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Kaon-meson condensation and � resonance in hyperonic stellar matter
within a relativistic mean-field model
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We study the equation of state of dense baryon matter within the relativistic mean-field model, and we include
�(1232) isobars in the Indiana University–Florida State University (IUFSU) model with hyperons and consider
the possibility of kaon meson condensation. We find that it is necessary to consider the � resonance state inside
a massive neutron star. The critical density of kaon mesons and hyperons is shifted to a higher density region; in
this respect an early appearance of � resonances is crucial to guarantee the stability of the branch of hyperonized
star with the difference of the coupling parameter xσ� constrained based on the QCD rules in nuclear matter. The
� resonance produces a softer equation of state in the low density region, which makes the tidal deformability
and radius consistent with the observation of GW170817. As the addition of new degrees of freedom will lead to
a softening of the equation of state, the σ -cut scheme, which states that the decrease of neutron star mass can be
lowered if one assumes a limited decrease of the σ -meson strength at ρB (ρB > ρ0), finally we get a maximum
mass neutron star with � resonance heavier than 2M�.
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I. INTRODUCTION

Astronomical observations and gravitational wave data
over the past decade have placed a series of constraints on a
range of properties of neutron stars (mass, radius, deformabil-
ities, for example). The massive neutron stars (NSs) observed,
e.g., PSR J1614−2230 with M = 1.908 ± 0.016 M� [1–4],
have established strong constraints on the equation of state
(EOS) of nuclear matter. PSR J0348+0432 with M = 2.01 ±
0.04M� [5], MSP J0740+6620 with M = 2.08+0.07

−0.07M� [6,7],
and radius 12.39+1.30

−0.98 km obtained from NICER data [8].
The recent observation of gravitational waves from the bi-
nary neutron star merger event GW170817 suggests that the
dimensionless combined tidal deformability � is considered
to be less than 720 at 90% confidence level based on low spin
priors [9], while a lower limit with � �197 is obtained based
on electromagnetic observations of the transient counterpart
AT2017gfo [10]. These astronomical observations constrain
the tidal deformability of a 1.4M� mass neutron star and
thus strong interactions in dense nuclear matter. These upper
limits indicate that the EOS of stellar material is softened at
this (intermediate) density. One way to solve this problem is
to introduce new degrees of freedom (hyperons [11,12], �

resonance [13–21], kaon meson condensation [22–26]); as the
density of nucleons increases, the appearance of hyperons,
� resonance, and kaon condensation inevitably softens the
equation of state, resulting in a neutron star with a mass and
radius consistent with astronomical observations.

As the density of nucleons increases, hadron degrees of
freedom inside the neutron star are excited into strangeness-
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bearing hyperons; they affect the stellar structure and evo-
lution in various ways [27,28]. Although the existence of
hyperons inside neutron stars is inevitable, their appearance
will significantly lead to a softening of the equation of state,
resulting in a decrease in the maximum mass of the neutron
star, which does not correspond to the observation of massive
neutron stars (2M�); this is known as the hyperon puzzle
[29–31]. In order to guarantee a stiffer EOS and massive neu-
tron stars, density covariant functional theory has been chosen
to study neutron stars containing hyperons [17,32–36,36,37].
However, with the constraints on tidal deformation and radii
imposed by astronomical observations, the application of this
theoretical model is subject to some limitations [38,39].

Although there are many speculations about the existence
of hyperons inside neutron stars, there is little discussion
about the � resonance. One reason is that early work sug-
gested that the critical densities of � resonances in the
relativistic mean-field (RMF) model with the same strength
of the meson field as the nucleon case exceed the densities of
the core of typical neutron stars [18,40], which is considered
out of the realm of astrophysics. Another reason is that the
occurrence of � resonance leads to a softening of the equa-
tion of state, which has become a � puzzle [17] in some
literature, the same as the hyperon puzzle. However, recent
work has shown that considering the � resonance inside a
neutron star reduces the radius of a NS with a standard mass
of 1.4M�, and that the equation of state does not change
significantly [37,41,42].

