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The last five years have seen remarkable progress in our quest to determine the equation of state of neutron rich
matter. Recent advances across the theoretical, experimental, and observational landscape have been incorporated
in a Bayesian framework to refine existing covariant energy density functionals previously calibrated by the
properties of finite nuclei. In particular, constraints on the maximum neutron star mass from pulsar timing, on
stellar radii from the NICER mission, on tidal deformabilities from the LIGO-Virgo collaboration, and on the
dynamics of pure neutron matter as predicted from chiral effective field theories have resulted in significant
refinements to the models, particularly to those predicting a stiff symmetry energy. Still, even after these
improvements, we find it challenging to reproduce simultaneously the neutron skin thickness of both 208Pb
and 48Ca recently reported by the PREX/CREX collaboration.
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I. INTRODUCTION

We have entered the golden era of neutron stars [1,2].
A confluence of pioneering discoveries during the last five
years has provided stringent constraints on the equation of
state (EOS) of neutron star matter over an enormous range
of densities. Below nuclear matter saturation density ρ0 ≈
0.15 fm−3—a region that is difficult to probe in laboratory
experiments—theoretical predictions of the EOS of pure neu-
tron matter based on chiral effective field theory are providing
valuable insights [3–9]. In the laboratory, the Lead Radius
Experiment (PREX) has established that the neutron skin of
208Pb is thick [10–12], suggesting, in turn, that the EOS of
neutron rich matter in the vicinity of saturation density is stiff
[13]. Note that a “stiff” equation of state is one in which the
pressure increases rapidly with increasing density, whereas
one in which the pressure increases slowly is “soft.” In this
manner, chiral effective field theory (χEFT) and laboratory
experiments define the first rung in a “density ladder” con-
sisting of theoretical, experimental, and observational rungs
that inform the EOS in a suitable density regime [14]. In turn,
neutron star radii are most sensitive to the EOS in the neigh-
borhood of twice nuclear matter saturation. As such, stellar
radii inferred from both the tidal deformability of GW170817
[15,16] and from monitoring stellar hot spots by the Neu-
tron Star Interior Composition Explorer (NICER) [17–20] are
providing the most sensitive constraints on the EOS at about
2ρ0. Finally, the most stringent constraints on the EOS at the
highest densities encountered in the stellar core are obtained
from the identification of neutron stars with masses in the
vicinity of two solar masses [21–24].

While all these discoveries are painting a fairly consistent
and compelling picture of the EOS, there are a few instances
that suggest a possible tension. First, chiral EFT calculations
tend to predict a softer EOS at saturation density [7] as com-
pared to an analysis based on the PREX measurement, which

instead suggests a fairly stiff equation of state [13]. Given that
the PREX error bars are relatively large [12], an improved
experiment (“MREX”) planned at the future Mainz Energy-
Recovery Superconducting Accelerator (MESA) facility in
Mainz should be able to confirm whether the discrepancy is
real. Second, most nuclear structure models find a strong cor-
relation between the thickness of the neutron skin in 48Ca and
208Pb. However, this correlation is in stark disagreement with
experiment. The CREX collaboration has recently reported
a neutron skin thickness in 48Ca [25] that is significantly
smaller than any theoretical prediction that reproduces the
large value of the neutron skin in 208Pb. Finally, the historic
detection of gravitational waves by the LIGO-Virgo collabo-
ration from the binary neutron star coalescence GW170817
suggests that the EOS is soft in the vicinity of 2ρ0 [16],
although a reanalysis [26] could accommodate a stiffer EOS
that brings the radius of a 1.4M� neutron star into agreement
with the NICER results [17,18] and with other constraints
obtained from the analysis of the electromagnetic counterpart
[27].

Although the next few years will be instrumental in re-
solving these possible discrepancies, as of today this situation
suggests an intriguing possibility. So far, we have learned
that the equation of state evolves from stiff at typical nuclear
densities, to soft at slightly higher densities, and ultimately
back to stiff at the highest densities encountered in the core
of massive neutron stars. If confirmed, such an evolution from
stiff, to soft, and back to stiff may be suggestive of a phase
transition in the stellar interior.

Inspired by a recent approach that incorporates predictions
from χEFT [28], we aim to refine existing covariant energy
density functionals (EDFs)—calibrated to the ground state
properties of finite nuclei—by incorporating both χEFT pre-
dictions for the EOS of pure neutron matter together with
observational constraints provided by LIGO-Virgo, NICER,
and pulsar timing; see also Refs. [29,30]. The implementation
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of this new calibration procedure uses a covariance matrix
collected from existing EDFs [31,32] as the prior distribution
of parameters. This prior distribution is then combined with
a likelihood function that incorporates all the new informa-
tion. It is the primary goal of this paper to refine existing
EDFs by incorporating both theoretical and observational
constraints in a consistent Bayesian framework. We should
underscore, however, that besides seeking consistency with
both χEFT and astrophysical data, the refined functional is an-
ticipated to reproduce ground state properties of finite nuclei,
as these have already been encoded in the prior distribution of
parameters.

The paper has been organized as follows. In Sec. II we
define the structure of the covariant EDF that we aim to
refine. In the same section we discuss our choice of posterior
distribution composed from a prior distribution obtained from
a previous parameter estimation and a likelihood function
informed by the new data. In Sec. III we analyze the impact
of the new data on a particular set of isovector sensitive
observables. One of the goals of the present paper is to deter-
mine whether the wealth of new information incorporated in
the calibration demands an extension of the relatively simple
isovector sector of the kind of EDF used in this paper. Finally,
in Sec. IV we summarize our results and provide an outlook
on how to improve the synergy between nuclear physics and
observational astronomy.

II. FORMALISM

A. Covariant density functional theory

In the framework of covariant density functional theory
(DFT), the underlying degrees of freedom are nucleons in-
teracting via the exchange of three mesons and the photon. In
the particular version of covariant DFT that will be employed
here, the interactions are encoded in an effective Lagrangian
density containing conventional Yukawa couplings plus me-
son self-interactions [33–38]:

Lint = ψ̄

[
gsφ −

(
gvVμ + gρ

2
τ · bμ + e

2
(1 + τ3)Aμ

)
γ μ

]
ψ

− κ

3!
(gsφ)3 − λ

4!
(gsφ)4 + ζ

4!
g4

v (VμV μ)2

+ �v

(
g2

ρ bμ · bμ
)(

g2
vVνV ν

)
. (1)

Here ψ is the isodoublet nucleon field, Aμ is the photon
field, and φ, Vμ, and bμ represent the isoscalar-scalar σ -
meson, the isoscalar-vector ω-meson, and the isovector-vector
ρ-meson fields, respectively. The σ meson is responsible for
the intermediate range attraction of the nuclear force, the ω

meson mediates the repulsion at short distances, while the
ρ meson provides a dynamical contribution to the nuclear
symmetry energy. We note that the isovector sector of the
model is entirely defined in terms of two model parameters:
the Yukawa coupling constant gρ and the mixed isoscalar-
isovector coupling �v , introduced to modify the density
dependence of the symmetry energy [38]. Although in the
spirit of an effective field theory one should incorporate all
possible meson interactions that are allowed by symmetry
considerations to a given order in a power-counting scheme,

until recently the database of isovector observables was too
limited to justify the inclusion of additional parameters. How-
ever, the wealth of new experimental and observational data
collected within the last few years may demand extensions to
the isovector sector of the model.

