalar fields. I also introduce the composite
fields of α and 12C to describe the subthreshold and resonant
states of 16O. An effective Lagrangian to derive the scattering
amplitude for the lth wave elastic α-12C scattering at low
energies including lπ

ith states of 16O may be written as [24,25]

L = φ†
α

(
iD0 + �D2

2mα

)
φα + φ

†
C

(
iD0 + �D2

2mC

)
φC

+
6∑

l=0

∑
i

3∑
k=0

C(li)kd†
(li)

[
iD0 + �D2

2(mα + mC )

]k

d(li)

−
6∑

l=0

∑
i

y(li)[d
†
(nr)(φαO(l )φC ) + (φαO(l )φC )†d(li)], (6)

where φα (mα) and φC (mC) are scalar fields (masses) of
α and 12C, respectively. Dμ is a covariant derivative, Dμ =
∂μ + iQAμ, where Q is a charge operator and Aμ is the
photon field. d(li) are the composite fields for the lπ

ith states
of 16O consisting of α and 12C fields in lth partial wave states,
which are introduced for perturbative expansion around the
unitary limit [12–15]. The field d(li) are tensors in general,
which are represented as Cartesian tensors of rank l [30–32]
(I suppressed the indices of the Cartesian tensors); O(l ) are
also tensors to project the α-12C system to lth partial wave
states. The coupling constants, C(li)k with k = 0, 1, 2, 3, cor-
respond to the effective range parameters of elastic α-12C
scattering; for those of the subthreshold states of 16O, the
first coupling constants, C(li)k with k = 0, are fixed by using
the binding energies of the subthreshold states and the other
parameters are fitted to the experimental phase shift data with
other parameters appearing in the S matrices. For the coupling
constants of the resonant parts, C(li)k with k = 0, 1, 2, 3, the
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FIG. 1. Diagrams for dressed 16O propagator. A thick (thin) dashed line represents a propagator of 12C (α), and a thick and thin double
dashed line with and without a filled circle represent a dressed and bare 16O propagator, respectively. A shaded blob represents a set of diagrams
consisting of all possible one-potential-photon-exchange diagrams up to infinite order and a no-potential-photon-exchange one.

first two terms, C(li)k with k = 0, 1, are rewritten by using the
resonant energies and widths of the resonant states of 16O,
respectively. The third and fourth parameters for the resonant
states, C(li)k with k = 2, 3 are fitted to the phase shift data. The
coupling constants y(li) are convention dependent [33], and I
take the convenient choice: y(li) =

√
2π (2l + 1)μ2l−1, where

μ is the reduced mass of α and 12C.

III. SCATTERING AMPLITUDES

All the scattering amplitudes, Ã(bs)
l and Ã(rsN )

l with N =
1, 2, 3, are calculated from the diagrams depicted in Figs. 1
and 2. The shaded blobs in the diagrams represent the parts
of the nonperturbative Coulomb interaction, the Coulomb
propagator in the one-loop diagrams and the Coulomb wave
functions for the initial and final state interactions. Here, the
bubble diagrams are summed up to infinite order in Fig. 1.
I treat the bound parts of the amplitudes nonperturbatively,
though they can be expanded perturbatively in the energy
region of the experimental data. For the resonant parts of
the amplitudes (for the present case, they are classified as
narrow resonances because of 	r � Er [28]), the counting
rules of resonant states are carefully studied by Gelman [27]
and Habashi, Fleming, and van Kolck [28]. The energy range
of phase shift data covers the resonant states, and in the vicini-
ties of the resonant energies I should have the amplitudes for
which the bubble diagrams are summed up to the infinite or-
der. While in the off-resonant energy regions, one can expand
the resonant amplitudes perturbatively and the d(li) fields may
start mixing through the bubble diagram for corrections at
higher orders. I keep the summed amplitudes for the resonant
states as leading contributions and ignore the field mixing.

For the bound state amplitudes, Ã(bs)
l with l = 0, 1, 2, 3, I

have [24,25]

Ã(bs)
l = C2

ηWl (p)

Kl (p) − 2κHl (p)
(7)

where the function C2
ηWl (p) in the numerator of the amplitude

is calculated from the initial and final state Coulomb inter-
actions in Fig. 2; p is the magnitude of relative momentum
of the α-12C system in the center-of-mass frame, p = √

2μE ,

FIG. 2. Diagram of the scattering amplitude. See the caption of
Fig. 1 as well.

and one has

C2
η = 2πη

exp(2πη) − 1
, (8)

Wl (p) =
(

κ2

l2
+ p2

)
Wl−1(p), W0(p) = 1, (9)

where η = κ/p: κ is the inverse of the Bohr radius, κ =
ZαZ12CαEμ, where ZA are the numbers of protons of the
nuclei, Zα = 2 and Z12C = 6, and αE is the fine structure
constant. The function −2κHl (p) in the denominator of the
amplitude is the Coulomb self-energy term, which is calcu-
lated from the loop diagram in Fig. 1, and one has

Hl (p) = Wl (p)H (η), H (η) = ψ (iη) + 1

2iη
− ln(iη),

(10)

where ψ (z) is the digamma function. The nuclear interaction
is represented in terms of the effective range parameters in the
function Kl (p) in the denominator of the amplitude in Eq. (7).
As discussed in Ref. [24], large and significant contributions
to the series of effective range expansion, compared to that
evaluated from the phase shift data at the lowest energy of the
data, Eα = 2.6 MeV, appear from the Coulomb self-energy
term, −2κHl (p). In order to subtract those contributions, I
include the effective range terms up to p6 order for l = 0, 1, 2
and those up to p8 order for l = 3 as counterterms. Thus, I
have

Kl (p) = − 1

al
+ 1

2
rl p2 − 1

4
Pl p4 + Ql p6 − Rl p8, (11)

where al , rl , Pl , Ql , Rl are effective range parameters. (I note
that Rl = 0 for l = 0, 1, 2.)

