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Neutron star constraints and ab initio perturbative quantum chromodynamics (pQCD) evaluations require the
equation of state (EoS) representing cold quark matter to be stiff at intermediate baryonic densities and soft
at highnB. Here, I suggest that the three flavor Nambu–Jona-Lasinio model with a density dependent repulsive
coupling, GV (μ), can generate an EoS which interpolates between these two regimes. Such an interpolation
requires repulsion to start decreasing with the chemical potential just after chiral transition takes place. The
conjecture behind this mechanism is that repulsion should be necessary only as long as the quark condensates,
which dress the effective masses, have nonvanishing values. This assumption guarantees that an initially hard
EoS suffers a conspicuous change of slope at E � 0.7 GeV fm−3 converging to the pQCD results at higher energy
densities. Then, the speed of sound naturally reaches a nonconformal maximum at nB = 3.23 n0 = 0.52 fm−3

while the trace anomaly remains positive for all densities, in agreement with recent investigations. These
nontrivial results cannot be simultaneously obtained when GV vanishes or has a fixed value. Therefore, the
simple model proposed here is able to link the (nonperturbative) region of intermediate densities to the region
where pQCD becomes reliable.

DOI: 10.1103/PhysRevC.107.045807

I. INTRODUCTION

Effective quark models, such as the Nambu–Jona-Lasinio
model (NJL) [1] and the MIT bag model [2–4] capture some
of the most representative characteristics of quantum chro-
modynamics (QCD), like confinement and chiral symmetry,
respectively [5]. As a consequence, they are widely used to
describe the thermodynamics of strongly interacting matter in
regions of the phase diagram which are currently unaccessible
to ab initio evaluations. Nowadays, the corner of low densities
and high temperatures can be well described by first principle
evaluations based on lattice QCD simulations (LQCD). How-
ever, due to the well documented sign problem, LQCD is not
yet in position to describe the corner of low temperatures and
finite baryonic densities which concerns neutron stars (NSs).
In this case the QCD equation of state (EoS) describing cold
and dense strongly interacting matter can be reliably evaluated
only in regimes where the baryonic density (nB) is very low or
extremely high. In the limit of low densities, chiral effective
theory (CET) [6,7] provides an accurate EoS up to about
nB � 2 n0 ≡ nCET (n0 = 0.16 fm−3) so that the region com-
posed by hadronic matter may be well described. At the other
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extremum, perturbative QCD (pQCD) [8–10] gives a reliable
equation for nB � 40 n0 ≡ npQCD, when quarks and gluons
represent the relevant degrees of freedom [11]. However, at
the intermediate range 2n0 � nB � 8n0, which concerns NSs,
αs is still high so that nonperturbative techniques and/or
model approximations are generally employed. Within this
region the presence of quark matter in massive NSs was re-
cently found [12] to be linked to the behavior of the speed of
sound, Vs. The investigation performed in Ref. [12] suggests
that if the conformal bound V 2

s � 1/3 is not strongly vio-
lated massive neutron stars should have sizable quark-matter
cores. Moreover, the recent discovery of NSs whose estimated
masses are about twice the value of the solar mass [13–15]
and the theoretical predictions on the maximum (gravita-
tional) mass performed in Refs. [16–20] favor a stiff EoS with
V 2

s > 1/3 at nB > n0. In this case, recent simulations [21–23]
indicate that V 2

s is a nonmonotonic function of nB, which in
turn suggests the existence of at least one local maximum
where V 2

s > 1/3. Together, all of these findings constrain the
EoS to be initially stiff (so that V 2

s > 1/3) before softening, at
intermediate densities, to finally meet the pQCD predictions at
high nB. As it is well known, when effective quark models are
being employed the inclusion of a repulsive vector channel,
parametrized by GV , generates a harder EoS in most cases
[24,25]. However, a drawback is that such an equation remains
stiff at higher densities so that the conformal limit, observed
by pQCD, cannot be attained. On the other hand, when GV =
0, asymptotic convergence to pQCD is observed but the EoS
is far too soft to cope with NSs constraints at lower densities.