B. Mean field approximation

In the study of uniform neutron rich matter, the field equa-
tions resulting from the above Lagrangian density may be
solved exactly in the mean field approximation. Assuming
a static and uniform ground state, the meson fields may be
replaced by their classical, ground state expectation values
[33,35],

φ → 〈φ〉 = φ0, (2a)

V μ → 〈V μ〉 = gμ0V0, (2b)

bμ
a → 〈

bμ
a

〉 = gμ0δa3b0, (2c)

which in turn satisfy the following mean field equations:

m2
s

g2
s

�0 + κ

2
�2

0 + λ

6
�3

0 = (ρsp + ρsn), (3a)

m2
v

g2
v

W0 + ζ

6
W 3

0 + 2�vB2
0W0 = (ρvp + ρvn), (3b)

m2
ρ

g2
ρ

B0 + 2�vW
2

0 B0 = 1

2
(ρvp − ρvn). (3c)

Here the source terms are written in terms of scalar
and timelike vector densities for both protons and neu-
trons. Moreover, we have defined �0 ≡ gsφ0, W0 ≡ gvV0, and
B0 ≡ gρb0. Note that the Klein-Gordon equations for the me-
son fields depend on the ratio of the coupling constant to
the corresponding meson mass. Such a degeneracy in model
parameters can only be broken by invoking finite-nucleus
observables.

In turn, the nucleon satisfies a Dirac equation with an
effective mass M� ≡ M − �0 and a dispersion relation given
by

εp,n(k) =
√

k2 + M� 2 + W0 ± 1

2
B0, (4)

where M is the free nucleon mass and k is the nucleon mo-
mentum.

C. Equation of state

At zero temperature and for a given energy density, the
EOS of neutron star matter is obtained by computing the
associated pressure provided by a charge-neutral system of
nucleons and leptons in beta equilibrium. Although such is the
EOS that appears in the Tolman-Oppenheimer-Volkoff (TOV)
equations, it is instructive to start with the EOS of infinite
nuclear matter—an idealized system of protons and neutrons
interacting solely via the strong nuclear force. In this limit,
the electroweak sector is effectively turned off, so both proton
and neutron densities are individually conserved. As such, the
EOS of infinite nuclear matter in the mean field approximation
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may be written as

εnuc(ρp, ρn)

= εp(ρp) + εn(ρn) +
(
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24
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B2
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2
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0

)
, (5)

where εp(ρp) and εn(ρn) are energy densities of a free Fermi
gas of particles of mass M� and density ρp and ρn, respec-
tively. In turn, the associated pressure can be obtained by
invoking the Hugenholtz–Van Hove theorem for asymmetric
nuclear matter [39]. That is,

εnuc(ρp, ρn) + Pnuc(ρp, ρn) = ρpEF p + ρnEFn, (6)

where the proton and neutron Fermi energies are

EF p =
√

k2
F p + M�2 +

(
W0 + 1

2
B0

)
, (7a)

EFn =
√

k2
Fn + M�2 +

(
W0 − 1

2
B0

)
. (7b)

Here the Fermi momenta are related to the corresponding
densities as follows:

ρp = k3
F p

3π2
and ρn = k3

Fn

3π2
. (8)

Finally, the energy density of a free Fermi gas of particles of
mass M and density ρ = k3

F /3π2 may be computed in closed
form:

ε(ρ) = 1

π2

∫ kF

0
k2

√
k2 + M2 dk

= M4

8π2

[
xF yF

(
x2

F + y2
F

) − ln(xF + yF )
]
, (9)

where xF = kF /M and yF =
√

1 + x2
F . This expression is use-

ful in the evaluation of the proton and neutron energy density
appearing in Eq. (5) as well as in computing the energy density
of the leptonic contribution to the EOS of neutron star matter.

Indeed, the energy density of neutron star matter may be
written as a sum of the nuclear contribution [Eq. (5)] plus
a leptonic contribution involving both electrons and muons.
That is,

ε(ρ,Yp,Ye) = εnuc(ρp, ρn) + εe(ρe) + εμ(ρμ), (10)

where the conserved baryon (or vector) density is ρ = ρn +
ρp and the individual nucleonic and leptonic densities are
defined in terms of suitable proton and electron fractions Yp

and Ye as follows:
ρp

ρ
= Yp and

ρn

ρ
= 1 − Yp, (11a)

ρe

ρ
= Ye and

ρμ

ρ
= Yp − Ye. (11b)

Given that the matter inside neutron stars is fully catalyzed,
both the proton and electron fractions adjust themselves
through weak interactions to reach the absolute ground state

at a given baryon density ρ. Hence, Yp and Ye are determined
by demanding that(

∂ε(ρ,Yp,Ye)

∂Yp

)
ρ,Ye

=
(

∂ε(ρ,Yp,Ye)

∂Ye

)
ρ,Yp

= 0. (12)

These conditions are entirely equivalent to demanding beta
equilibrium through the following reactions:

n ↔ p + e− + ν̄e ⇒ μn = μp + μe, (13a)

μ− ↔ e− + ν̄e + νμ ⇒ μμ = μe, (13b)

where μx is the chemical potential of the various species and
the neutrino chemical potential has been neglected.

Besides the uniform stellar core, a neutron star contains
a solid crust that develops once the uniform ground state
becomes unstable against clustering correlations. Given the
short-range nature of the nuclear force, it becomes energeti-
cally favorable for nucleons to cluster as soon as the average
interparticle separation becomes larger than the range of the
nucleon-nucleon interaction. At the low densities found in
the outer stellar crust, the system forms a Coulomb lattice
of neutron rich nuclei embedded in a degenerate electron gas
[40,41]. In this region, the pressure support against gravita-
tional collapse is provided by the degenerate electrons. Hence,
the EOS for this region is relatively well known [40,42,43].
However, at a density of about 2.6×10−4 fm−3, the nuclei
in the outer crust become so neutron rich that no more neu-
trons can be bound. Such “neutron-drip” region delineates the
boundary between the outer and the inner crust. The inner
stellar crust extends from the neutron-drip density up to about
ρ ≈ 2/3ρ0, where the uniformity in the system is restored.
The precise value of the crust-core transition density is un-
known as it depends on the stiffness of the EOS of neutron
rich matter below saturation density. Besides the formation
of a Coulomb crystal of neutron rich nuclei embedded in a
uniform electron gas and a dilute superfluid neutron gas [44],
the inner crust exhibits complex and exotic structures that are
collectively known as “nuclear pasta” [45–47]. The complex
dynamics in this region is important for the understanding of
transport properties as well as for the interpretation of cooling
observations [48]. Yet, their impact on the EOS is minimal, so
for this region we resort to the equation of state of Negele and
Vautherin [49]. That several choices for the EOS of the inner
crust have a minor effect on the structural properties of the star
was documented in Ref. [50]. Although not explicitly shown,
the various choices adopted for the crustal EOS resulted in a
change of at most 2% in the stellar radius of a 1.4M� neutron
star.