Now I fix a parameter among the five effective range pa-
rameters, al , rl , Pl , Ql , and Rl , by using the condition that
the inverse of the scattering amplitude Ã(bs)

l vanishes at the
binding energy of the subthreshold states of 16O. Thus, the
denominator of the scattering amplitude,

Dl (p) = Kl (p) − 2κHl (p), (12)

vanishes at p = iγl , where γl are the binding momenta of the
0+

2 , 1−
1 , 2+

1 , 3−
1 (lπ

ith) states of 16O; γl = √
2μBl where Bl are

the binding energies of the bound states of 16O from the α-12C
breakup threshold. At the binding energies, one has the wave
function normalization factors

√
Zl for the bound states of 16O
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in the dressed 16O propagators as

1

Dl (p)
= Zl

E + Bl
+ · · · , (13)

where the dots denote the finite terms at E = −Bl . Thus, one
has

√
Zl =

(∣∣∣∣dDl (p)

dE

∣∣∣∣
E=−Bl

)−1/2

=
(

2μ

∣∣∣∣dDl (p)

d p2

∣∣∣∣
p2=−γ 2

l

)−1/2

.

(14)

The wave function normalization factor
√

Zl is multiplied to
a reaction amplitude when a bound state appears in the initial
or final state of the reaction.

Using the condition, Dl (iγl ) = 0, I fix the effective range
parameter al as

− 1

al
= 1

2
γ 2

l rl + 1

4
γ 4

l Pl + γ 6
l Ql + γ 8

l Rl + 2κHl (iγl ).

(15)

Using the relation of Eq. (15), I rewrite the denominator of the
amplitude Dl (p) as

Dl (p) = 1
2 rl

(
γ 2

l + p2) + 1
4 Pl

(
γ 4

l − p4) + Ql
(
γ 6

l + p6)
+ Rl

(
γ 8

l − p8
) + 2κ[H2(iγl ) − Hl (p)], (16)

where I have three constants rl , Pl , Ql for l = 0, 1, 2 and
four constants r3, P3, Q3, R3 for l = 3 in the function Dl (p)
for the nonresonant amplitude Ã(bs)

l , which are fitted to the
phase shift data. For the study of the asymptotic normalization
coefficients (ANC), the exponential factors in Eq. (5) almost
become 1’s in the small energy region due to the Gamow
factor in C2

η , and the amplitudes become

Ãl = Ã(bs)
l + Ã(rs1)

l + Ã(rs2)
l + O

(
C4

η

)
, (17)

where the poles at the sub-threshold bound states of 16O exist
in Ã(bs)

l , the ANCs |Cb| for the subthreshold bound states of
16O are calculated by using the formula [34]

|Cb| = γ l
l

l!
	(l + 1 + κ/γl )

(∣∣∣∣dDl (p)

d p2

∣∣∣∣
p2=−γ 2

l

)−1/2

(fm−1/2),

(18)

where 	(x) is the gamma function, and one may notice that
the ANCs are proportional to the wave function normalization
factor

√
Zl . I note that the ANCs themselves are not nec-

essary for the calculations of EFT (while they may become
constraints when the experimental data are not available for
fitting the effective range parameters). In the present work,
I display the values of the ANCs (in the next section) as a
demonstration of the comparison with those obtained in my
previous works as well as the other theoretical models. In
addition, I perform a test calculation to study the values of
ANCs from a potential model. Its results are presented in the
Appendix.

For the elastic scattering amplitudes for the resonant states
of 16O, I may first have those amplitudes as the same expres-
sion of the bound state amplitudes in Eq. (7) in terms of the
effective range parameters as

Ã(rsN )
l = C2

ηWl (p)

K (rsN )
l (p) − 2κHl (p)

, (19)

with N = 1, 2, 3, which correspond to the first, second, and
third resonant states of 16O, respectively, for lth partial wave
states and

K (rsN )
l (p) = − 1

a(rsN )
l

+ 1

2
r (rsN )

l p2 − 1

4
P(rsN )

l p4 + Q(rsN )
l p6,

(20)

where I include the terms up to p6 order for all the resonant
amplitudes.

I now introduce the Taylor expansion around the resonant
energies in the denominator of the scattering amplitudes [35].
Thus, I rewrite the amplitudes as

Ã(rsN )
l = −1

p

1
2	(li)(E )

E − ER(li) + R(li)(E ) + i 1
2	(li)(E )

, (21)

with

	(li)(E ) = 	R(li)
pC2

ηWl (p)

prC2
ηr

Wl (pr )
, (22)

R(li)(E ) = a(li)(E − ER(li) )
2 + b(li)(E − ER(li) )

3, (23)

where

a(li) = 1

2
ZR(li)

(
2P(rsN )

l μ2 − 48Q(rsN )
l μ3ER(li)

+ 2κRe
∂2Hl

∂E2

∣∣∣∣
E=ER(li)

)
, (24)

b(li) = 1

6
ZR(li)

(
−48Q(rsN )

l μ3 + 2κ Re
∂3Hl

∂E3

∣∣∣∣
E=ER(li)

)
, (25)

Z−1
R(li) = Re

∂

∂E
D(rsN )

l (E )

∣∣∣∣
E=ER(li)

, ZR(li) = 	R(li)

2prWl (pr )C2
ηr

.