One way to circumvent this problem is to assume that GV is
density dependent as recently proposed in Ref. [26], where the
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two flavor NJL model has been considered. There, it has been
suggested that the repulsion among (dressed) quarks is im-
portant only up to the point where the chiral transition occurs
so that repulsion among (bare) quarks should be negligible.
In Ref. [26], the running of GV was modelled by a simple
ansatz which interpolates between a regime where repulsion
is high (the EoS is stiff) and a regime where repulsion is
low (the EoS is soft). Thanks to this property the two-flavor
NJL model with a running GV (μ) predicted [26] a nonmono-
tonic behavior for V 2

s implying that the existence of a peak,
at nB � 3.25n0, can be conciliated with pQCD predictions
at asymptotically high baryonic densities. Physically, these
results indicate that repulsion should be necessary only as long
as the quark condensates (which are directly related to the NJL
quark self-energies) exist.

Since strangeness may play an important role when
describing more realistic situations the present work contem-
plates an extension to the case where this degree of freedom
is present. With this purpose, the three flavor NJL model with
a repulsive channel will be considered here as a prototype to
describe cold strange quark matter. As it will be shown, also in
this case a density dependent GV allows us for the presence of
a nonconformal bump in V 2

s at nB = 3.23 n0 = 0.52 fm−3 (in
agreement with Ref. [22]) while the trace anomaly remains
positive. This rather nontrivial result supports a recent claim
[27] which states that the presence of a nonconformal peak
in V 2

s is not necessarily in tension with the trace anomaly
being positive for all densities. Concerning the EoS another
important result obtained here predicts a prominent change of
slope taking place at E � 0.7 GeV fm−3, in agreement with
what is observed in Refs. [12,22]. These predictions indicate
that the modified three flavor NJL model discussed in this
investigation may contribute to describe the QCD EoS at
intermediate baryonic densities.

The paper is organized as follows. In the next section the
basic results for the three flavor NJL model are reviewed.
The possible density dependence of the repulsive vector in-
teraction is presented in Sec. III. Numerical results associated
with the relevant thermodynamical quantities are generated
and discussed in Sec. IV. The conclusions are presented in
Sec. V.

II. THE Nf = 2 + 1 NJL MODEL: STANDARD RESULTS

In the presence of a repulsive vector channel the stan-
dard three-flavor version of the NJL model can be written as
[24,25,28]

L = ψ̄ (iγμ∂μ − m)ψ + GS

8∑
a=0

[(ψ̄λaψ )2 + (ψ̄ iγ5λ
aψ )2]

− K{det f [ψ̄ (1 + γ5)ψ] + det f [ψ̄ (1 − γ5)ψ]}
− GV (ψ̄γ μψ )2, (1)

where ψ = (u, d, s)T denotes a quark field with three flavors
(and three colors), and m = diag f (mu, md , ms) is the corre-
sponding mass matrix. Setting mu = md ≡ m �= ms implies
that isospin symmetry is observed while the SU(3) flavor
symmetry is explicitly broken. The eight Gell-Mann matrices

are represented by λa (a = 1, . . . , 8) and λ0 = √
2/3 I. In

3 + 1 d the NJL model is composed by irrelevant operators so
that the couplings GS , GV , and K , respectively, have canonical
dimensions [−2], [−2], and [−5] implying that the model is
nonrenormalizable. Here, the (ultraviolet) divergent integrals
will be regularized by a sharp noncovariant cut-off, �, whose
numerical value is set by phenomenological inputs. For the
numerical analysis I adopt the parameter values of Ref. [29]
which are m = 5.5 MeV, ms = 140.7 MeV, G�2 = 1.835,
K�5 = 12.36, and � = 602.3 MeV. Then, at T = 0 and
μ f = 0, one reproduces fπ = 92.4 MeV, mπ = 135 MeV,
mK = 497.7 MeV, and mη′ = 960.8 MeV. For the quark con-
densates one then obtains σu = σd = −(241.9 MeV)3, and
σs = −(257.7 MeV)3. Fixing GV poses and additional prob-
lem since this quantity should be determined by considering
the ρ meson mass which, in general, happens to be higher than
the maximum energy scale set by �. In this situation, most
authors adopt values between 0.25GS and 0.5GS (see Ref. [30]
for more details). Here, the value GV = GS/3 will be adopted
when dealing with a fixed vector coupling [30,31]. Note that
to assure rotational invariance only the zeroth component of
the vector channel contributes so that, at the mean field level,
the chemical potential gets shifted as [5,24,25]