All that remains is to compute the transition density from
the solid crust to the uniform liquid core. To do so, we improve
on an earlier study that determines the transition density by
examining the stability of the ground state against small den-
sity perturbations [51] to one that relies on the thermodynamic
stability method outlined by Kubis in Ref. [52]. From thermo-
dynamic first principles the stability of the system requires the
following conditions to hold true:

−
(

∂P

∂v

)
q

> 0 and −
(

∂μ

∂q

)
P

> 0 (14a)
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or

−
(

∂P

∂v

)
μ

> 0 and −
(

∂μ

∂q

)
v

> 0, (14b)

where v = V/A and q = Q/A are the volume and charge per
baryon, respectively—and it has been argued in Ref. [52] that
both pair of inequalities are equivalent. The first inequality in
Eq. (14a) ensures that the thermal incompressibility remains
positive whereas the second one embodies the stability of
charge fluctuations. Moreover, it has been shown that for a
symmetry energy that remains positive in the region of in-
terest, the second condition in Eq. (14b) is always satisfied
[53]. Finally, the first inequality in Eq. (14b) can be recast
into a more useful form that will be used here to compute the
crust-core transition density. That is,

2ρ

(
∂ε

∂ρ

)
+ ρ2

(
∂2ε

∂ρ2

)
−

(
ρ

∂2ε

∂ρ ∂Yp

)2/(
∂2ε

∂Y 2
p

)
> 0.

(15)
For a given EOS, the transition density occurs when the above
inequality is violated. Although the parabolic approximation
has been used to compute the transition density, Routray et al.
have shown that the transition density may be overestimated
by about 25% [53]. Thus, we compute the transition density
without approximations by solving Eq. (15) after reexpressing
the above inequality in a more convenient form that only
involves the nucleonic chemical potentials, as in Eq. (8) in
Ref. [53]. Finally, we note that the thermodynamic stability
method yields slightly lower transition densities than the dy-
namical method based on the random phase approximation
[51].

D. Nuclear symmetry energy

In this section we introduce a critical component of the
energy of neutron rich matter: the nuclear symmetry energy.
To do so, we express the energy per nucleon in terms of
the total baryon density ρ and the neutron-proton asymme-
try α ≡ (ρn − ρp)/(ρn + ρp). Moreover, since the neutron-
proton asymmetry is constrained to the interval |α| � 1, the
total energy per particle is customarily expanded in a power
series in α2. That is,

E

A
(ρ, α) − M = εSNM (ρ) + α2S(ρ) + O(α4). (16)

The leading term in this expansion is independent of α and
represents the energy per nucleon of symmetric nuclear mat-
ter. In turn, the first-order correction to the symmetric limit
is the nuclear symmetry energy S(ρ), which quantifies the
energy cost in turning protons into neutrons (or vice versa).
Note that no odd powers of α appear as the nuclear force is as-
sumed to be isospin symmetric: in the absence of electroweak
interactions it is equally costly to turn protons into neutrons
than neutrons into protons. In the often-used “parabolic” ap-
proximation in which all corrections beyond second order in α

are neglected, the symmetry energy quantifies the energy cost
in turning symmetric nuclear matter into pure neutron matter.
Finally, the behavior of neutron rich matter in the vicinity of

saturation density can be characterized in terms of a few bulk
parameters as follows [54]:

εSNM (ρ) = ε0 + 1
2 K0x2 + · · · , (17a)

S(ρ) = J + Lx + 1
2 Ksymx2 + · · · (17b)

where x = (ρ − ρ0)/3ρ0 is a dimensionless parameter that
quantifies the deviations of the density from its value at sat-
uration. Here ε0 and K0 are the binding energy per nucleon
and incompressibility coefficient of symmetric nuclear matter
at saturation density; J and Ksym are the corresponding terms
in the symmetry energy. Note that no linear term in x appears
in εSNM because symmetric nuclear matter saturates, namely,
the pressure at saturation density vanishes. Such a linear term
is no longer absent from the symmetry energy. Rather, the
slope of the symmetry energy L is a critical parameter that
encapsulates the stiffness of the equation of state at saturation
density. Indeed, assuming the validity of the parabolic approx-
imation, the slope of the symmetry energy is proportional to
the pressure of pure neutron matter at saturation density. That
is,

PPNM (ρ0) = 1
3 Lρ0. (18)

E. Bayesian refinement

The demand for robust quantification of uncertainties as-
sociated with model calculations of physical observables [55]
has motivated the calibration of a certain class of covariant
EDFs [31,32] that aim to describe both the properties of fi-
nite nuclei and neutron stars. Initially, the model parameters
were obtained from the minimization of a suitable objec-
tive (or “cost”) function constructed from binding energies,
charge radii, and isoscalar-monopole excitations of a variety
of spherical nuclei. The minimization was then supplemented
by a covariance analysis that explores the landscape around
the minimum, thereby providing uncertainty estimates and
correlation coefficients. Although accurately calibrated to a
host of nuclear properties, the various models described in
Refs. [31,32] differ—often dramatically—in their predictions
of observables that are highly sensitive to the density de-
pendence of the symmetry energy. As such, our goal is to
use covariance matrices extracted from these earlier studies
as the prior distribution of parameters to be refined by the
inclusion of a variety of neutron star observables that have
been collected during the last five years. These include the
tidal deformability of a 1.4M� neutron star extracted from
GW170817 [15,16], stellar radii deduced from the NICER
mission [17–20], and limits on the most massive neutron stars
obtained from pulsar timing observations [21–24]. In addition,
given the success of χEFT in reproducing low-energy proper-
ties of finite nuclei, we incorporate predictions on the behavior
of pure neutron matter to inform the EOS at low densities.

For refining two existing models—FSUGold2 with a stiff
symmetry energy [31] and FSUGarnet with a soft one [32]—
we use the most optimistic estimates for the mass and radius
of the two pulsars PSR J00740+6620 and PSR J0030+0451
targeted by the NICER mission [19]. Further, we also include
the tidal deformability of a 1.4M� neutron star recommended
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TABLE I. Central values for various bulk properties of infinite nuclear matter as predicted by the two covariant EDFs used in this paper:
FSUGold2 [31] and FSUGarnet [32].

Model ρ0 (fm−3) ε0 (MeV) M�/M K (MeV) J (MeV) L (MeV) ζ

FSUGold2 0.1505 −16.28 0.593 238.00 37.62 112.8 0.0256
FSUGarnet 0.1531 −16.23 0.578 229.62 30.92 50.96 0.0234

by the Ligo-Virgo collaboration [16]. This new information is
displayed in the following set of equations:

PSR J0740+6620: R = 12.35 ± 0.75 km,

M = 2.08 ± 0.07M�; (19a)

PSR J0030+0451: R = 12.45 ± 0.65 km,

M = 1.44 ± 0.15M�; (19b)

GW170817: �1.4 = 190+390
−120. (19c)

Note that the quoted errors are all 1σ errors, with the
exception of the tidal deformability that is quoted at the 90%
confidence level. Finally, we refine the low density compo-
nent of the EOS by incorporating theoretical predictions from
χEFT for the equation of state of pure neutron matter [7]. That
is, we input ten evenly spaced points in the 0.05–0.185-fm−3

interval, with the errors computed at next-to-next-to-next-
leading order in the chiral expansion; see Fig. 4(a).

