
PHYSICAL REVIEW C 107, 045501 (2023)

Predicting the neutrinoless double-β-decay matrix element of 136Xe using a statistical approach
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Calculation of the nuclear matrix elements (NMEs) for double-β decay is of paramount importance for guiding
experiments and for analyzing and interpreting the experimental data, especially for the search of the neutrinoless
double β decay mode (0νββ). However, there are currently still large differences between the NME values
calculated by different methods, hence a quantification of their uncertainties is very much required. In this paper
we propose a statistical analysis of 0νββ NME for the 136Xe isotope, based on the interacting shell model,
but using three independent effective Hamiltonians, emphasizing the range of the NMEs’ most probable values
and its correlations with observables that can be obtained from the existing nuclear data. Consequently, we
propose a common probability distribution function for the 0νββ NME, which has a range of (1.55–2.65) at
90% confidence level, with a mean value of 1.99 and a standard deviation of 0.37.
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I. INTRODUCTION

Double-β decay (DBD) is an actively studied process due
to its potential to provide insights into the nuclear structure
of involved nuclei, the properties of neutrinos, and to test
models beyond the standard model (SM) [1,2]. Within the
SM, this rare nuclear decay occurs with the emission of two
electrons/positrons and two antineutrinos/neutrinos (2νββ),
preserving the lepton number. However, the possibility of the
decay occurring without the emission of neutrinos (0νββ),
resulting in lepton number violation, is a highly intrigu-
ing theoretical possibility. In the case of neutrino exchange,
this would imply that neutrinos are Majorana particles with
nonzero mass, a feature beyond the original SM framework.
While 2νββ transitions have been observed in eleven iso-
topes, no 0νββ transition has been detected yet. However,
these transitions are actively sought in DBD experiments due
to their potential to reveal phenomena beyond the SM.

The DBD half-life equations can be expressed, in a good
approximation, as a product of some factors. Thus, the 2νββ

half-life is a product of a phase space factor (PSF) describing
the kinematics of the outgoing leptons [3–8], and a nuclear
matrix element (NME) describing the nuclear effects related
to the nuclei involved in the decay. In the 0νββ half-life
expression, besides the PSF and NME factors, an additional
lepton number violation (LNV) factor appears as well, de-
scribing the particular BSM mechanism that may contribute
to this decay mode. In principle, any LNV operator introduced
in the Lagrangian can contribute, therefore the full half-life
expression should be the sum of the individual contribu-
tions of all mechanisms and their interference terms [2,4,9–
13]. In the absence of a signal indicating the 0νββ transi-
tion, the experimental lifetime limits and theoretical PSF and
NME values are used to constrain the LNV parameters and

associated BSM scenarios, typically under the assumption that
only one mechanism is contributing at a time [14]. Thus,
progress in the DBD study needs the continuous improve-
ment of the experimental set-ups and measurement techniques
corroborated with accurate, reliable calculations of the theo-
retical quantities involved. The current sensitivity of the DBD
experiments reached limits of 1026 y for the half-lives, and it
is expected that the next generation of experiments to push
these limits to 1028 y, thus covering the entire region of the
neutrino inverted mass hierarchy [15,16]. The interpretation
of these results in terms of values of the neutrino mass and
constraints of the LNV parameters depend on reliable values
of the calculated PSF and NME quantities.