Another new degree of freedom for non-nucleons in
dense stars includes various meson (kaon, pion) condensates
[43,44]. Kaplan and Nelson have suggested that the ground
state of hadronic matter might form a negatively charged kaon
Bose-Einstein condensation above a certain critical density
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[45,46]. In the interior of a neutron star, as the density of neu-
trons increases, the electronic chemical potential will increase
to keep the matter in β equilibrium. When the electronic
chemical potential exceeds the mass of muons, muons appear.
And when the vacuum mass of the meson (pion, kaon) is
exceeded, as the density increases, negatively charged mesons
begin to appear, which helps to maintain electrical neutral-
ity. However, the s-wave πN scattering potential repels the
ground state mass of the π meson and prevents the generation
of the π meson [18]. With the increase of density, the energy
ωK of a test kaon in the pure normal phase can be computed
as a function of the nucleon density. The kaon energy will
decrease while the chemical potential of the kaon increases
with the density. When the condition ωK = μe is achieved,
the kaon will occupy a small fraction of the total volume, then
K− will be more advantageous than electrons as a neutralizer
for positive charges, and this will open the possibility of the
appearance of kaon condensates.

Many scholars have proposed various density covariant
functional theories or realistic nuclear potentials in order to
obtain more massive neutron stars containing hyperons. How-
ever these theories are usually used to consider neutrons,
protons, and leptons (n, p, e, μ−) because of the hyperon
puzzle, and considering hyperons in the RMF framework
leads to a reduction of the maximum mass of neutron stars
and thus does not satisfy astronomical observations. How-
ever, the σ -cut scheme [47] points out that, in the small

scale range where the density ρB > ρ0, a sharp decrease in
the strength of the σ meson reduces the decrease in the
effective mass of the nucleon, which eventually stiffens the
EOS and still yields neutron stars of more than 2M� after
considering the hyperon degrees of freedom [48,49]. In this
article, we use the Indiana University–Florida State Univer-
sity (IUFSU) model [50,51] to study NS matter including
hyperons, � resonance, and kaon condensates with the σ -cut
scheme.

This paper is organized as follows. First, the theoretical
framework is presented. Then we will study the effects of
kaon meson condensation and � resonance containing hy-
perons with the σ -cut scheme. Finally, some conclusions are
provided.

II. THEORETICAL FRAMEWORK

In this section, we introduce the IUFSU model to study
the properties of the � resonance and phase transition from
hadronic to kaon condensed matter. For the baryon matter
we have considered nucleons (n and p), hyperons (�, 	,
and 
), � resonances (�++,�+,�0,�−), and kaons (K−).
The exchanged mesons include the isoscalar scalar meson
(σ ), the isoscalar vector meson (ω), the isovector vector
meson (ρ), and the strange vector meson (φ). The start-
ing point of the extended IUFSU model is the Lagrangian
density:

L =
∑

B

ψ̄B[iγ μ∂μ − mB + gσBσ − gωBγ μωμ − gφBγ μφμ − gρBγ μ�τ · �ρμ]ψB

+
∑

D

ψ̄D[iγ μ∂μ − mD + gσDσ − gωDγ μωμ − gφDγ μφμ − gρDγ μ�τ · �ρμ]ψD

+ 1

2
∂μσ∂μσ − 1

2
m2

σ σ 2 − κ

3!
(gσNσ )3 − λ

4!
(gσNσ )4 − 1

4
FμνFμν + 1

2
m2

ωωμωμ − 1

4
�μν�

μν

+ 1

2
m2

φφμφμ + ξ

4!

(
g2

ωNωμωμ
)2 + 1

2
m2

ρ �ρμ · �ρμ − 1

4
�Gμν �Gμν + �ν

(
g2

ρN �ρμ · �ρμ
)(

g2
ωNωμωμ

)

+
∑

l

ψ̄l [iγ
μ∂μ − ml ]ψl , (1)

with the field tensors

Fμν = ∂μων − ∂νωμ,

�μν = ∂μφν − ∂νφμ,

�Gμν = ∂μρν − ∂νρμ. (2)

The model contains following quantities: the baryon octet
and two leptons (p, n, e, μ,�0, 	+, 	0, 	−, 
0, 
−), �

resonances (�++,�+,�0,�−), isoscalar-scalar σ , isoscalar-
vector ω, φ, and isoscalar-vector ρ with the masses and
coupling constants. The isospin operator for the isovector-
vector meson fields is represented by �τ , where �ν is
introduced to modify the density dependence of symmetry
energy. The isoscalar meson self-interactions (via κ , λ, and
ξ terms) are necessary for the appropriate EOS of sym-
metric nuclear matter. In RMF models, the operators of

meson fields are replaced by their expectation values using
the mean-field approximation. In Table I, we list proper-
ties and coupling constants for baryons other than nucleons
in Eq. (1).