To calibrate—or rather recalibrate—the model parameters,
we start by using the covariance matrices associated with
the FSUGold2 [31] and FSUGarnet [32] EDFs. These co-
variance matrices were obtained with a fitting protocol that
used as input: the binding energy, charge radius, and giant
monopole resonance of a set of spherical nuclei as well as
the maximum neutron star mass known at the time. In the
present Bayesian refinement, such covariance matrices will be
used as the prior distribution of model parameters, which will
then be combined with the new data to generate the posterior
distribution via Monte Carlo sampling. We should mention
that in calibrating the original two models, we adopted errors
on the energies and charge radii of 0.1 and 0.2%, respectively
[31,32], both of which are larger than the quoted experimental
errors. This choice was adopted in order to accommodate
other experimental observables that have been determined
with significantly less precision.

Given the strong-coupling nature of the theory, it is ill
advised to change each model parameter individually, as the
searching algorithm often ends up wandering aimlessly in the
landscape of parameters. Moreover, the connection between
the model parameters and our physical intuition is tenuous at
best. In an effort to mitigate this problem we use a mapping
between the model parameters and a few bulk properties of
infinite nuclear matter that have a clear physical interpretation
[31]. That is, the set of coupling constants that appear in
Eq. (1) that will be adjusted in response to the new data are
C = {gs, gv, gρ, κ, λ, ζ ,�v}. With the exception of the quar-
tic vector coupling constant ζ that controls the high density
behavior of the EOS, the other six coupling constants can
be directly mapped to the following set of bulk properties
of infinite nuclear matter evaluated at saturation density [31]:

θ = {ε0, ρ0, M�, K, J, L}, where M� is the effective nucleon
mass at saturation density ρ0 and the remaining bulk parame-
ters were defined in Eq. (17). The coupling constant ζ is left as
a free parameter. Predictions from FSUGold2 and FSUGarnet
for the central values of this set of bulk properties are listed in
Table I.

Evidently, it is more natural and intuitive to estimate a
suitable range of values for the bulk parameters θ than for
the model parameters C. For example, the simple liquid-drop
model already provides good estimates for both ε0 and J .
Further, because covariant EDFs are characterized by the
presence of strong scalar and vector fields, changing one
model parameter at a time hinders the convergence of the
self-consistent procedure required to solve the mean field
equations. Instead, modifying a single bulk parameter does
not sacrifice the convergence, as it involves a coherent change
of several model parameters. Finally, we observe that whereas
the bulk parameters associated with symmetric nuclear matter
are narrowly constrained, the situation is drastically different
for the symmetry energy, especially in the case of its slope L.
That the density dependence of the symmetry energy is poorly
constrained is a limitation of the existing database of nuclear
data that lacks observables with very large proton-neutron
asymmetries.

Such unfavorable situation has changed dramatically by the
recent measurements of neutron star properties that provide
vital information on the symmetry energy around twice nu-
clear matter saturation density. In turn, χEFT predictions for
the EOS of pure neutron matter fill an important gap below
saturation density.

In the context of Bayes’ theorem, the new information pro-
vides valuable constraints for refining our model. In essence,
Bayes’ theorem describes how to update our current knowl-
edge (or “belief”) given some new evidence. In mathematical
form, Bayes’ theorem is written as follows [56,57]:

P(M|D) = P(D|M)P(M)

P(D)
. (20)

Here P(M) contains our prior knowledge of the model param-
eters before the new data are incorporated. This knowledge is
summarized in the covariance matrix associated with earlier
calibrations of the EDFs. For example, FSUGold2 predicts
a stiff symmetry energy characterized by a slope of L =
112.8 ± 16.1 MeV [31]. Given that χEFT favors a relatively
soft symmetry energy, our present knowledge of the symmetry
energy will likely be updated as a result of this new evidence.
The new information is incorporated into the conditional
probability P(D|M), often also referred to as the likelihood
function L(M, D). Finally, P(D) is a normalization factor
known as the marginal probability. These three quantities are
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combined according to Eq. (20) to define the posterior distri-
bution P(M|D), namely, the updated probability distribution
that emerges from the new evidence. In this paper we will
sample the posterior distribution of parameters by using a
Markov chain Monte Carlo (MCMC) method. As a result, the
marginal distribution P(D) plays no role since the MCMC
method is only sensitive to the ratio of probabilities. The
posterior distribution of parameters may then be written as

P(M|D) ∝ L(M, D)P(M). (21)

Given our knowledge of the prior distributions P(M) for
both FSUGold2 and FSUGarnet, all that remains is to specify
the structure of the likelihood function. To do so, we introduce
an objective function χ2 that is defined in terms of the sum of
the squared residuals between the experimental observables
and the associated theoretical predictions. That is, the likeli-
hood function is defined as follows:

L(θ, D) = e− 1
2 χ2(θ,D)

, (22a)

χ2(θ, D) =
N∑

n=1

(
O(th)

n (θ) − O(exp)
n

)2

�O2
n

. (22b)

Incorporating into the χ2 function the tidal deformability of a
1.4M� neutron star quoted in Eq. (19c) as well as the χEFT
predictions for the EOS of pure neutron matter is straightfor-
ward. However, including mass and radius information from
both NICER sources is slightly more complicated given that
both observables are quoted with their own uncertainties. For
these cases, the likelihood function involves a generalized
two-dimensional χ2 function given by a line integral over
the predicted mass-radius curve [58–60]. That is, for a given
parameter set θ, one generates a parametric curve of masses
M(θ, s) and associated radii R(θ, s) parametrized in terms of a
generic parameter s, for example, the central pressure. Assum-
ing no correlation between the mass and radius measurements,
the likelihood function for an observed neutron star with mass
M (exp), radius R(exp), and associated errors σM and σR is given
by a line integral of the following form:

L(θ, M (exp), R(exp))

∝
∫

�

exp

[
−1

2

(
M(θ, s) − M (exp)

σM

)2
]

× exp

[
−1

2

(
R(θ, s) − R(exp)

σR

)2
]

ds, (23)

where ds represents the line element along the parametric
mass-radius curve �. Note that if the stellar mass is known
with arbitrary precision, i.e., σM → 0, then the associated
exponential becomes a Dirac delta function and the like-
lihood reduces to a standard univariate distribution in the
stellar radius. Moreover, the likelihood function accounts
for those cases in which the EOS associated with a certain
set of parameters θ may not be sufficiently stiff to sup-
port very heavy neutron stars, such as PSR J0740+6620.
In such cases, the parameter set θ is rejected with a prob-
ability proportional to Eq. (23) rather than being flatly
rejected. Finally, the likelihood function used in this paper

becomes a product of individual likelihood functions for the
tidal deformability �1.4, for masses and radii of the two
NICER sources PSR J0740+6620 and PSR J0030+0451,
and for the EOS of pure neutron matter as predicted by
χEFT. Such a likelihood function L(M, D) when combined
with the prior distribution of parameters P(M) defines the
posterior distribution P(M|D) of Eq. (21). The posterior
distribution will be sampled using a MCMC method im-
plemented via a traditional Metropolis-Hastings algorithm.
Once such posterior distribution of parameters is generated,
one can readily obtain averages, standard deviations, and
correlations for all observables of interest. For example, the
predicted radius of a neutron star with a measured mass
M and associated error σM is computed by averaging over
the N samples of the posterior distribution of parameters.
That is,

〈R(M )〉 ∝
N∑

n=1

∫ Mmax

Mmin

Rn exp

[
−1

2

(
Mn − M

σM

)2
]

dMn, (24)

where the integral varies over the [Mmin, Mmax] interval and
the masses Mn in such interval are generated from the nth
sample of the posterior distribution. Here Mmin is a suitable
lower limit for the integral and Mmax is the maximum mass
generated by the nth parameter set. Finally, Rn = R(Mn) is the
predicted radius for a neutron star of mass Mn.