(26)

In the above equations, ER(li) and 	R(li) are the energies and
the widths of the resonant lπ

ith states of 16O, and pr are the
resonant momenta, pr = √

2μER(li), which also appear in ηr

as ηr = κ/pr . I note that the expression of Eq. (21) resembles
that of the Breit-Wigner formula, but it is derived from the
expression of the effective range expansion in Eq. (20); it has
the additional terms, the corrections of the higher order terms
being proportional to (E − ER(li) )2 and (E − ER(li) )3 in the
function R(li)(E ) in Eq. (23); though the coefficients a(li) and
b(li) are functions of the effective range parameters, P(rsN )

l and
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Q(rsN )
l , I treat a(li) and bli) as independent free parameters for

the sake of simplicity.
Using the expression of the amplitudes in Eqs. (7) and (21),

I obtain an expression of the S matrices in Eq. (1) as

e2iδl = Kl (p) − 2κReHl (p) + ipC2
ηWl (p)

Kl (p) − 2κReHl (p) − ipC2
ηWl (p)

×
∏

i

E − ER(li) + R(li)(E ) − i 1
2	(li)(E )

E − ER(li) + R(li)(E ) + i 1
2	(li)(E )

, (27)

where the part for the bound states in terms of Kl (p) −
2κReHl (p) ± ipC2

ηWl (p) appears for l = 0, 1, 2, 3, and I also
include it for l = 6 as a background contribution from low
energy. The part of the resonant states in terms of E − ER(li) +
R(li)(E ) ∓ i 1

2	(li)(E ) are for those appearing in the energy
range of the phase shift data, and I also include it for each
of the partial waves as a background contribution from high
energy.

IV. NUMERICAL RESULTS

I construct an S matrix of the elastic scattering for each of
the partial waves, l = 0, 1, 2, 3, 4, 5, 6, and fit parameters in
the S matrices to the phase shift data at 2.6 < Eα < 6.62 MeV
reported by Tischhauser et al. [9], by means of a Markov chain
Monte Carlo (MCMC) program [36]. One will see that curves
calculated by using the fitted parameters reproduce the phase
shift data very well.

A. Phase shift for l = 0 channel

I consider three states, 0+
2 , 0+

3 , 0+
4 states of 16O, for the

S matrix of elastic α-12C scattering for l = 0, where 0+
2 is the

subthreshold bound state, 0+
3 is the resonant state appearing in

the phase shift data at Eα = 6.52 MeV, and 0+
4 is the resonant

state as a background contribution from high energy appearing
at Eα = 9.16 MeV. Thus, I have an expression of the S matrix
for l = 0 as

e2iδ0 = K0(p) − 2κReH0(p) + ipC2
η

K0(p) − 2κReH0(p) − ipC2
η

×
4∏

i=3

E − ER(0i) + R(0i)(E ) − i 1
2	(0i)(E )

E − ER(0i) + R(0i)(E ) + i 1
2	(0i)(E )

, (28)

with

K0(p) = 1

2
r0

(
γ 2

0 + p2) + 1
4 P0

(
γ 4

0 − p4) + Q0
(
γ 6

0 + p6)
+ 2κH0(iγ0), (29)

	(0i)(E ) = 	R(0i)
pC2

ηW0(p)

prC2
ηr

W0(pr )
, (30)

R(0i)(E ) = a(0i)(E − ER(0i) )
2 + b(0i)(E − ER(0i) )

3, i = 3, 4,

(31)

where γ0 = √
2μB0 and pr = √

2μE(0i). Thus, I have seven
parameters to fit the data,

θ0 = {r0, P0, Q0, ER(03), 	R(03), a(04), b(04)}, (32)

where two parameters a(03) and b(03) are set to be zero, a(03) =
b(03) = 0, because they are not sensitive to the parameter fit.
I use the experimental values for ER(04) and 	R(04), E (exp)

R(04) =
6.870(15) MeV and 	

(exp)
R(04) = 185(35) keV [37], because they

are not covered by the phase shift data, to which one cannot
fit them.

In Table II, I show fitted values and their errors of the seven
parameters in the amplitudes of the 0+

2 , 0+
3 , 0+

4 states of 16O in
the S matrix of elastic α-12C scattering for l = 0 in Eq. (28)
where I find a small value of χ2/N , χ2/N = 0.013, for the
parameter fit, as shown in Table III. The fitted values of ER(03)

and 	R(03) agree with their experimental values, E (exp)
R(03) =

4.887(2) MeV and 	
(exp)
R(03) = 1.5(5) keV [37]. Those of the pa-

rameters, such as P0, a(03), and b(03), at higher order have large
errors. One may notice that the errors of the effective range pa-
rameters, r0, P0, Q0 become larger in order as the orders of the
p2 expansion increase. This may indicate that the perturbative
expansion in the effective range parameters works well.

In Table IV, I show a value of the ANC, |Cb|, of the 0+
2 state

of 16O; I obtain |Cb| = 370(25) fm−1/2, which is smaller than
my previous estimates, |Cb| = 443(3) fm−1/2 [24] and |Cb| =
(6.4–7.4) × 102 fm−1/2 [38]. I note that the values of ANC of
the 0+

2 state of 16O reported in the literature are still scattered:
from the R-matrix analysis, the reported values of ANC are
|Cb| = 44+270

−40 fm−1/2 [39], 1800 fm−1/2 [40], and 1560 fm−1/2

[5]; from the α transfer reaction, 1560(100) fm−1/2 [41]; and
from those fitting the phase shift data using the square-well
potential, 3218.46 fm−1/2 [42] and 886–1139 fm−1/2 [43], and
using the so-called � method, 406 fm−1/2 [44] and 293 fm−1/2

[45]. So, this would be an interesting issue to investigate in the
future. In Fig. 3, I plot a curve of the phase shift for l = 0,
δ0, by using the fitted values of the parameters obtained in
Table II. The phase shift data are also displayed in the figure.
One finds that the fitted curve agrees well with the phase shift
data.