We take the Lagrangian of kaon condensation as the same
that in Refs. [43] and [44], which reads

LK = D∗
μK∗DμK − m∗2

K K∗K, (3)

where Dμ = ∂μ + igωKωμ + igφKφ + i gρK

2 τK · ρμ is the co-
variant derivative and the kaon effective mass is defined as
m∗

K = mK − gσKσ .
Finally, with the Euler-Lagrange equation, the equations of

motion for baryons and mesons are obtained:
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TABLE I. Strangeness mass M, third component of isospin τ3,
charge q, and total angular momentum and parity JP for �0, 	+,0,−,
and 
−,0 hyperons and � baryons.

M (MeV) τ3 q(e) J p

�0 1116 0 0 (1/2)+

	+ 1193 1 +1 (1/2)+

	0 1193 0 0 (1/2)+

	− 1193 −1 −1 (1/2)+


0 1318 (1/2) 0 (1/2)+


− 1318 (−1/2) −1 (1/2)+

�++ 1232 (+3/2) +2 (3/2)+

�+ 1232 (+1/2) +1 (3/2)+

�0 1232 (−1/2) 0 (3/2)+

�− 1232 (−3/2) −1 (3/2)+

m2
σ σ + 1

2
κg3

σNσ 2 + 1

6
λg4

σNσ 3 =
∑

B

gσBρS
B +

∑
D

gσDρS
D

+ gσKρK , m2
ωω + ξ

6
g4

ωNω3 + 2�νg2
ρN g2

ωNρ2ω

=
∑

B

gωBρB+
∑

D

gωDρD − gωKρK , m2
ρρ+2�νg2

ρN g2
ωNω2ρ

=
∑

B

gρBτ3BρB +
∑

D

gρDτ3DρD − gρK

2
ρK , m2

φφ

=
∑

B

gφBρB − gφKρK , (4)

where ρB(D) and ρS
B(D) are the baryon (�) density and the

scalar density, which read

ρB = γ k f B

6π2
,

ρS
B = γ M∗

4π2

[
k f BE∗

f B − M∗2 ln

(
k f B + E∗

f B

M∗2

)]
.

(5)

γ = 2 for baryons and γ = 4 for � resonance. Here E∗
f B =√

k2
f B + M∗2. the kaon density

ρK = 2
(
ωK + gωKω + gφKφ + gρK

2
ρ
)

K∗K, (6)

Now, we are in a position to discuss the coupling parame-
ters between baryons (nucleons, hyperons, and �) or K− and
meson fields. The masses of nucleons and mesons and the
coupling constants between nucleons and mesons in IUFSU
models are tabulated in Table II.

For the meson-hyperon couplings, we take those in the
SU(6) symmetry for the vector couplings constants:

gρ� = 0, gρ	 = 2gρ
 = 2gρN ,

TABLE III. scalar meson hyperon coupling constants for IUFSU.

� 	 


xσY 0.615 796 0.452 19 0.305 171

gω� = gω	 = 2gω
 = 2

3
gωN ,

2gφ� = 2gφ	 = gφ
 = −2
√

2

3
gωN . (7)

The nucleons do not couple to the strange mesons, gφN = 0,
and the mass of meson φ takes Mφ = 1020 MeV. The scalar
couplings are usually fixed by fitting hyperon potentials with
U (N )

Y = gωY ω0 − gσY σ0, where σ0 and ω0 are the values of the
scalar and vector meson strengths at saturation density [52].
We choose the hyperon-nucleon potentials of �, 	, and 


as U N
� = −30 MeV, U N

	 = 30 MeV, and U N

 = −18 MeV

[53–55]. Table III provides the numerical values of the me-
son hyperon couplings at nuclear saturation density, where
xσY = gσY /gσN

The coupling constants between the vector meson and
the kaon, gωK , gρK , are determined by the meson SU(3)
symmetry as gωK = gωN/3, gρK = gρN [26], and gφK = 4.27
for the φ meson [56]. The scalar coupling constant gσK is
fixed to the optical potential of the K− in saturated nuclear
matter,

UK (ρ0) = −gσKσ (ρ0) − gωKω(ρ0), (8)

and in this paper we carry out our calculations with a series
of optical potentials ranging from −160 to −120 MeV. The
gσK can be related to the potential of thekaon at the saturated
density through Eq. (8). gσK values corresponding to several
values of UK are listed in Table IV.