III. RESULTS

The main goal of this paper is to assess the impact that
recent observational and theoretical information have on im-
proving our knowledge of the equation of state. As mentioned
earlier, for the Bayesian refinement we adopt as prior distri-
bution of parameters the covariance matrices obtained from
the calibration of two EDFs: FSUGold2 [31] and FSUGarnet
[32]. The adoption of these priors guarantees that ground state
properties of spherical nuclei, such as binding energies and
charge radii, are accurately reproduced. However, the lack
of information on the properties of very neutron rich nuclei
leaves the isovector sector poorly determined. To assess the
impact of the new information on the isovector sector, we
implement the Bayesian refinement in two stages. In the first
stage we exclude χEFT predictions from the likelihood func-
tion, thereby relying exclusively on astrophysical information.
In the second stage we add χEFT constraints to the astrophys-
ical data.

A. Refining EDFs with astrophysical data

In this section we use the recent astrophysical information
from both LIGO-Virgo and NICER collected in Eqs. (19) to
refine FSUGold2 and FSUGarnet. The impact of such a refine-
ment is depicted in Fig. 1, with the predictions obtained before
the Bayesian refinement displayed by the solid lines and those
after the refinement displayed with dashed lines; FSUGold2
results are displayed in gold whereas those from FSUGarnet
are displayed in garnet. Also shown with the solid red line
are the Gaussian probability distributions for the three astro-
physical observables quoted in Eq. (19). As expected, there
is practically no change postrefinement on the bulk properties
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FIG. 1. Un-normalized probability densities obtained by sampling the posterior distribution of parameters using only astrophysical data.
The two covariant EDFs, FSUGold2 and FSUGarnet, are displayed with their respective colors. The solid red line depicts the probability
distribution for the three astrophysical observables quoted in Eq. (19). The binding energy per nucleon B/A, the incompressibility coefficient
K , the symmetry energy J , and the slope of the symmetry energy L—all evaluated at saturation density—are given in MeV. The Fermi
momentum at saturation kF is given in units of fm−1, stellar radii are reported in km, while the effective mass at saturation M∗/M, ζ , and the
tidal deformability �1.4 are all dimensionless quantities.

of symmetric nuclear matter at saturation density, namely, on
B/A, kF , M�, and K . This follows because both FSUGold2
and FSUGarnet were calibrated with nuclear observables that
are sensitive to the EOS of symmetric nuclear matter around
saturation density. Moreover, we see hardly any changes on
the predictions from FSUGarnet. Recall that FSUGarnet was
calibrated assuming a soft symmetry energy, characterized by
a slope of L = 50.96 MeV, which seems to be favored by the
astrophysical data.

In contrast, the Bayesian refinement has a visible impact
on various isovector quantities predicted by FSUGold2, such
as J , L, R1.44, and �1.4. As opposed to FSUGarnet, FSUGold2
favors a fairly stiff symmetry energy. The astrophysical data
seem to disfavor such a stiff symmetry energy and induce a
mild softening. Such a softening of the symmetry energy must
be compensated in order to be able to account for the existence
of two-solar-mass neutron stars. Hence, the softening of the
symmetry energy must be accompanied by a reduction of
the coupling constant ζ that stiffens the EOS of symmetric
nuclear matter in the high density region; see Fig. 1. Although
some changes are clearly evident in Fig. 1—especially in the
case of FSUGold2—we conclude that for this particular set
of covariant EDFs, astrophysical observations alone do not
generate dramatic changes to the EOS, even after adopting
the fairly optimistic errors in the neutron star radii quoted in
Ref. [19].

B. Adding χEFT information

Whereas astrophysical data inform the EOS in the vicinity
of two times saturation density, χEFT provides important
constraints at and below saturation density. For a model that

predicts a fairly soft EOS such as FSUGarnet, we expect a
modest impact from χEFT. In contrast, we anticipate that the
much stiffer FSUGold2 functional will be strongly affected by
this new information.

We display in Fig. 2 corner plots for both FSUGold2
and FSUGarnet obtained after implementing the Metropolis-
Hastings algorithm. Unlike Fig. 1, the posterior distribution of
bulk parameters is informed by a likelihood function that now
contains both astrophysical and χEFT constraints. The covari-
ance ellipses displayed in the figure represent 68 and 95%
confidence intervals. The first thing to notice is that χEFT
shifts slightly the saturation point, an effect that is absent
from Fig. 1 when only astrophysical information was used.
Given that χEFT predicts a saturation point that is in conflict
with the predictions from DFT, such a shift may have been
expected. Relative to DFT predictions—which incorporate
nuclear information into the calibration of the functional—
χEFT tends to either saturate at higher density or to underbind
the system [7]. However, as anticipated, the most dramatic
changes involve the two symmetry energy parameters J and L,
especially for FSUGold2. Interestingly, in the case of FSUG-
arnet, χEFT actually favors a slight stiffening of the symmetry
energy. Also noticeable is the significant reduction in the
theoretical uncertainty in both J and L, suggesting that the
symmetry energy is much better constrained in χEFT than
in DFT, where the calibration of the EDFs is hindered by
the lack of isovector observables. This fact underscores the
important role that high-order χEFT calculations play in the
calibration of energy density functionals. We note that beyond
the dramatic softening of the symmetry energy experienced
by FSUGold2, a strong correlation also develops between
L and the isoscalar parameter ζ . As already indicated, the
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FIG. 2. Corner plot for both the prior and posterior distribution of bulk matter properties obtained after implementing the Metropolis-
Hastings algorithm. The posterior distributions (dashed lines) incorporate both astrophysical and χEFT constraints into the likelihood function.
A total of 10 000 MCMC steps were used to sample the posterior distribution and 50 000 for the prior distribution. The ellipses represent 68
and 95% confidence intervals and we have adopted the same units and color convention as in Fig. 1.

quartic coupling ζ controls the high density component of the
EOS, so if L goes down, then ζ must compensate for such
a change in order to be able to support 2M� neutron stars
against gravitational collapse.

Having examined the statistical correlations between the
various bulk parameters in Fig. 2, we now proceed to assess
in Fig. 3 the impact of the Bayesian refinement on the astro-
physical observables that were used to inform the likelihood
function. As before, the impact of the refinement on FSUG-
arnet is a modest stiffening driven by χEFT that results in a
slight increase to both the radius and tidal deformability of a
1.4M� neutron star. In the case of FSUGold2, it is interesting
to note that the softening generated by χEFT reduces signif-
icantly the radius and tidal deformability of a 1.4M� neutron
star, but increases the maximum stellar mass and the radius of
a 2M� neutron star. Again, this behavior is associated with the
stiffening of the EOS at high densities required to compensate
for the softening of the symmetry energy. Moreover, it also
indicates—as expected—that the behavior of the symmetry
energy at saturation density correlates poorly with the behav-
ior of massive stars that is dominated by the EOS at densities
that cannot be probed in terrestrial laboratories.