μ̃ f = μ f − 2GV

∑
f

n f (2)

with n f representing the quark number density per flavor
[5,24,25,30]. At T = 0, a standard mean field approximation
(MFA) evaluation yields the following result [5,30]:

n f = Nc

3π2
p3

F, f , (3)

where the effective Fermi momentum is just pF, f =√
μ̃2

f − M2
f . The quark effective masses are given by [5]

M f = m f − 4GSσ f + 2Kσ jσk, (4)

where σ f = 〈ψψ〉 f represents the quark condensate for a
given flavor

σ f = − Nc

2π2
M f

[
�p�, f − M2

f ln

(
� + p�, f

M f

)]

+ Nc

2π2
M f

[
μ̃ f pF, f − M2

f ln

(
μ̃ f + pF, f

M f

)]
(5)

with p�, f =
√

�2 + M2
f . The effective Fermi momentum,

pF, f , is then determined by solving Eqs. (2) and (4) simul-
taneously.

Having the quark number density, n = ∑
f n f , one can

express the squared speed of sound in terms of the baryonic
number susceptibility, χB = dnB/dμB, as

V 2
s = nB

μBχB
, (6)

where μB = ∑
f μ f and nB = n/3. For simplicity, the present

application concerns the case of symmetric strange quark
matter only so that one can now set μu = μd = μs ≡ μ. In the
present context this choice can be further justified by recalling
that three-flavor symmetric matter, at the high density limit,
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meets the conditions of β stability and charge neutrality which
are usually required to describe NSs [32].

Then, at finite chemical potential and zero temperature, the
pressure versus chemical potential relation for quark matter
can be obtained from [25,33]

P(μ) = P(0) +
∫ μ

0
n(ν)dν, (7)

where P(0) = is the vacuum pressure. Notice that within the
present approach the vector coupling, GV , turns out to be
density dependent so that one needs to be careful in order
to preserve thermodynamic consistency. In general, there are
two ways in which one can proceed. One possibility is to first
evaluate the pressure and then redefine this quantity so that
the number density can be consistently obtained by deriving
the pressure with respect to the chemical potential. In this
case extra terms, such as (∂GV /∂μ)(∂P/∂GV ), get compen-
sated thanks to the redefined pressure. Within the second
possibility, which is the one I adopt here, the quark number
density is evaluated before being numerically integrated so
that the μ dependence of GV is automatically accounted for
(see Ref. [34] for more details). Then, from Eq. (7), one
can determine the energy density, E = −P + μBnB, the trace
anomaly, � = E − 3P, as well as the conformal measure,
C = �/E .

III. INTERPOLATING BETWEEN SOFTNESS
AND STIFFNESS

Let me now discuss how to tune GV (μ) so as to obtain
an EoS which interpolates between the stiff and the soft
regimes. When dealing with symmetric quark matter one can
further simplify the notation by setting Mu = Md ≡ M as
previously done for mu and md . Using these definitions and
taking GV = 0 one can write the Fermi momentum for a light
flavor, in symmetric matter, as

√
μ2 − M2. As compression

increases the quark condensates decrease and the chiral tran-
sition sets in (M → m) so that the Fermi momentum changes
as

√
μ2 − M2 → p0

F =
√

μ2 − m2, where p0
F represents the

case of free (bare) quarks considered within pQCD. Now,
when GV is fixed chiral symmetry (partial) restoration implies
that

√
μ̃2 − M2 →

√
μ̃2 − m2 and since the quark number

density grows with μ the Fermi momentum p0
F cannot be

reached, preventing the NJL results to converge to the pQCD
predictions at arbitrarily high baryonic densities. Neverthe-
less, as proposed in Ref. [26], one can assure μ̃ → μ (and√

μ̃2 − M2 → p0
F ) by requiring GV (μ) → 0 after the chiral

transition takes place according to

GV (μ) = GV (0)

1 + e(μ−μ0 )/δ
, (8)

where GV (0) = GS/3 [26,30,31]. Considering the
parametrization adopted here one has M(0) = 367.7 MeV
[5] and � = 602.3 MeV so that μ0 = [M(0) + �]/2 ≡
485 MeV. The “thickness” δ = 10 MeV assures that the drop
starting at μ = M(0) terminates at μ = � just as in the
Nf = 2 case [26]. It is obvious from Eq. (8) that such running
coupling interpolates between the two extrema, GV = 0 and
GV = GS/3, which respectively give a softer and a stiffer

FIG. 1. Running repulsive coupling GV (μ), in units of GS , as a
function of the quark chemical potential, μ. The Fermi momentum
corresponding to each distinct region is shown for reference.