The progress of the theoretical methods for relativistic
wave function computations, now provides PSF calculations
with a high degree of confidence for all the double-β decay
modes and transitions [6–8]. However, the same level of con-
fidence is not yet valid for the NME calculation, which still
remain the main source of uncertainty for the DBD lifetime.
There are several nuclear structure methods for the NME cal-
culation, the most used being: interacting shell model methods
[14,17–26], pn- quasiparticle random-phase approximation
methods [5,27–32], interacting boson approximation meth-
ods [33,34], energy density functional method [35], projected
Hartree-Fock-Bogoliubov [36], coupled-cluster (CC) method
[37], in-medium generator coordinate method (IM-GCM)
[38], and valence-space in- medium similarity renormaliza-
tion group (VS-IMSRG) method [39]. Each of these methods
have their strengths and weakness, largely discussed over time
in the literature, and the current situation is that there are
still significant differences between NME values calculated
with different methods, and sometimes, even between NME
values calculated with the same methods (see for example the
reviews [15,40,41]). For the 2νββ decay NMEs are products
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of two Gamow-Teller (GT) transition amplitudes, and most of
the nuclear methods overestimate them, in comparison with
experiment. This drawback is often treated by introducing a
quenching factor that multiplies the GT matrix element and
reduces its strength. This procedure is viewed as equivalent
to using a quenched axial vector constant, instead of its bare
value gA = 1.27. The NME calculation for 0νββ decay is
more complicated, since besides the GT transitions, other
transitions may contribute as well. Also, the NME values
calculated by different methods may differ by factors of 3–4
for most relevant isotopes, including 136Xe (see, e.g., Fig. 5
of Ref. [15], and Refs. [37,38]). The uncertainties in the
NME values are further amplified when predicting half-lives,
since they enter at the power of two in the inverse lifetime
formula. In addition, given that there is no measured lifetime
for this decay mode to compared with, these uncertainties in
the calculated NME affect the prediction and interpretation of
the existing 0νββ half-life limits and the planning of perfor-
mances for the future DBD experiments.

Among the nuclear methods for calculating NMEs, the
shell model based methods have some advantages, such as
the inclusion of all correlations between nucleons around
the Fermi surface, preserving all symmetries of the nuclear
many-body problem, and the use of nucleon-nucleon (NN)
interactions tested for other observables and for different mass
regions of nuclei. The construction and use of effective NN
Hamiltonians in accordance with the model spaces is a key
ingredient in calculations. Therefore, one question that arises
is the stability of the calculated NME values to small changes
in the parameters of effective Hamiltonians. In a previous re-
cent paper [42], we presented a statistical analysis of the NME
distribution for 48Ca to random changes of two body matrix
elements (TBME) calculated with shell model methods in a
f p model space with three different effective Hamiltonians,
namely FPD6, GXPF1A, and KB3B. Besides the stability of
NME to these changes, we also investigated the correlation
between the changes in the 0νββ NME and the changes
in other observables, such as 2νββ NME, GT strengths,
B(E2) transition probabilities, excited states energies, occu-
pation probabilities, etc. Based on this statistical analysis with
the three Hamiltonians, we proposed a common probability
distribution function for 0νββ NME which has a range of
(0.45–0.95) at 90% confidence level with a mean value of
0.68 [42]. A similar analysis for 76Ge using ab initio nuclear
methods, although with a smaller number of observables and
a much smaller statistics, was recently presented in Ref. [43].
Indeed, it is important to provide uncertainty quantification
for observables of physical processes like 0νββ NME where
experimental data for verification is limited.

In this paper we propose a similar statistical analysis
of 0νββ NME for 136Xe, which is theoretically among
the most suitable for NME calculation using a shell model
approach, and it is also among the most promising iso-
tope for experimental search of 0νββ transitions. We only
consider in this work the standard light left-handed (LH)
neutrino exchange mass mechanism, which is presently
viewed as the most likely to contribute to the 0νββ decay
process. The calculations are performed using three inde-
pendent effective Hamiltonians, singular value decomposition