The impact of the refinement on the two covariant EDFs
used in this paper is summarized in Fig. 4. Shown in the
left-hand panel using the same color convention as in Fig. 1
are FSUGold2 and FSUGarnet predictions for the equation of
state of pure neutron matter; for ease of viewing, only cen-
tral values are shown. In turn, the blue bands display χEFT
predictions correct up to next-to-next-to-next-leading order

[7]. As inferred from our previous discussion, the impact on
FSUGarnet is modest, except at the lowest densities. The situ-
ation, however, is radically different in the case of FSUGold2.
As we show below in Sec. III D, the dramatic softening of the
EOS will have important consequences on the prediction of
the neutron skin thickness of 208Pb. Interestingly, as shown
in the right-hand panel in Fig. 4, the softening induced at in-
termediate densities also generates a stiffening of FSUGold2
at the highest densities, resulting in a maximum neutron star
mass of about 2.3M�. Lastly, the covariance ellipses displayed
in the figure represent the 68 and 95% confidence intervals for
the two NICER measurements [19]. After refinement, the pre-
dictions of both FSUGold2 and FSUGarnet fall comfortably
within the 68% confidence ellipses.

The observation of neutron stars with masses in the vicinity
of two solar masses requires a stiff EOS in order to support
them against gravitational collapse [21–24]. Having incorpo-
rated both theoretical and observational information into the
model refinement, we now assess its impact on the EOS of
neutron star matter P = P(ε)—and on the associated speed of
sound defined as the derivative of the pressure with respect to
the energy density:

c2
s

c2
= dP(ε)

dε
. (25)

Interest in the speed of sound in neutron stars was inspired
by a conjecture grounded in holography that suggests that the
conformal limit of c2

s /c2 = 1/3 represents an upper bound
for a broad class of four-dimensional theories [61]. In the
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FIG. 3. Correlations between astrophysical observables and bulk properties after implementing the Metropolis-Hastings algorithm. The
posterior distributions (dashed lines) incorporate both astrophysical and χEFT constraints into the likelihood function. A total of 10 000
MCMC steps were used to sample the posterior distribution and 50 000 for the prior distribution. The ellipses represent 68 and 95% confidence
intervals and we have adopted the same units and color convention as in Fig. 1.

context of neutron stars, Bedaque and Steiner suggested that
the existence of heavy neutron stars is in strong tension with
the conformal limit [62]. Later on, studies that incorporated
the tidal polarizability as an additional constraint on the
EOS—both before [63] and after [64] GW170817 [15]—also
seem to suggest that the existence of heavy neutron stars is
likely responsible for violating the conformal limit. Further,
within the χEFT framework, it was found that the conformal
limit is in tension with current nuclear physics constraints
and observations of two-solar-mass neutron stars [65]. The
paper concludes with the fairly provocative statement that if
the conformal limit holds at all densities, then nuclear physics
models break down below twice saturation density.

To confront these assertions, we display in Fig. 5 pre-
dictions from both FSUGold2 and FSUGarnet before and
after refinement. The EOS displays the various regions of
the neutron star, particularly the outer crust, the inner crust,
and the uniform liquid core. Concerning the speed of sound
displayed in the inset in the figure, the conformal limit is
already violated around 2.5 times nuclear saturation density.
Also shown in the inset is the maximum density reached at
the center of the maximum mass configuration, a density that

is significantly smaller than ρpQCD ≈ 40ρ0, namely, the den-
sity at which QCD becomes perturbative and the conformal
limit may be recovered. For a recent discussion on the role
that perturbative QCD may play in constraining the EOS at
neutron star densities see Ref. [66] and references contained
therein.

We also observe in the inset of Fig. 5 that the the predic-
tions of FSUGold2 after refinement suggest that the conformal
limit is violated even earlier, at about twice ρ0. This region
of density is particularly interesting as it may be studied
in the laboratory using energetic nuclear reactions that may
compress and probe nuclear matter in the vicinity of twice
nuclear saturation density. Indeed, this is one of the main
science drivers behind the proposed FRIB-400 upgrade of the
Facility for Rare Isotope Beams (FRIB). Such a rapid increase
in the speed of sound displayed by the posterior distribution of
FSUGold2 is driven by its prediction of a maximum neutron
star mass of 2.3M�; see Fig. 4. Particularly relevant to this fact
is the recent report of the “black-widow” system PSR J0952-
0607 with an extremely large pulsar mass of (2.35 ± 0.17)M�
[67]. If the existence of such massive neutron stars can be
confirmed with better statistics, then—and not withstanding
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FIG. 4. (a) Equation of state for pure neutron matter as predicted by FSUGold2 [31], FSUGarnet [32], and a χEFT calculation correct up
to next-to-next-to-next-leading order (N 3LO) in the chiral expansion [7]. Predictions from FSUGold2 and FSUGarnet are displayed with their
respective colors, with the solid and dashed lines representing results before and after the Bayesian refinement, respectively. (b) Mass-radius
relationship as predicted by FSUGold2 and FSUGarnet, both pre- and postrefinement. Theoretical error bands for FSUGold2 and FSUGarnet
were computed at the 95% level and the observational covariance ellipses represent the 68 and 95% confidence intervals; see Eq. (19).

FIG. 5. Equation of state of neutron star matter and the associ-
ated speed of sound as predicted by FSUGold2 and FSUGarnet, with
the solid and dashed lines representing results before and after the
Bayesian refinement, respectively. The red dot-dashed lines in the
inset indicate the conformal limit and the maximum density reached
at the core at the maximum mass configuration.

the small tidal deformability reported by the LIGO-Virgo
collaboration [16]—the violation of the conformal limit in
neutron star interiors seems unavoidable.

Before leaving this section we list in Table II the opti-
mal parameter set for both FSUGold2 and FSUGarnet after
refinement. We underscore, however, that these are optimal
(or central) values, as the EDFs after refinement are properly
described by a statistical distribution of model parameters. Us-
ing this optimal set of parameters, we list in Table III central
values for the resulting bulk parameters after the Bayesian
refinement. Most notably is the softening of the symmetry
energy of FSUGold2, largely induced by the inclusion of
χEFT information; see Table I for comparison. We note that in
refining both EDFs, we have adopted the historical choice of
keeping both vector meson masses fixed at their experimental
values. Treating the functional as an effective model, such a
choice is no longer required, so we anticipate that in a future
calibration both mv and mρ will be treated—just as ms—as
adjustable model parameters.

C. Heaven and Earth

One of the most captivating features of neutron stars is
the powerful connection between laboratory experiments and
astronomical observations. For example, it is well known that
the slope of the symmetry energy L, which can be determined
by measuring the neutron skin thickness of heavy nuclei, con-
trols the radius of low-mass neutron stars [38,51,68,69]. One
expects, however, that the correlation between the thickness
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TABLE II. Central values for the model parameters FSUGold2 and FSUGarnet after Bayesian refinement. The parameter κ and the meson
masses ms, mv , and mρ are all given in MeV, and the nucleon mass has been fixed at M = 939 MeV.