EoS [5,24,25]. Figure 1 shows the running of GV (μ) and
also illustrates how it affects the Fermi momentum. From
the physical point of view it is important to notice that the
ansatz assumes that after chiral symmetry gets (partially)
restored the repulsion among the (bare) quarks decreases as
the density increases. In other words, it is assumed that quarks
with large effective masses tend to strongly repel each other
as compression increases and the quark condensates decrease.
After the chiral transition occurs, and the effective masses
tend to their bare values, quarks can be further compressed
without repelling each other indicating that repulsion should
be necessary only as long as the quark condensates, σ f , are
nonzero. A pictorial representation of the physical process
driving the running of G(μ) is presented in Fig. 2. Also,
remark that δ was chosen so as to give a smooth transition
within a narrow 10 MeV width since taking δ → 0 could lead
to discontinuities in V 2

s which do not seem to be observed
in the simulations of Refs. [21–23]. Note that in order for√

μ̃2 − M2 →
√

μ2 − m2 it is not compulsory that GS and

FIG. 2. A pictorial representation of the physical conjecture
driving the running of GV (μ). Quarks with large effective masses
(represented by the gray area) tend to strongly repel each other as
compression increases. After the chiral transition occurs [at μ ∼
M(0)], and the masses tend to their bare values, quarks can be further
compressed without repelling each other. Therefore, repulsion should
be necessary only as long as the quark condensates [which dress the
NJL masses, Eq. (4)] exist (μ � �).
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FIG. 3. (Light flavor) quark condensate, σu,d (μ) normalized by
σu,d (0), as a function of μ/μc. For the cases GV = GS/3 and GV (μ)
the coexistence quark chemical potential is μc = 0.368 GeV while
for GV = 0 it reads μc = 0.361 GeV. Up to about μ = 1.3 µc the
GV (μ) prediction agrees with the GV = GS/3 curve. After that it
converges towards the GV = 0 curve, as expected.

K run with μ since the quark condensates, multiplying these
parameters in Eq. (4), naturally decrease with μ. In summary,
for a given flavor i, GS and K always appear in combinations
such as GSσi and Kσ jσk [see Eq. (4)] which tend to vanish at
high μ while GV appears in combinations such as GV n [see
Eq. (2)] which always give a finite high-μ contribution when
GV is fixed.

Finally, it must be pointed out that the idea of considering
GV to depend on a control parameter, as proposed here, is not
new. A similar course of action was originally taken by Ku-
nihiro [35], who considered GV to be temperature dependent
in order to evaluate quark susceptibilities at high T (see also
Refs. [36,37]).

IV. NUMERICAL RESULTS

Let me now analyze the effect of GV (μ) on some rel-
evant thermodynamical observables starting with the quark
condensates for the light flavors. Figure 3 shows the results
for σu,d = 〈uu〉 = 〈dd〉 obtained with different GV values.
Around μ = 1.3 µc the GV (μ) curve, which initially agrees
with the GV = GS/3 result, converges towards the one pre-
dicted by using GV = 0. In the same spirit Fig. 4 compares the
dressed Fermi momentum for light quarks, p∗

F =
√

μ̃2 − M2,
with its bare counterpart, p0

F =
√

μ2 − m2, reproducing the
pictorial view (shown in Fig. 2) from a quantitative perspec-
tive. Next, one can examine the baryonic number density,
nB, which in the present work represents the fundamental
thermodynamical quantity. The result obtained with GV (μ)
is presented in Fig. 5 together with the predictions from the
GV = 0 and GV = GS/3 cases. The results from GV (μ) and
GV = GS/3 agree up to μB ≈ 1.4 GeV when the former starts
to agree with the GV = 0 curve. Figure 6 shows the speed of
sound squared for the three relevant cases. The G(μ) curve
peaks at nB � 3.23 n0 = 0.52 fm−3 (corresponding to E =
0.59 GeV fm−3) producing the nonconformal result V 2

s � 0.38

FIG. 4. Effective Fermi momentum for light quarks, p∗
F =√

μ̃2 − M2, normalized by p0
F =

√
μ2 − m2, as a function of μ/μc.