Because experimental data on the � resonance are scarce,
the coupling parameters between the � resonances and meson
fields are uncertain, so we limit ourselves to considering only
the couplings with σ meson fields, which are explored in
the literature [57,58]. We assume the scalar coupling ratio
xσ� = gσ�/gσN > 1 with a value close to the mass ratio of
the � and the nucleon [59], and adopt three different choices
(xσ� = 1.05, xσ� = 1.1, and xσ� = 1.15) [60]; for xω� and
xρ� we take xω� = gω�/gωN = 1.1 and xρ� = gρ�/gρN = 1
[61]. Similarly to the nucleons, � resonances do not couple to
meson φ, so gφ� = 0.

By solving the Euler-Lagrangian equation of the kaon we
obtain the equation of motion: [DμDμ + m∗2

K ]K = 0. We can
then derive the dispersion relation for the Bose condensation
of K−, which reads

ωK = mK − gσKσ − gωKω − gφKφ − gρK

2
ρ. (9)

TABLE II. Parameter sets for the IUFSU model discussed in the text and the meson masses Mσ = 491.5 (MeV), Mω = 786 MeV, Mρ = 763
MeV.

Model gσ gω gρ κ λ ξ �ν

IUFSU 9.9713 13.0321 13.5899 3.376 85 0.000 268 0.03 0.046
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TABLE IV. gσK determined for several UK values in the IUFSU
model.

UK (MeV) −120 −140 −160

gσK 0.600 417 1.144 204 1.687 99

For the neutron matter with baryons and charged lep-
tons, the β-equilibrium conditions are guaranteed with
the following relations of chemical potentials for different
particles:

μp = μ	+ = μ�+ ,

μ� = μ	0 = μ
0 = μ�0 = μn,

μ	− = μ
− = μ�− = 2μn − μp,

μ�++ = 2μp − μn,

μμ = μe = μn − μp, (10)

and the charge neutrality condition is fulfilled by
∑

B

qBρB +
∑

D

qDρD − ρK − ρe − ρμ = 0. (11)

The chemical potentials of baryons, �, and leptons read:

μi =
√

ki2
F + m∗2

i +gωiω + gφiφ + gρiτ3iρ, i = B, D,

(12)

μl =
√

kl2
F + m2

l , (13)

where ki
F is the Fermi momentum and m∗

i is the effective
mass of baryon and � resonances, which can be related to
the scalar meson field as m∗

i = mi − gσ iσ , and kl
F is the Fermi

momentum of the lepton l (μ, e).
The total energy density of the system with kaon conden-

sation, ε = ε(B,D) + εK , where εB,D is the energy density of
baryons and � resonances, can be given as

εB,D =
∑

i=B,D

γ

(2π )3

∫ kFi

0

√
m∗

i + k2d3k + 1

2
m2

ωω2

+ ξ

8
g4

ωNω4 + 1

2
m2

σ σ 2 + κ

6
g3

σNσ 3 + λ

24
g4

σNσ 4

+ 1

2
m2

ρρ
2 + 3�νg2

ρN g2
ωNω2ρ2 + 1

2
m2

φφ2

+ 1

π2

∑
l

∫ kFl

0

√
k2 + m2

l k2dk, (14)

And the energy contributed by the kaon condensation εK is

εK = 2m∗2
K K∗K = m∗

KρK .. (15)

The kaon does not contribute directly to the pressure as it is a
(s-wave) Bose condensate, so that the expression of pressure
reads

P =
∑

i=B,D

μiρi +
∑

l=μ,e

μlρl − ε. (16)

FIG. 1. Effective mass and σ meson strength of nucleons versus
baryon density in NS matter using and not using σ -cut scheme.

With the obtained ε and P, the mass-radius relation and other
relevant quantities of neutron star can be obtained by solving
the Oppenheimer and Volkoff equation [62]:

dP(r)

dr
= − GM(r)ε

r2

(
1 + P

εC2

)(
1 + 4πr3P

M(r)C2

)

×
(

1 − 2GM(r)

rC2

)−1

, (17)

dM(r) = 4πr2ε(r)dr. (18)

The tidal deformability of a neutron star is reduced as a di-
mensionless form [63,64],

� = 2

3
k2C

−5, (19)

where C = GM/R, and the second Love number k2 can be
fixed simultaneously with the structures of compact stars [65].