Model ms mv mρ g2
s g2

v g2
ρ κ λ ζ �v

FSUGold2+R 501.611 782.500 763.000 103.760 169.410 128.301 3.79239 −0.010635 0.011660 0.0316212
FSUGarnet+R 495.633 782.500 763.000 109.130 186.481 142.966 3.25933 −0.003285 0.023812 0.038274

of the neutron skin and the neutron star radius will weaken
as the stellar mass increases. It is the aim of this section to
identify the density region that has the strongest impact on the
development of the stellar radius.

To do so we implement the following procedure. First, as
part of the Bayesian refinement, we generate multiple samples
of various observables distributed according to the posterior
distribution. Second, for each of the samples, we isolate the
entire mass-radius relationship and the associated equation of
state. We then proceed to store the pressure Pρ at various
values of the baryon density ρ as well as the predicted stellar
radii RM over a given mass (M) range. Finally, once all Monte
Carlo samples have been generated, we compute the Pearson
correlation coefficient between RM and Pρ .

Shown in the top panel of Fig. 6 is a heat map that dis-
plays the RM-Pρ correlation predicted from the FSUGold2 and
FSUGarnet posterior distribution, with the various contour
lines labeled according to the value of the correlation coef-
ficient. For example, in the case of FSUGold2, the pressure in
the narrow 1.2–1.5ρ0 density region correlates with the radius
of a 1M� neutron star to better than 90%. This behavior is
better appreciated in the lower panel of Fig. 6, which clearly
indicates that the radius of a 1M� neutron star is dominated
by the pressure over a very narrow range of densities. This
validates the claim that laboratory experiments that determine
the neutron skin thickness of heavy nuclei place stringent
constraints on the radius of low-mass neutron stars [51]. For
a “canonical” 1.4M� neutron star, the strongest correlation
develops at 1.7ρ0, yet larger values of the density that are
no longer accessible in the laboratory continue to make an
important contribution. Finally, for a 1.8M� neutron star, the
relevant region of densities is too high and wide for laboratory
experiments to play a pivotal role in the determination of the
stellar radius.

D. Neutron skins

In the previous sections we have demonstrated how the
Bayesian refinement of two previously calibrated covariant
EDFs provides updated predictions that are in agreement with
a large set of observables ranging from the properties of fi-
nite nuclei to the structure of neutron stars. Perhaps the only
exception noticed so far is the tidal deformability of a 1.4M�

neutron star predicted by FSUGold2. Even after the significant
softening of the symmetry energy, FSUGold2 still predicts a
tidal deformability of �1.4 ≈ 740 ± 40 that lies significantly
outside the 90% confidence interval of �1.4 = 190+390

−120 quoted
by the LIGO-Virgo collaboration [16]. We note, however,
that such a small tidal deformability is not without question.
Indeed, a recent analysis that excluded waveform information
beyond a certain frequency suggests significant larger values
for the tidal deformability; see in particular Fig. 8 of Ref. [26].
Under such a scenario, the refined FSUGold2 prediction for
�1.4 is no longer excluded.

There is, however, a laboratory observable that seems to
disfavor the softening induced on FSUGold2: the neutron skin
thickness of 208Pb. Given the strong correlation between L
and the neutron skin thickness of 208Pb [70–73], we expect
that the significant lower value of L obtained after refinement
will be in conflict with the PREX measurement [12], which
instead favors a fairly stiff symmetry energy [13]. Indeed, an
interesting tension has emerged when confronting the PREX
[12] and CREX [25] measurements. Whereas the extracted
neutron skin in 208Pb is thick, CREX reported a very thin
neutron skin in 48Ca; see Table IV. This presents a problem
for the class of covariant EDFs used in this paper, because the
correlation between the neutron skins of 208Pb and 48Ca is
predicted to be strong [74,75].

Besides the neutron skin thickness of 208Pb and 48Ca, we
list in Table IV results for the charge and weak-charge radii,
where the contribution from the finite nucleon size has been
included [76]. If the elastic form factor has been measured
over a very wide range of momentum transfers, then the exper-
imental radius may be extracted directly from the slope at the
origin. This is the case for the charge radius of both 48Ca and
208Pb [77]. Instead, given that PREX and CREX measured
the weak form factor at only one momentum transfer, the
extraction of the two weak-charge radii acquires a mild model
dependence.

We observe in Table IV that the agreement between the
FSUGold2 predictions and the PREX results are in excellent
agreement, suggesting that the symmetry energy is indeed
stiff [13]. However, once the Bayesian refinement is im-
plemented (FSUGold2+R) the excellent agreement is lost:
the neutron skin thickness of 208Pb goes down from the

TABLE III. Central values for various bulk properties of infinite nuclear matter as predicted by FSUGold2 and FSUGarnet after the
Bayesian refinement; compare to Table I.

Model ρ0 (fm−3) ε0 (MeV) M�/M K (MeV) J (MeV) L (MeV) ζ

FSUGold2+R 0.1522 −16.22 0.594 241.22 32.03 57.20 0.0117
FSUGarnet+R 0.1527 −16.18 0.582 228.77 30.89 55.79 0.0238
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FIG. 6. Pearson correlation coefficients inferred from the posterior distribution of FSUGold2 and FSUGarnet. The top panel displays
contour plots labeled by the correlation coefficient between the stellar radius of a given mass configuration RM and the associated pressure
support as a function of density Pρ . The bottom panel displays the RM − Pρ correlation coefficient for three neutron stars with individual masses
of 1.0, 1.4, and 1.8M�.

experimentally consistent value of R208
skin = 0.285 fm all the

way down to R208
skin = 0.203 fm. In the case of 48Ca, the

softening of the symmetry energy postrefinement moves the
theoretical prediction in the direction of the experiment, but
not nearly as much as it is required. That is, the neutron
skin thickness of 48Ca goes down from R48

skin = 0.231 to
0.197 fm, which remains far from the quoted CREX value of
R48

skin = 0.121(35) fm [25]. It is important to note that after

refinement the theoretical uncertainty in both R208
skin and R48

skin is
significantly reduced.

To further appreciate the present predicament, we dis-
play in Fig. 7—alongside FSUGold2 and FSUGold2+R—
predictions for the neutron skin thickness of 48Ca and 208Pb
using the same set of covariant EDFs employed in Ref. [13]
to analyze the PREX results. This set includes the original
(before refinement) FSUGarnet predictions. Also shown are

TABLE IV. Predictions for FSUGold2 before and after refinement (+R) for the charge radius, weak radius, weak
skin, and neutron skin (all in fm) of 208Pb and 48Ca, as compared with the experimental values extracted from PREX
[12] and CREX [25].