B. Phase shift for l = 1 channel

I consider three states, 1−
1 , 1−

2 , 1−
3 states of 16O, to con-

struct the S matrix of elastic α-12C scattering for l = 1, where
1−

1 is the subthreshold bound state, 1−
2 is the resonant state

appearing in the phase shift data at Eα = 3.23 MeV, and 1−
3

is a resonant state as a background contribution from high
energy appearing at Eα = 7.04 MeV. Because the resonant 1−

2
state can be described by the effective range parameters for
the subthreshold bound 1−

1 state, as discussed in Ref. [26], I
include the 1−

2 state in the amplitude of the subthreshold 1−
1

state. Thus, I have an expression of the S matrix for l = 1 as

e2iδ1 = K1(p) − 2κReH1(p) + ipC2
ηW1(p)

K1(p) − 2κReH1(p) − ipC2
ηW1(p)

E − ER(13) + R(13)(E ) − i 1
2	(13)(E )

E − ER(13) + R(13)(E ) + i 1
2	(13)(E )

, (33)
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TABLE II. Fitted values of the parameters in the amplitudes of the subthreshold and resonant states of 16O (and a background contribution
for l = 6), which are listed in Table I, in the S matrices of elastic α-12C scattering for l = 0, 1, 2, 3, 4, 5, 6. The parameters whose values are
not shown in the table are fixed by using the experimental data. Parameters not shown in the table are not included in the parameter fit.

lπ
i−th p0 order p2 p4 p6 p8

0+
2 a0 (fm) r0 (fm) P0 (fm3) Q0 (rm5)

0.26847(1) −0.0363(4) 0.0011(1)
0+

3 ER(03)(MeV) 	R(03)(keV)
4.8884(1) 1.34(3)

0+
4 ER(04) (MeV) 	R(04) (keV) a(04) (MeV−1) b(04) (MeV−2)

0.75(1) 0.18(1)

1−
1 , 1−

2 a1 (fm3) r1 (fm−1) P1 (fm) Q1 (fm3)
0.415314(7) −0.57428(7) 0.02032(2)

1−
3 ER(13) (MeV) 	R(13) (keV) a(13) (MeV−1) b(13) (MeV−2)

0.43(25) 3.8(7)

2+
1 a2 (fm5) r2 (fm−3) P2 (fm−1) Q2 (fm)

0.149(4) −1.19(5) 0.081(16)
2+

2 ER(22) (MeV) 	R(22) (keV)
2.68308(5) 0.75(2)

2+
3 ER(23)(MeV) 	R(23)(keV) a(23) (MeV−1) b(23) (MeV−2)

4.3545(2) 74.61(3) 0.46(12) 0.49(9)
2+

4 ER(24) (MeV) 	R(24) (keV)

3−
1 , 3−

2 a3 (fm7) r3 (fm−5) P3 (fm−3) Q3 (fm−1) R3 (fm)
0.0335(2) −0.446(9) 0.311(5) −0.152(3)

3−
3 ER(33) (MeV) 	R(33) (keV) a(33) (MeV−1) b(33) (MeV−2)

32(32) 3.2(32) × 102

4+
1 ER(41)(MeV) 	R(41)(keV) a(41) (MeV−1) b(41) (MeV−2)

3.19606(1) 25.91(1) 0.740(3) 0.304(5)
4+

2 ER(42)(MeV) 	R(42)(keV)
3.93655(2) 0.425(4)

4+
3 ER(43) (MeV) 	R(43) (keV) a(43) (MeV−1) b(43) (MeV−2)

0.889(6) 0.216(3)

5−
1 ER(51) (MeV) 	R(51) (keV) a(51) (MeV−1) b(51) (MeV−2)

0.572(6) 0.104(2)

(bg) r6 (fm−11) P6 (fm−9)
−0.3(2) 2(1)

6+
1 ER(61) (MeV) 	R(61) (keV) a(61) (MeV−1) b(61) (MeV−2)

0.8(1) 0.18(4)

with

K1(p) = 1

2
r1

(
γ 2

1 + p2) + 1
4 P1

(
γ 4

1 − p4) + Q1
(
γ 6

1 + p6)
+ 2κH1(iγ1), (34)

	(13)(E ) = 	R(13)
pC2

ηW1(p)

prC2
ηr

W1(pr )
, (35)

R(13)(E ) = a(13)(E − ER(13))
2 + b(13)(E − ER(13) )

3, (36)

where γ1 = √
2μB1 and pr = √

2μER(13). I have five parame-
ters to fit the data,

θ1 = {r1, P1, Q1, a(13), b(13)}, (37)

and I use the experimental values for ER(13) and 	R(13),
E (exp)

R(13) = 5.278(2) MeV and 	
(exp)
R(13) = 91(6) keV [37], for the

background contribution from high energy.

In Table II, I show fitted values and their errors of the
five parameters in the amplitudes of the 1−

1 , 1−
2 , 1−

3 states
of 16O in the S matrix of elastic α-12C scattering for l = 1
in Eq. (33), where I find a small value of χ2/N , χ2/N =
0.089, for the parameter fit, as shown in Table III. I also
find relatively large error bars of the coefficients a(13) and
b(13) at the high order while all errors of the effective range
coefficients, r1, P1, Q1, turn out to be small, presumably be-

TABLE III. Values of χ 2/N for l = 0, 1, 2, 3, 4, 5, 6 for the pa-
rameter fit where N = 252 for l = 0, 1, 2, 3, 4, N = 243 for l = 5,
and N = 186 for l = 6.

l 0 1 2 3 4 5 6

χ 2/N 0.013 0.089 0.66 0.87 0.47 0.094 0.026
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TABLE IV. Values of ANC, |Cb|, for the subthreshold 0+
2 , 1−

1 , 2+
1 ,

3−
1 states of 16O.

lπ
ith 0+

2 1−
1 2+

1 3−
1

|Cb| (fm−1/2) 370(25) 1.727(3) × 1014 3.1(6) × 104 113(8)

cause those parameters need to fit the resonant 1−
2 state of

16O appearing in the phase shift data. In Table IV, I show
the value of the ANC of the subhreshold 1−

1 state of 16O;
I have |Cb| = 1.727(3) × 1014 fm−1/2, which agrees well to
my previous estimate, |Cb| = (1.6–1.9) × 1014 fm−1/2 [24].
In Fig. 4, I plot a curve of the phase shift for l = 1, δ1, by
using the fitted values of the parameters obtained in Table II.
The phase shift data are also displayed in the figure. One finds
that the fitted curve agrees well with the phase shift data. As
discussed in Ref. [26], the phase shift data up to Eα = 6 MeV
can be described by the three effective range parameters only,
and the tail of the phase shift data at the high-energy side is
now described by the background contribution of the resonant
1−

3 state of 16O from high energy.