The σ -cut scheme [47], which is able to stiffen the EOS
above saturation density, adds in the original Lagrangian den-
sity the function [47,66,67]

�U (σ ) = α ln{1 + exp[β( f − fs,core)]}, (20)

where f = gσNσ/MN and fs,core = f0 + cσ (1 − f0). MN is the
nucleon mass. f0 is the value of f at saturation density, equal
to 0.31 for the IUFSU model. cσ is a positive parameter that
we can adjust. The smaller cσ is, the stronger the effect of the
σ -cut scheme becomes. However, we must be careful that this
scheme would not affect the saturation properties of nuclear
matter; in our previous work we discussed in detail the choice
of parameter cσ [48]. In this paper, we take cσ = 0.15 to
satisfy the maximum mass constraint. α and β are constants,
taken to be 4.822 × 10−4M4

N and 120 as in Ref. [47]. This
scheme stiffens the EOS by quenching the decrease of the ef-
fective mass of the nucleon M∗

N = MN (1 − f ) at high density.

III. RESULTS

First, we studied the effect of the σ -cut scheme on the
IUFSU model. In Fig. 1, we plot the ratio of the effective
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FIG. 2. Kaon meson energy (ωK ) and electronic chemical poten-
tial (μe) as a function of ρB with different xσ� and UK , and without
σ -cut scheme.

mass of nucleons to the rest mass and the σ meson strength
as a function of the baryon density, where ρ0 is the saturation
density, and we choose xσ� = 1.05 and UK = −160 MeV to
consider � resonance and kaon condensation. From the left
panel, we can see that when ρ � ρ0 the effective mass is
almost same as nucleons-only matter and is unchanged by
the σ -cut scheme; when ρ > ρ0, the effective mass drops to
around 0.55MN . And it is obviously observed that under the
σ -cut scheme considering or not considering � and K− in the
EOS has very tiny effect on the effective mass of nucleons.
From the right panel, when ρ > ρ0, the σ meson field strength
is quenched at high baryon density; this is what we want from
using the σ -cut scheme.

In Fig. 2, we plot the chemical potential of K− and e−
as a function of baryon density. With the increase of den-
sity, the energy ωK of a test kaon in the pure normal phase
can be computed as a function of the nucleon density. The

FIG. 3. Kaon energy(ωk) and electron chemical potential (ue) as
a function of baryon density with different xσ� and UK ; cσ = 0.15.

FIG. 4. Relative population of particles versus baryon density
without σ -cut scheme with xσ� = 1.05, xσ� = 1.1, xσ� = 1.15, and
K− potential depth of UK = −160 MeV; dashed lines denote K− and
� resonance.

kaon energy(ωK ) will decrease while the electron chemical
potential (μe) increases with the density. When the condition
ωK = μe is achieved, the kaon will occupy a small fraction
of the total volume. We can see that both xσ� and UK affect
the kaon meson condensation. From xσ� = 1.05 to 1.15, there
is no intersection between ωK and μe when Uk = −120 and
−140 MeV. The intersection of ωK and μe is only possible
when UK = −160 MeV, which means that the smaller the
optical potential of the K− at saturated nuclear matter is, the
greater the possibility of the kaon condensation is. When we
choose the σ -cut scheme (Fig. 3), there is no intersection
between ωK and μe. The decrease of σ meson field strength
slows down the decline of ωK , and makes the appearance of
K− difficult. We list the threshold densities ncr for kaon con-
densation for different values of K− optical potential depths
UK in Table V.

Figure 4 shows the relative population of particles versus
baryon density with xσ� = 1.05, xσ� = 1.1, xσ� = 1.15, and
UK = −160 MeV. We find that, as xσ� increases, the critical
density of �0 moves to a higher density region, while the
density of leptons moves to a lower density; and in particular
as μ− disappear, �0 start to appear and the critical density of
� resonance moves to a lower density region. When xσ� =
1.1, �+ appears at 6.21ρ0, and for xσ� = 1.15, �++ appears
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FIG. 5. Relative population of particles versus baryon density
with σ -cut scheme (cσ = 0.15), xσ� = 1.05, xσ� = 1.1, xσ� = 1.15,
and K− potential depth of UK = −160 MeV; dashed lines denote K−

and � resonance.

at 6.14ρ0, while the critical densities of K− meson occu at
6.79ρ0 and 6.73ρ0, respectively.