Model ( 208Pb) Rch Rwk Rwk − Rch Rn − Rp

FSUGold2 5.491(6) 5.801(19) 0.310(16) 0.285(15)
FSUGold2+R 5.517(4) 5.743(05) 0.226(03) 0.203(03)
Experiment 5.501(1) 5.800(75) 0.299(75) 0.283(71)

Model ( 48Ca) Rch Rwk Rwk − Rch Rn − Rp

FSUGold2 3.426(3) 3.707(07) 0.281(08) 0.231(08)
FSUGold2+R 3.477(8) 3.722(09) 0.245(02) 0.197(02)
Experiment 3.477(2) 3.636(35) 0.159(35) 0.121(35)
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FIG. 7. Predictions for the neutron skin thickness of 208Pb and
48Ca from the same set of covariant EDFs used in Ref. [13], in-
cluding the original FSUGarnet model. Also shown are predictions
before and after refinement from FSUGold2 and FSUGold2+R, re-
spectively. Central values and 1σ errors together with 67 and 90%
confidence ellipses are obtained from Ref. [25].

the 67 and 90% confidence ellipses together with the central
values and 1σ errors quoted by the PREX/CREX collabora-
tion [25]. The nearly perfect linear correlation between R208

skin
and R48

skin is evident in the figure, yet none of the predictions
reside inside the 90% confidence ellipse. As indicated earlier,
the original FSUGold2 prediction reproduces the PREX re-
sult, but grossly overestimates the CREX value. The Bayesian
refinement does not improve the situation, as the new predic-
tion simply slides along the regression line.

Perhaps the obvious deficiency displayed in Fig. 7 may
be an indication that the physics encoded in the Lagrangian
density given in Eq. (1) is incomplete. After all, with only
two isovector parameters (gρ and �v) it may be difficult to
break the strong correlation between the neutron skins of
48Ca and 208Pb. We are currently working on extending the
isovector sector of the covariant EDFs. Although models with
a stronger theoretical underpinning may be able to reconcile
both measurements at some level [78], it is increasingly appar-
ent that the skin-skin correlation cannot be entirely broken. As
such, one must conclude that—at present—no single theoret-
ical framework can reproduce simultaneously the PREX and
CREX results [79–83].

Another possible resolution of the present dilemma is to
appeal to the rather large experimental error bars. In this con-
text, the only option is a more precise determination of R208

skin
at the future MESA [84]. Although a factor-of-2 improvement
in R208

skin is realistic, the reality is that such an experiment is
unlikely to be commissioned before the end of this decade.
Regardless, we advocate for a more interesting resolution to
the dilemma, namely, that the answer is not hiding behind
the experimental error bars but rather may require us to un-
cover some missing physics absent from existing theoretical
descriptions.

IV. CONCLUSIONS

Progress in our understanding of the equation of state of
neutron star matter has grown significantly during the last
few years. The aim of this paper was to incorporate the latest
information on neutron star properties to improve existing co-
variant energy density functionals that were largely calibrated
by the properties of finite nuclei. Among the new properties
informing the refinement of the functionals are maximum stel-
lar masses reported from pulsar timing measurements [23,24],
the simultaneous extraction of stellar radii and masses of two
sources by the NICER mission [17–20], tidal information
from the LIGO-Virgo collaboration [15,16], and predictions
for the EOS of pure neutron matter from chiral effective field
theory [7]. This new information was incorporated in a like-
lihood function which, through Bayesian inference, was used
to refine two existing density functionals whose covariance
matrices served as prior distributions of model parameters.

The two existing covariant EDFs, FSUGold2 [31] and
FSUGarnet [32], followed a very similar fitting protocol to
calibrate the model parameters. Given that the spherical nuclei
used in the calibration are either stable or long lived, both
models predict similar isoscalar observables, such as the bulk
properties of symmetric nuclear matter listed in Table I. In
contrast, at the time of the calibration, the database of strong
isovector observables was very sparse, leading to a poorly
constrained density dependence of the symmetry energy.
Hence, the two EDFs adopted in this paper were calibrated by
selecting symmetry energies with a density dependence at the
opposite ends of the spectrum, with FSUGold2 being stiff and
FSUGarnet being soft. Motivated by the recent proliferation
of strong isovector indicators, we implemented a Bayesian
refinement of the model parameters by sampling posterior
distributions via a Metropolis-Hastings algorithm.

The refinement was implemented in two stages. We started
by assessing solely the impact of astrophysical observables
and later added χEFT predictions. When only astrophysi-
cal information was included, changes to the predictions of
both models were modest, especially in the case FSUGarnet.
For FSUGold2, the refinement slightly softens the symme-
try energy resulting in mild reductions in both the slope of
the symmetry energy L and the radius of a 1.44M� neutron
star. However, the situation changed dramatically once χ -
EFT predictions were incorporated. This we attribute to the
sharp χEFT predictions relative to the fairly large astrophys-
ical uncertainties. Although χEFT predicts a rather soft EOS
for pure neutron matter, χEFT information stiffens the even
softer symmetry energy predicted by FSUGarnet. However,
the impact on FSUGold2 is dramatic: the symmetry energy at
saturation density J , its slope L, and the nonlinear coupling ζ

were all greatly sharpened and reduced; see Fig. 2. Note that
the reduction in the value of the nonlinear coupling ζ , which
implies a stiffening of the EOS of symmetric nuclear matter,
is required to compensate for the softening of the symmetry
energy. Without such a stiffening, the resulting EOS would
not be able to support massive neutron stars. Indeed, after
refinement, FSUGold2 predicts a maximum neutron star mass
of about 2.3M�, consistent with the black-widow pulsar with
a mass of (2.35 ± 0.17)M� [67]. As expected, the induced
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softening of the symmetry energy reduces the stellar radius
and tidal deformability of a 1.4M� neutron star. However, the
reduction in �1.4 is not sufficient to reproduce the fairly small
value quoted by the LIGO-Virgo collaboration [16], although
larger values do not seem to be completely ruled out [26].

Once both models were refined, we reported predictions
for the mass-radius relation, the underlying EOS, and the
associated speed of sound. Both of the predicted mass-radius
relations are fully consistent with the reported NICER values
for both PSR J0740+6620 and PSR J0030+0451. In partic-
ular, the existence of two-solar-mass neutron stars demands
that the EOS be stiff at the highest densities encountered in the
stellar core, which for the models under consideration reaches
a value in the vicinity of 6ρ0. Notably, demands for a stiff
EOS resulted in a violation of the conformal limit on the speed
of sound at the relatively low densities of about (2–2.5)ρ0, a
range of densities that could be probed in the laboratory if the
proposed FRIB-400 upgrade becomes a reality.

Whereas the Bayesian refinement of existing EDFs repro-
duces a large body of experimental and observational data
over a broad range of densities, the induced softening of
the symmetry energy is in conflict with recent results by the

PREX and CREX collaborations on the neutron skin thickness
of 208Pb [12] and 48Ca [25], respectively. Although the exper-
imental error bars are large, none of our models are able to
reconcile the very thick neutron skin in 208Pb with the very
thin neutron skin in 48Ca. From the perspective of covari-
ant EDFs, the problem is especially challenging given that
the neutron skin thicknesses of 208Pb and 48Ca are strongly
correlated [74]. Plans are currently under way to enlarge the
isovector sector of the covariant EDFs in the hope of breaking
such a correlation. However, the challenge to reconcile both
measurements appears to go beyond the class of covariant
EDFs considered in this paper [79–83]. Only time will tell
whether the resolution of this puzzle is hiding behind the
large experimental error bars or whether it demands a more
ingenious solution.
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