(SVD) [44], jj55t [23], and GCN5082 [45], for the jj55
model space that is appropriate for 136Xe. These effective
Hamiltonians are obtained starting with a theoretical Brueck-
ner G-matrix effective Hamiltonians that are further fine-tuned
to describe the experimental energy levels for a reason-
ably large number of nuclei that can be investigated in
the corresponding model spaces. These effective Hamilto-
nians are described by a small number of single particle
energies and a finite number of two-body matrix elements.
As a byproduct, the wave functions produced by these
Hamiltonians can be used to describe and predict observ-
ables, such as the electromagnetic transition probabilities,
Gamow-Teller transitions probabilities, nucleon occupation
probabilities, spectroscopic factors, etc., using relatively sim-
ple changes of the transition operators in terms of effective
charges and quenching factors. These quantities are cali-
brated to the existing data. For 0νββ NMEs such calibrations
are not yet possible due to the lack of experimental data
confirming the transition. However, different existing ef-
fective Hamiltonians for nuclei involved in a given 0νββ

decay produce smaller ranges of the NME. In addition, some
recent ab initio methods, such as IM-SRG [38,39], built
on the modern advances in the shell model by providing
ab initio derived effective Hamiltonians and effective transi-
tion operators can provide some guidance for calibrating the
shell model calculations for 0νββ NMEs.

Following the analysis line from [42], we study the robust-
ness of the 136Xe 0νββ NME values to small changes of the
parameters of the above mentioned Hamiltonians, and also
examine the correlation between the changes in 0νββ NMEs
and other observables, for which the experimental data exists.
Furthermore, we investigate the range of possible 0νββ NME
values and their correlations with several observables that can
be extracted from the existing nuclear data. Finally, using a
statistical analysis based on the Bayesian averaging model
[46,47], we propose a common probability function for the
0νββ NME, a plausible range, its expectation value and its
uncertainty. The application of the Bayesian averaging model
here is novel; it was not possible in the 48Ca case due to lack
of relevant experimental data that was highly correlated with
0νββ NME.

The paper is organized as follows. In Sec. II the calculation
methods of the observables and the statistical model are pre-
sented. Then, in Sec. III we present the results and discussions
on their relevance, followed by an statistical analysis based
on the Bayesian model averaging method in Sec. IV, and in
Sec. V we end with conclusions and outlook.

II. THE MODEL

Following the analysis available in Ref. [42], we extend our
study to the 136Xe isotope that actively investigated or pro-
posed in several leading current and future DBD experiments
[48–52]. In this work we are also concerned calculating the
0νββ NME starting from three popular shell model effective
Hamiltonians alongside several observables that can be com-
pared to their experimental values.

The calculations reported here are done within the inter-
acting shell model in the j j55 model space consisting of
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the 0g7/2, 1d5/2, 1d3/2, 2s1/2, and 0h11/2 orbitals that assumes
100Sn as a core, covering the sector of the nuclear chart
between N, Z = 50 and N, Z = 82. One concern regarding
the j j55 model space is the missing Gamow-Teller strengths
when compared to the calculated Ikeda sum rule. This is
attributed to missing spin-orbit partner orbitals of 0g7/2 and
0h11/2. Calculations in j j77 model space are too complex [23]
and not presently suitable for a statistical analysis.

As starting effective Hamiltonians we use SVD [44], jj55t
[23], and GCN5082 [45]. The jj55t effective Hamiltonian
(also known as sn100t [53]) is very similar to sn100pn
[54], except with minor modifications, and was used in
Refs. [23,53] to calculate NMEs for 136Xe 0νββ decay. The
GCN5082 effective Hamiltonian is based on a renormalized
G matrix [55] obtained from the Bonn-C nucleon-nucleon
potential [56]. The final effective Hamiltonian was obtained
through a mostly monopole fit to about 300 energy levels
from approximately 90 nuclei in the region with a root mean-
square (rms) deviation of about 150 keV [45]. Similarly to
GCN5082, SVD [44] also starts with a Bonn-C potential and
is renormalized via a G-matrix method for the core polariza-
tion effects [57]. The T = 1 monopoles and the single-particle
energies where obtained by fitting to the binding energies of
157 experimentally measured [58] low-lying yrast states in
102–132Sn nuclei. These three Hamiltonians are further mod-
ified by introducing random perturbations within the range
of ±10% to their two-body matrix elements (TBME) with
the aim of getting a range to the shell model 0νββ NME
values and the correlations between the 0νββ NME and the
other observables. For the purpose of this study, we generate
1000 effective Hamiltonians via random perturbations from
each starting Hamiltonian. Just like in the case of 48Ca [42],
the single-particle energies were kept unmodified, as not to
interfere with the magicity of the 100Sn core.