Next we examine the effect of the σ -cut scheme on the
particle population. This is plotted in the Fig. 5. From Fig. 3,
we determined that no K− is generated when using the σ -cut
scheme, as there is no intersection between ωK and μe, but the
� resonance has some interesting variations. The K− disap-
pear, and with z the decrease of μ− the �+ and �++ increase
as the charge balance conditions lead to the appearance of new
hyperons 
−, suggesting that hyperons are more favorable as
neutralizers of positive charges compared to leptons. As xσ�

increases from 1.05 to 1.15, the critical value of � resonance
shifts to lower density and the central energy density (ρc) will
move towards the high density area; in particular, when xσ� =

TABLE V. Threshold densities ncr (in units of ρ/ρ0) for kaon
condensation in dense nuclear matter for different values of K−

optical potential depths UK (in units of MeV) without σ -cut scheme.

ncr (K−)

UK (MeV) xσ� = 1.05 xσ� = 1.1 xσ� = 1.15

−120 none none none
−140 none none none
−160 5.24 6.79 6.73

FIG. 6. Pressure versus energy density without the σ -cut scheme.
The solid line is for n, p, leptons, and hyperons whereas others are
with additional � resonance; dashed lines denote K− mesons and
exhibit UK = −160 MeV.

1.15, the critical density of �0 moves before that of �0. From
these figures, it can be concluded that the appearance of kaon
meson condensation is more likely to suppress the hyperon
production than the � resonance. Although the σ -cut scheme
leads to the disappearance of kaon meson condensation, it
does not change the relationship between the � resonance as
xσ� varies.

Next we can discuss some properties of the neutron star.
Figure 6 shows pressure as a function of energy density in
NS matter containing � resonance and K− without the σ -cut
scheme. We can see from the enlarged area in the figure that
the addition of K− softens the equation of state to some extent,
although this is not particularly significant with the onset of

FIG. 7. Pressure versus energy density with σ -cut scheme. The
solid line is for n, p, leptons, and hyperons whereas others are with
additional � resonance; the dashed line exhibits cσ = 0.15.
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FIG. 8. Mass-radius relation using and not using σ -cut scheme
in NS matter including hyperons, � resonance, and K−. The solid
lines denote results without σ -cut; dashed lines denote cσ = 0.15.
The horizontal bars indicate the observational constraints of PSR
J1614−2230 [1–4], PSR J0348+0432 [5], MSP J0740+6620 [6],
and PSR J0030−0451 [68].

the � resonance. As xω� increases, the EOS will get softer,
eventually leading to a decrease in the maximum mass of
the neutron star. It is worth mentioning that � resonance
softens the EOS when the energy density is between 300
and 600 MeV/fm3 and stiffens significantly >600 MeV/fm3

compared to the case where only hyperons are included, and
intensifies with increasing xσ� (1.05 → 1.15), which suggests
the existence of a softer EOS in the low-density region, and
the recent constraints on tidal deformation and radius point
to this. When the σ -cut scheme is considered, we plot the

FIG. 9. The dimensionless tidal deformability as a function of
star mass. The solid line indicates without σ -cut scheme; the dashed
line indicates cσ = 0.15. The constraints from the GW170817 event
for tidal deformability are shown.

EOS in Fig. 7. From Fig. 3 we determined that there is no K−
when using σ -cut scheme, so the composition contains only
hyperons and �. We can see that σ -cut scheme significantly
stiffens the EOS, and it is the truncated intensity of σ meson
field strength in Fig. 1 that leads to this result, and still retains
the EOS softening feature in the low density region. The EOS
obtained by this way can generate a heavier 2M� NS by
solving the Tolman-Oppenheimer-Volkoff (TOV) equation, in
order to eliminate the “hyperon puzzle.”