C. Phase shift for l = 2 channel

I include the 2+
1 , 2+

2 , 2+
3 , 2+

4 states of 16O to construct an
S matrix for l = 2, where 2+

1 is the sub-threshold bound state,
2+

2 and 2+
3 are the resonant states appearing in the phase shift

data at Eα = 3.58 MeV and Eα = 5.81 MeV, respectively,
and 2+

4 is a resonant state as a background contribution from
high energy appearing at Eα = 7.81 MeV. Thus, I have an
expression of the S matrix for l = 2 as

e2iδ2 = K2(p) + 2κReH2(p) + ipC2
ηW2(p)

K2(p) + 2κReH2(p) − ipC2
ηW2(p)

×
4∏

i=2

E − ER(2i) + R(2i)(E ) − i 1
2	(2i)(E )

E − ER(2i) + R(2i)(E ) + i 1
2	(2i)(E )

, (38)

FIG. 3. Phase shift δ0 of elastic α-12C scattering for s-wave chan-
nel as a function of Eα calculated by using the fitted values of the
parameters. Experimental data are included in the figure as well.

FIG. 4. Phase shift δ1 of elastic α-12C scattering for p-wave
channel as a function of Eα calculated by using the fitted values of
the parameters. Experimental data are included in the figure as well.

with

K2(p) = 1

2
r2

(
γ 2

2 + p2
) + 1

4 P2
(
γ 4

2 − p4
) + Q2

(
γ 6

2 + p6
)

+ 2κH2(iγ0), (39)

	(2i)(E ) = 	R(2i)
pC2

ηW2(p)

prC2
ηr

W2(pr )
, (40)

R(2i)(E ) = a(2i)(E − ER(2i) )
2 + b(2i)(E − ER(2i) )

3,

i = 2, 3, 4, (41)

where γ2 = √
2μB2 and pr = √

2μE(2i). I have nine parame-
ters to fit the data,

θ2 = {r2, P2, Q2, ER(22), 	R(22), ER(23), 	R(23), a(23), b(23)},
(42)

where four parameters, a(22), b(22), a(24), b(24), are set to be
zero, a(22) = b(22) = a(24) = b(24) = 0, because they are not
sensitive to the parameter fit, while I use the experimental
values for ER(24) and 	R(24), E (exp)

R(24) = 5.858(10) MeV and

	
(exp)
R(24) = 150(10) keV [37], for the background contribution

from high energy.
In Table II, I show fitted values and their errors of the nine

parameters in the amplitudes of the 2+
1 , 2+

2 , 2+
3 , 2+

4 states of
16O in the S matrix of elastic α-12C scattering for l = 2 in
Eq. (38), where I find a small value of χ2/N , χ2/N = 0.66, for
the parameter fit, as shown in Table III. (Those values in the
table are taken from Table 2 in Ref. [29].) The fitted values of
ER(22), 	R(22), ER(23), and 	R(23) agree with their experimental
values, E (exp)

R(22) = 2.68255(50) MeV, 	
(exp)
R(22) = 0.625(100) keV,

E (exp)
R(23) = 4.358(4) MeV, and 	

(exp)
R(23) = 71(3) keV [37] while

the fitted values of the parameters, such as Q2, a(23), and b(23),
at higher order have large errors. In Table IV, I show the
value of the ANC of the subthreshold 2+

1 state of 16O; I have
|Cb| = 3.1(6) × 104 fm−1/2, which is larger than my previous
estimate, |Cb| = (2.1–2.4) × 104 fm−1/2 [24]. In addition, I
also argued that the value of the ANC of the 2+

1 state of
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FIG. 5. Phase shift δ2 of elastic α-12C scattering for d-wave
channel as a function of Eα calculated by using the fitted values of
the parameters. Experimental data are included in the figure as well.

16O is sensitive to conditions imposed on the effective range
parameters, r2, P2, Q2, in the very low energy region, 0 �
Eα � 2.6 MeV, where no phase shift data are reported; I can
even reproduce the large ANC value, |Cb| � 10 × 104 fm−1/2

reported from the α transfer experiments [41,46–48]. For
more details, refer to Ref. [29]. In Fig. 5, I plot a curve of
the phase shift for l = 2, δ2, by using the fitted values of the
parameters obtained in Table II. The phase shift data are also
displayed in the figure. One finds that the fitted curve agrees
well with the phase shift data.

D. Phase shift for l = 3 channel

I consider 3−
1 , 3−

2 , 3−
3 states of 16O to construct an S

matrix of elastic α-12C scattering for l = 3, where 3−
1 is the

subthreshold bound state, 3−
2 is the resonant state appearing

in the phase shift data at Eα = 5.92 MeV, and 3−
3 is a res-

onant state as a background contribution from high energy
appearing at Eα = 7.96 MeV. Because the resonant 3−

2 state
can be described by the effective range parameters as well,
as I have seen in the case of l = 1, I include the 3−

2 state in
the amplitude of the subthreshold 3−

1 state. Thus, I have an
expression of the S matrix for l = 3 as

e2iδ3 = K3(p) − 2κReH3(p) + ipC2
ηW3(p)

K3(p) − 2κReH3(p) − ipC2
ηW3(p)

× E − ER(33) + R(33)(E ) − i 1
2	(33)(E )

E − ER(33) + R(33)(E ) + i 1
2	(33)(E )

, (43)

with

K3(p) = 1

2
r3

(
γ 2

3 + p2
) + 1

4 P3
(
γ 4

3 − p4
) + Q3

(
γ 6

3 + p6
)

+ R3
(
γ 8

3 − p8
) + 2κH3(iγ3), (44)