For the cases GV = GS/3 and GV (μ) the coexistence quark chem-
ical potential is μc = 0.368 GeV while for GV = 0 it reads μc =
0.361 GeV. The GV (μ) curve interpolates between those predicted
by the cases GV = GS/3 and GV = 0.

(note that these numerical values are consistent with those
reported in Ref. [22]). The curve then dives into the sub-
conformal region reaching V 2

s � 0.08 at nB � 7.50 n0 before
converging to the conformal result as nB further increases.
On the other hand the dip observed in the curves of fixed
GV is solely a byproduct of the onset of strangeness. This
can be better understood by looking at Fig. 5 which dis-
plays a sudden increase of slope when μ becomes greater
than Ms(0) = 549.5 MeV. This increase in dnB/dμB means
that V 2

s decreases (the EoS softens) as Eq. (6) shows. Notice
that no such dip appears, in the case of fixed GV , when the
two-flavor model is considered [26]. As a consequence of the
strangeness onset the GV = GS/3 case also predicts a non-
conformal peak at nB � 5.50 n0 and V 2

s � 0.43 while GV = 0
predicts a peak at nB � 5.50 n0 and V 2

s � 0.33. However, the

FIG. 5. Baryonic number density, in units of n0 = 0.16 fm−3,
as a function of the baryonic chemical potential, μB = 3μ. The
GV (μ) result interpolates between those predicted by GV = 0 and
GV = GS/3. The chiral first order phase transition takes place at
μB = 1.083 GeV for GV = 0 and at μB = 1.104 GeV for the other
two cases.
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FIG. 6. Speed of sound (squared) as a function of nB/n0. The
running coupling predicts a nonconformal peak, V 2

s = 0.38, at nB =
3.23n0. The onset of strangeness takes place at nB � 5.50 n0. The
light band corresponds to the pQCD results [38] when the MS renor-
malization scale varies from the central value, 2μ (bottom edge), to
4μ (top edge). The thin dotted line represents the conformal result,
V 2

s = 1/3.

value at which these peaks occur is much higher than the
one predicted in Ref. [22]. Moreover, at higher nB values the
use of a nonzero fixed coupling prevents convergence towards
to conformal result, as the figure shows. This result is not
unexpected since, as already discussed, the Fermi momentum
for this case does not converge to its pQCD counterpart, p0

F . It
is important to remark that the conjectured coupling running
predicts that after peaking at the superconformal region, V 2

s
approaches the conformal value from below, like pQCD. It
should be also emphasized that the shape of the curve gener-
ated with GV (μ) resembles some of those recently predicted
in Refs. [21–23].

The NJL pressure together with the pQCD results for the
Nf = 2 + 1 case, obtained from Ref. [38], is displayed in
Fig. 7. The pQCD results were obtained by varying the MS
renormalization scale from μ to 4μ while the Fermi-Dirac
limit for free massless quarks, used to normalize the pressure
in Fig. 7, reads

P0 = NcNf

12π2

(
μB

3

)4

. (9)

Figure 8 displays the NJL EoS as well as the pQCD result
(generated from Ref. [38]). The figure clearly shows that
the predictions coming from GV (μ) and GV = 0 agree with
pQCD at high energies while GV = GS/3 does not. Of utmost
importance is the fact that at E � 0.7 GeV fm−3 a sudden
change of slope takes place producing the softening of the
EoS produced by GV (μ), in accordance with Refs. [12,22]. A
second change of slope happens at E � 2 GeVfm−3 redressing
the GV (μ) curve so that it smoothly joins the pQCD band.

Finally, let me use the proposed model in order to examine
the possibility that the conformal measure, C, remains positive
at all densities. This important question has been recently
addressed in Ref. [27] where the authors have considered the
trace anomaly, �, which trivially relates to C via C = �/E .

FIG. 7. Pressure, normalized by P0 (see text), as a function of
μB. The gray band represents the region where μ = μB/3 > �.
The light band corresponds to the pQCD results [38] when the MS
renormalization scale covers the range from μ (bottom edge), to 4μ

(top edge). The dotted line represents the pQCD predictions at the
central MS scale, 2μ.