The results of the mass-radius relation for a NS is discussed
here and shown in Fig. 8. The constraints from the observables
of massive neutron stars, PSR J1614−2230 [1–4] and PSR
J034+0432 [5] are also shown as the shaded bands. The
Neutron star Interior Composition Explorer (NICER) Collab-
oration reported an accurate measurement of mass and radius
of PSR J0030+0451 [68] in 2019, and MSP J0740+6620 in
2021 [6]. For the solid lines without σ -cut, different coupling
parameters xσ� have a significant effect on the maximum
mass and radius of a NS; it shows that the � resonance
increases the maximum mass of the NS and decreases the
radius. With the increase of xσ� (1.05 → 1.15), the maximum
mass decreases, but is still greater than in the case of pure
hyperons. The dashed lines denote cσ = 0.15; this scheme
can significantly increase the maximum mass of the neutron
star and make it heavier than 2M�, and also accords with
the constraints from gravitational waves and NICER (MSP
J0740+6620). Note that there is no appearance of K− when
cσ = 0.15 from Fig. 3. We list the simultaneous measurement
of radius for MSP J0740+6620 and PSR J0030−0451 from
the NICER data and maximum mass of the neutron star for
various values of xσ� in Table VI. The tidal deformability �,
as a function of neutron star mass is shown in Fig. 9. From
the gravitational wave of the binary NS merger GW170817,
it was extracted as �1.4 = 190+390

−120 at 1.4M� [69]. From the
figure we can see that the σ -cut scheme with the stiffer
EOS has the larger �1.4 and heavier masses, whose �1.4

are beyond the constraint of GW170817, while the softer
EOS satisfies the constraints of GW170817 and has smaller
radii without the σ -cut scheme, and the � is still within
the bound of GW170817 after considering the � resonance.
With the strong constraint on the compositions of compact
stars by the observational tidal deformability, we think it is
necessary to consider � resonance in the softer EOS in the
event GW170817, as well as the tidal deformability of the
neutron star at 2.0M�, which is expected to be measured
in future gravitational wave events from binary neutron-star
mergers.

IV. SUMMARY

In this paper, we have discussed the � resonance and kaon
meson condensation inside a neutron star under the IUFSU
model, using to the recent rapid results of astronomical obser-
vations on the radii and tidal deformations of compact stars.
However, the maximum masses of neutron stars generated by
the softer EOS (hyperon puzzle) cannot approach 2.0M�, as
it did not satisfy the constraints from the massive neutron
star observables, so we used the σ -cut scheme and got the
maximum mass heavier than 2M�.
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TABLE VI. The maximum mass (in units of solar mass M�) and radius (km) in NS matter including hyperons, � resonance, and K− using
and not using σ -cut scheme with potential UK = −160 MeV.

Without σ -cut cσ = 0.15 MSP J0740 + 6620 [6] PSR J0030 − 0451 [8]

M ρc R M ρc R M R M R

(n, p) 1.93 1.029 11.14
(n, p,Y ) 1.51 0.87 11.47 2.2 0.58 13.65 2.08 ± 0.07 12.39+1.3

−0.98 1.34+0.15
−0.16 12.71+1.14

−1.19

xσ� = 1.05 (n, p,Y, D, (K−)) 1.58 1.24 10.37 2.12 0.71 12.93
xσ� = 1.1 (n, p,Y, D, (K−)) 1.54 1.3 10.27 2.09 0.73 12.84
xσ� = 1.15 (n, p,Y, D, (K−)) 1.51 1.37 9.9 2.05 0.74 12.64

We find that the kaon condensation cannot appear in the
hyperons and � resonance with our parameter UK = −120
and −140 MeV; it occurs only at UK = −160 MeV, and the �

resonance also shifts the kaon meson toward the high-density
region. In NS matter containing hyperons and � resonances,
the effect of the kaon meson on EOS is very insignificant.

On the other hand, we investigated the effect of xσ� on
the � resonance; for the � coupling constants, we take xσ� =
1.05, 1.1, and 1.15, and the value of xσ� has great influence on
the relative population of particles as a function of the baryon
density. We find that the inclusion of � resonance shifts the
critical density of hyperons towards the high density region
from xσ� = 1.05 to xσ� = 1.15 and the critical density of �

resonance will move toward the low density region. Also, the
EOS softens as xσ� increases.

When the σ -cut scheme is not used, we find that the softer
EOS considering � resonance is still within the �1.4 range
of GW170817, and this may suggest the existence of a softer
EOS in the low-density region, while the softer EOS satisfies
the constraints of GW170817 and has smaller radii. When we
used the σ -cut scheme and take the parameter cσ = 0.15, we
find that the maximum mass and radius of NSs obtained under
this model are close to the NICER (MSP J0740+6620) con-
straint. For tidal deformability of neutron stars with maximum
mass above 2M�, future gravitational wave events of binary
neutron star mergers may provide new constraints.
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