	(33)(E ) = 	R(33)
pC2

ηW3(p)

prC2
ηr

W3(pr )
, (45)

R(33)(E ) = a(33)(E − ER(33))
2 + b(33)(E − ER(33) )

3, (46)

FIG. 6. Phase shift δ3 of elastic α-12C scattering for f -wave
channel as a function of Eα calculated by using the fitted values of
the parameters. Experimental data are included in the figure as well.

where γ3 = √
2μB3 and pr = √

2μER(33). I have six parame-
ters to fit the data,

θ3 = {r3, P3, Q3, R3, a(33), b(33)}, (47)

where I impose a condition on the parameter R3 for the pa-
rameter fit, R̃3 < R3; R̃3 is the contribution from the Coulomb
self-energy term, −2κH3(p), to the R3 term, and I have R̃3 =
−17101/(90720κ ) [24]. When R̃3 > R3, a spurious bound
state appears below the subthreshold 3−

1 state of 16O. In ad-
dition, I use the experimental values for ER(33) and 	R(33),
E (exp)

R(33) = 5.967(10) MeV and 	
(exp)
R(33) = 110(30) keV [37], for

the background contribution from high energy. In Table II, I
show fitted values and their errors of the six parameters in the
amplitudes of the 3−

1 , 3−
2 , 3−

3 states of 16O in the S matrix of
elastic α-12C scattering for l = 3 in Eq. (43), where I find a
value of χ2/N , χ2/N = 0.87, for the parameter fit, as shown
in Table III. The fitted values of the parameters a(33) and b(33)

have large error bars and still are not fitted well because they
are insensitive in the parameter fit. If I exclude them from
the parameter fit, I have a large value of χ2/N , χ2/N = 1.84.
In Table IV, I show a value of the ANC of the 3−

1 state of
16O; I have |Cb| = 113(8) fm−1/2, which agrees well with
my previous estimate, |Cb| = (1.2–1.5) × 102 fm−1/2 [24]. In
Fig. 6, I plot a curve of the phase shift for l = 3, δ3, by using
the fitted values of the parameters obtained in Table II. The
phase shift data are also displayed in the figure. One finds that
the fitted curve agrees well with the phase shift data.

E. Phase shift for l = 4 channel

I consider 4+
1 , 4+

2 , 4+
3 states of 16O to construct the S matrix

of elastic α-12C scattering for l = 4, where 4+
1 and 4+

2 are the
resonant states appearing in the phase shift data at Eα = 4.26
MeV and Eα = 5.25 MeV, respectively, and 4+

3 is a resonant
state as a background state from high energy appearing at
Eα = 8.94 MeV. Thus, I have an expression of the S matrix
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FIG. 7. Phase shift δ4 of elastic α-12C scattering for g-wave chan-
nel as a function of Eα calculated by using the fitted values of the
parameters. Experimental data are included in the figure as well.

for l = 4 as

e2iδ4 =
3∏

i=1

E − ER(4i) + R(4i)(E ) − i 1
2	(4i)(E )

E − ER(4i) + R(4i)(E ) + i 1
2	(4i)(E )

, (48)

with

	(4i)(E ) = 	R(4i)
pC2

ηW4(p)

prC2
ηr

W4(pr )
, (49)

R(4i)(E ) = a(4i)(E − ER(4i) )
2 + b(4i)(E − ER(4i) )

3,

i = 1, 2, 3 (50)

where pr = √
2μE(4i). I have eight parameters to fit to the

data,

θ4 = {ER(41), 	R(41), a(41), b(41), ER(42), 	R(42), a(43), b(43)},
(51)

where two parameters a(42) and b(42) are set to be zero,
a(42) = b(42) = 0, because of their insensitivity for the param-
eter fit, and I use the experimental values for ER(43) and 	R(43),
E (exp)

R(33) = 6.707(20) MeV and 	
(exp)
R(33) = 89(2) keV [37], for the

background contribution from high energy.
In Table II, I show fitted values and their errors of the

eight parameters in the amplitudes of the 4+
1 , 4+

2 , 4+
3 states

of 16O in the S matrix of elastic α-12C scattering for l = 4 in
Eq. (48), where I find a small value of χ2/N , χ2/N = 0.47,
for the parameter fit, as shown in Table III. In addition, the
fitted values of ER(41), 	R(41), ER(42), and 	R(42) agree with
their experimental values, E (exp)

R(41) = 3.194(3) MeV, 	
(exp)
R(41) =

26(3) keV, E (exp)
R(42) = 3.9347(17) MeV, and 	

(exp)
R(42) = 0.28(5)

keV [37]. In Fig. 7, I plot a curve of the phase shift for l = 4,
δ4, by using the fitted values of the parameters obtained in
Table II. The phase shift data are also displayed in the figure.
One finds that the fitted curve agrees well with the phase shift
data.

FIG. 8. Phase shift δ5 of elastic α-12C scattering for h-wave chan-
nel as a function of Eα calculated by using the fitted values of the
parameters. Experimental data are included in the figure as well.

F. Phase shift for l = 5 channel

I consider 5−
1 state of 16O to construct an S matrix of the

elastic α-12C scattering for l = 5, where 5−
1 is a resonant state

as a background contribution from high energy appearing at
Eα = 10.00 MeV. Thus, I have an expression of the S matrix
for l = 5 as

e2iδ5 = E − ER(51) + R(51)(E ) − i 1
2	(51)(E )

E − ER(51) + R(51)(E ) + i 1
2	(51)(E )

, (52)

with

	(51)(E ) = 	R(51)
pC2

ηW5(p)

prC2
ηr

W5(pr )
, (53)

R(51)(E ) = a(51)(E − ER(51))
2 + b(51)(E − ER(51))

3, (54)

where pr = √
2μE(51). I have two parameters to fit the data,

θ4 = {a(51), b(51)}, (55)

where I use the experimental values for ER(51) and 	R(51),
E (exp)

R(51) = 7.498(2) MeV and 	
(exp)
R(51) = 670(15) keV [37], for

the background contribution from high energy.
In Table II, I show fitted values and their errors of the two

parameters in the amplitudes of the 5−
1 state of 16O in the S

matrix of elastic α-12C scattering for l = 5 in Eq. (52), where
I find a very small value of χ2/N , χ2/N = 0.094, for the
parameter fit, as shown in Table III. In Fig. 8, I plot a curve of
the phase shift for l = 5, δ5, by using the fitted values of the
parameters obtained in Table II. The phase shift data are also
displayed in the figure. One finds that the fitted curve agrees
well with the phase shift data.