Figure 9 shows that the fixed GV = GS/3 produces a max-
imally stiff EoS which yields a negative C for nB � 14 n0.
When repulsion is absent, the EoS is softer causing C → 0
as nB → ∞ in conformity with the pQCD predictions (gen-
erated from Ref. [38]). At the same time, the present running
coupling predicts a change of slope of high amplitude, at nB =
4–10 n0, preventing C from becoming negative. In summary,
G(μ) shifts the high-nB behavior of the trace anomaly which
then approaches zero while remaining positive, supporting the
hypothesis advanced in Ref. [27].

V. CONCLUSIONS

The three-flavor NJL model with a repulsive vector chan-
nel, parametrized by GV , has been considered in the evaluation

FIG. 8. EoS for the three cases considered. The light band cor-
responds to the pQCD results [38] when the MS renormalization
scale varies from μ (bottom edge) to 4μ (top edge). The softening of
the GV (μ) curve takes place at E � 0.7 GeVfm−3 in agreement with
Refs. [12,22]. For completeness, the region which concerns CET has
also been indicated.
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FIG. 9. Conformal measure, C = �/E , as a function of nB/n0.
The running coupling predicts a change of slope of high amplitude,
at nB = 4–10 n0. A fixed GV leads to a negative C at nB/n0 � 14.
The light band corresponds to the pQCD results [38] when the MS
renormalization scale covers the range from μ (top edge) to 4μ

(bottom edge).

of the EoS describing symmetric cold quark matter. The work
extends the application performed in Ref. [26], where the two-
flavor version has been considered in the presence of density
dependent repulsive coupling, GV (μ). Here, I have shown that
the presence of strangeness does not affect the main physical
properties displayed by key thermodynamical quantities eval-
uated with GV (μ). The advantage of such a model is that one
is then able to interpolate between a regime where repulsion
is high (the EoS is stiff) and a regime where repulsion is low
(the EoS is soft). In this way the NJL model can simulta-
neously observe astrophysical constraints, which require the
EoS to be stiff at lower densities, while producing results
which agree with pQCD at arbitrarily high densities. For
instance, considering the moderate value GV (0) = GS/3 this
work shows that it is possible to describe a nonconformal peak
at V 2

s = 0.38 and nB = 3.23 n0 = 0.52 fm−3 (corresponding
to E = 0.59 GeV fm−3). These numerical values are in good
agreement with some of the values quoted in Ref. [22]. I have
also shown that, as the density increases, the interpolating
model predicts that V 2

s approaches the pQCD (conformal)
prediction, V 2

s → 1/3 from below, as expected. Another im-
portant result obtained here shows that the proposed model
can produce a noticeable change of slope in an initially hard
EoS so that it will soften and join the pQCD predictions

at higher energy densities. Interestingly enough this change
happens at E � 0.7 GeVfm−3, in conformity with predictions
made in Refs. [12,22,39]. The results also indicate that a
nonconformal peak in V 2

s is not in tension with the trace
anomaly being positive for all densities, a result which agrees
with a scenario proposed in Ref. [27]. As explicitly shown
here, these findings cannot be reproduced if one naively uses
GV = 0 (the EoS is far too soft at low nB), or if one fixes
GV to a finite value (the EoS is far too hard at high μB). At
first sight it seems remarkable that with a simple modification
the NJL model is able to reproduce such highly nontrivial re-
sults, which were originally obtained through the use of more
sophisticated approaches [12,22,27]. However, it should be
clear that the simple modification encoded within the GV (μ)
running has physical consequences which in turn imply that
the fundamental concept of repulsion should be altogether
reviewed. More precisely, the results obtained here suggest
that quarks with bare masses do not tend to repel each other
when compressed, in opposition to the behavior displayed by
quarks with effective masses. Obviously, the simple ansatz
proposed in the present work is not unique so that one is free to
consider alternative forms (such as gaussian, skewed gaussian,
etc.) as well as the use of other parametrizations provided
that GV decreases with the density after the chiral transition
takes place (keeping in mind that this is the main ingredient
driving the crucial change of slope observed in the corre-
sponding EoS). In principle, the mechanism described here
can be generalized to any model which contains a repulsive
channel. Possible extensions include the consideration of non-
symmetric quark matter in β equilibrium, in order to describe
quark stars, as well as the inclusion of a diquark interaction
channel, in order to explore the high-density region of QCD,
among others. In future applications one could also consider
replacing the popular pQCD predictions with those furnished
by the renormalization group optimized perturbation theory,
since this resummation technique generates results which are
less sensitive to scale changes [40–42].
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