G. Phase shift for l = 6 channel

I include a background contribution from low energy and
the 6+

1 state of 16O to construct an S matrix of the elastic
α-12C scattering for l = 6, where 6+

1 is a resonant state as
a background contribution from high energy appearing at
Eα = 10.20 MeV. Thus, I have an expression of the S matrix
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FIG. 9. Phase shift δ6 of elastic α-12C scattering for i-wave chan-
nel as a function of Eα calculated by using the fitted values of the
parameters. Experimental data are included in the figure as well.

for l = 6 as

e2iδ6 = K6(p) − 2κReH6(p) + ipC2
ηW6(p)

K6(p) − 2κReH6(p) − ipC2
ηW6(p)

× E − ER(61) + R(61)(E ) − i 1
2	(61)(E )

E − ER(61) + R(61)(E ) + i 1
2	(61)(E )

, (56)

with

K6(p) = 1

2
r6 p2 − 1

4
P6 p4, (57)

	(61)(E ) = 	R(61)
pC2

ηW6(p)

prC2
ηr

W6(pr )
, (58)

R(61)(E ) = a(61)(E − ER(61))
2 + b(61)(E − ER(61))

3, (59)

where pr = √
2μER(61). I have four parameters to fit the data,

θ3 = {r6, P6, a(61), b(61)}, (60)

where the leading effective range parameter, −1/a6, is put to
zero, 1/a6 = 0, and two effective range parameters, r6 and
P6, are included while I use the experimental values for ER(61)

and 	R(61), E (exp)
R(61) = 7.6534(16) MeV and 	

(exp)
R(61) = 70(8) keV

[37], for the background contribution from high energy.
In Table II, I show fitted values and their errors of the four

parameters in the amplitudes of the background contribution
from low energy and the 6+

1 state of 16O in the S matrix of
elastic α-12C scattering for l = 6 in Eq. (56), where I find a
very small value of χ2/N , χ2/N = 0.026, for the parameter
fit, as shown in Table III. In Fig. 9, I plot a curve of the phase
shift for l = 6, δ6, by using the fitted values of the parameters
obtained in Table II. The phase shift data are also displayed in
the figure. One finds that the fitted curve agrees well with the
phase shift data.

V. RESULTS AND DISCUSSION

In the present work, I studied the expression of the S
matrices of elastic α-12C scattering at low energies for l =

0, 1, 2, 3, 4, 5, 6 in EFT. The S matrices are constructed as
the summation of the phase shifts; the parts of the phase
shifts are obtained from the elastic scattering amplitudes of
the subthreshold and resonant states of 16O. Those amplitudes
are calculated from the effective Lagrangian and obtained in
terms of the effective range parameters up to p6 order for l =
0, 1, 2, 4, 5, 6 and up to p8 order for l = 3 due to the modifi-
cation of the counting rules for the effective range parameters
discussed in Refs. [26,29]. I include the subthreshold states for
l = 0, 1, 2, 3 and a background contribution from low energy
for l = 6, one resonant state for l = 0, 1, 3, and two resonant
states for l = 2, 4, which appear in the energy range of the
phase shift data, 2.6 < Eα < 6.62 MeV, and a resonant state
which appears at Eα > 6.62 MeV, as background contribu-
tions from high energy for all the partial wave states. Those
states included in the present study are summarized in Table I.
Then, I fit the parameters to the phase shift data, while the
resonant energies and widths of the background contributions
from high energy are fixed by using the experimental data of
the resonant energy at Eα > 6.62 MeV, and some parameters
which are insensitive to the parameter fit are suppressed. One
finds that the parameters are fitted very well where the χ2/N
values are less than 1 for all the cases, as summarized in
Table III, and thus the phase shifts are well described within
the theory.

One may regard this work as merely a simple parameter
fit to the phase shift data, while my aim is to extrapolate
the radiative capture rate down to the Gamow peak energy,
EG = 0.3 MeV; one may see that the result of the present
work is comparable to that worked out by the R-matrix anal-
ysis. One may also see that the parametrization based on
the effective range expansion in the S matrices in Eq. (27)
is simple and transparent. In addition, the electromagnetic
and weak interactions are straightforwardly introduced in the
theory. As mentioned in the Introduction, I employed the
EFT to the study of the E1 transition of the 12C(α, γ ) 16O
reaction [26] and the β-delayed α emission from 16N [7].3

Recently, I reported the first application of EFT to the study
of the radiative proton capture on 15N [49,50], which is an
important reaction in the CNO cycle. Thus, constructing an
EFT would be another theoretical method, as an alternative to
the R-matrix analysis, for the studies of nuclear reactions for
stellar evolution.
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FIG. 10. Wave function for 0+ state of 16O calculated by using a
Woods-Saxon potential, which is normalized as

∫ ∞
0 u0(r)2dr = 1.

government (MSIT) (Grants No. 2019R1F1A1040362 and
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APPENDIX

In the present Appendix, I perform a test calculation by
employing a Woods-Saxon potential. The data, wave func-
tions and phase shifts, are generated by using the model
potential, the values of ANCs are calculated from the wave
functions, and the scattering phase shifts are generated by
using the potential. I then fit the effective range parameters
to the phase shift data generated from the potential, and cal-
culate the ANCs by using the fitted values of parameters in
Eq. (18). I note that the relation between the two methods, the
potential model and the effective range expansion, to deduce
the ANCs is not obvious. The comparison of the ANCs from
the potential model and the fit of effective range parameters
may indicate some degree of the model dependence in the two
methods.

In Figs. 10 and 11, I display the wave functions of the
0+ and 2+ states of 16O, respectively, from a Woods-Saxon

FIG. 11. Wave function for 2+ state of 16O calculated by using a
Woods-Saxon potential, which is normalized as

∫ ∞
0 u2(r)2dr = 1.

FIG. 12. Phase shift δ0 of elastic α-12C scattering for l = 0 as a
function of the α energy Eα in the laboratory frame, calculated by
using a Woods-Saxon potential.

potential. The geometry of the Woods-Saxon potential is stan-
dard: R0 = 1.3 fm, R = R0A1/3 = 2.976 fm, and a = 0.7 fm.
The wave functions of bound states are obtained by adjusting
the depth of potential. For the 0+ state, Ex = 6049.4 keV
and B0 = 1112.5 keV, and one has V0 = 131.1 MeV; and
for the 2+ state, Ex = 6917.1 keV and B2 = 244.8 keV, and
one has V0 = 130.8 MeV. The wave functions are normalized
as

∫ ∞
0 ul (r)2dr = 1 with l = 0, 2. (The data files of wave

functions and phase shifts are calculated by using the code
TEDCA [51].)

The values of ANCs may be obtained by using the relations

u0(r) ∼ |Cb|0W−κ/γ0,
1
2
(2γ0r),

u2(r) ∼ |Cb|2W−κ/γ2,
5
2
(2γ2r), (A1)

outside of the potential range, R < r, where Wν,μ(z) is the
Whittaker function, and γ0 and γ2 are the binding momenta,
γ0 = √

2μB0 and γ2 = √
2μB2. Thus, I have the ANCs from

the wave functions as

|Cb|0 = 2.6 × 103 fm−1/2,

|Cb|2 = 1.9 × 105 fm−1/2. (A2)

It is good to see that the ANCs are straightforwardly obtained
from the wave functions generated from the potential model
after fitting the depth of potential to the binding energies. One
may wonder about the sensitivity of ANCs to all three parame-
ters of the potential and the number of nodes of wave functions
inside the potential range. In addition, the ANCs from the
potential model depend on the normalization condition of
wave functions; the reliability of the two-body description
of the 16-body nucleon system inside the potential range is
questionable.

In Figs. 12 and 13, I display the phase shifts of elastic
α-12C scattering for l = 0 and 2, respectively, calculated from
the Woods-Saxon potential with the fixed values of V0 men-
tioned above. Now I carry out a test for my fitting method to
deduce the ANCs from the phase shift data: the effective range
parameters are fitted to the phase shift data in the figures, and I

045808-11
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FIG. 13. Phase shift δ2 of elastic α-12C scattering for l = 2 as a
function of the α energy Eα in the laboratory frame, calculated by
using a Woods-Saxon potential.

calculate the ANCs by using Eq. (18). When fitting the phase
shift data, I include a constant error to the phase shift data,
�δ0,2 = 0.20◦, which is a typical size of the error in the phase
shift data for l = 0 from the experiment.

In Table V, I display the values of ANC for the 0+ state
as a function of the maximum energy, Eα,max = 4.0, 4.5, 5.0,
5.5 MeV, of the phase shift data in Fig. 12. I find that the
shapes of the curves of the phase shift are different (the curve
from the effective range parameters is stiffer than that from
the potential model), which leads to the energy dependence
of the fit.4 One can see that the values of ANC in the table
have a significant range, (1.1–5.8) × 103 fm−1/2 with χ2/N =
0.05–1.18, while the ANC from the potential model, 2.6 ×
103 fm−1/2, can be found within the range of ANC from the

4The different energy dependence in the phase shifts possibly came
out due to the use of an energy-independent potential model, where
one may notice that the calculated phase shifts do not agree with the
experimental data. The use of an energy-dependent potential could
improve the present situation.

TABLE V. ANC of 0+ state, |Cb|0, as a function of the maximum
energy of the data, Eα,max (MeV), deduced from the phase shift data
in Fig. 12. Values of χ 2/N are also displayed in the table.

Eα,max (MeV) 4.0 4.5 5.0 5.5

|Cb|0 (fm−1/2) 1.1 × 103 2.2 × 103 3.7 × 103 5.8 × 103

χ 2/N 0.05 0.16 0.43 1.18

fit. For the 2+ state, using all the phase shift data in Fig. 13,
I have

|Cb|2 = 3.4(54.4) × 105 fm−1/2, (A3)

with χ2/N = 0.13. The center value of ANC is 1.8 times
larger than that of the potential model in Eq. (A1) while the
ANC from fit has a large error bar. As discussed in Ref. [29],
when the center value of dD/d p2 term at p = iγ2 almost
vanishes in the denominator in Eq. (18), the error of ANC is
enhanced.

In this Appendix, I performed a test calculation to study
whether the ANCs obtained from the wave functions of a
potential model can be reproduced by fitting the effective
range parameters to the phase shift generated by the model
potential. I find that the ANCs obtained from the fitted values
of effective range parameters agree with those obtained from
the wave function of the potential model within the uncer-
tainties discussed above; aside from the large uncertainties,
the center values of ANCs agree within a factor of 2. The
large uncertainties may stem from the formula of ANC in
Eq. (18). When the slope of the inverse of the propagator,
Dl (p), becomes small at the binding momentum p = iγl , the
ANC becomes large. In other words, the center value of ANC
becomes sensitive to the values of effective range parameters
while the errors of ANC are enhanced. Therefore, because of
the difficulty discussed above, the present cases to deduce the
ANCs of 0+ and 2+ state from the phase shift data may not be
ideal: an uncertainty of a factor of 2 may be involved between
the two methods.
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