The aim of this study is to explore the relationship be-
tween the 0νββ NME and other measurable observables for
each starting effective Hamiltonian. The research also aims
to establish theoretical limits for each observable, examine
the shape of different distributions for each observable and
starting Hamiltonian, use this data to determine the impact of
different starting Hamiltonians on the most favorable distri-
bution of the 0νββ NME, and ultimately identify the most
favorable value of the 0νββ NME and its estimated theoreti-
cal uncertainty.

The observables that we calculate and compare to their ex-
perimental values are: 2νββ NME, the energies of the first 2+,
4+, and 6+ states in the parent (136Xe) and daughter (136Ba)
nuclei, B(E2) ↑ transition probabilities for 136Xe and 136Ba to
the first 2+ states, the Gamow-Teller transition probability for
the transition from 136Xe and from 136Ba to the 1+ excited
state in 136Cs, and the neutron and proton occupancies for
136Xe and 136Ba above the 100Sn core in the jj55 model space
shells. The number of observables that we calculate for each
sample is 24, including the 0νββ NME.

Other observables related to double-β decay, such as one-
muon capture (OMC) rates, have also been studied in the
literature [59]. Some recent references for OMC analyses can
be found in Refs. [60] and [61]. However, the calculation of
the OMC rates is quite complex, as it depends on multiple

factors that contribute to the decay amplitude, which can lead
to uncontrollable interference effects [59]. Additionally, it is
highly sensitive to the effective Hamiltonian used [62]. Due
to this complexity, we have decided not to include the OMC
rates to our list of observables in this study.

The 0νββ NME is related to the half-life of the respective
process [21], where we only consider the contribution from
the light left-handed neutrino exchange mechanism, which
is likely to contribute to the 0νββ decay. The methodology
of calculating the 0νββ NME, M0ν , within the shell model
was extensively described elsewhere [14,21,22] and it will not
be repeated here (see also Eq. (1) of Ref. [42]). It includes
a short range correlation function that can be viewed as an
effective modification of the bare operator. In Ref. [42] we
were able to select a short-range correlation function based on
comparisons with similar calculations with ab initio effective
operators. Unfortunately, such a comparison is not possible
for 136Xe, while no such ab initio calculations are available.
Therefore, we choose a short-range correlation function based
on the widely utilized CD-Bonn parametrization (see, e.g.,
[14,25,26]). One should also add that as in Ref. [42], here we
also use the closure approximation. It is well known that the
dependence of the closure energy is very mild, and although
one can find optimal closure energies for each Hamiltonian
[24,63–65], here we use the same closure energy of 3.5 MeV
[25] in all cases.

The 2νββ NME squared is proportional to the inverse
half-life of the respective process [20] (see also Eq. (2) of
Ref. [42]). The 2νββ NME, M2ν , can be calculated with

M2ν =
∑

k

q〈0+
f | στ− | 1+

k 〉〈1+
k | στ− | 0+

i 〉q
Ek − E0

, (1)

where the summation is on the 1+
k states in 136Cs, E0 =

Qββ/2 + �M(136Sc − 136Xe), and q is the quenching factor
of the GT matrix element. Details on how the 2νββ NMEs
are calculated are given in section IV of Ref. [66].

In our analysis of the shell model for 2νββ NME values,
we maintain consistency by utilizing the same quenching fac-
tor of q = 0.70 for both the NME and GT strengths. Addition-
ally, we maintain the standard canonical values for effective
charges in our calculations of B(E2) ↑. Other observables, in-
cluding excited state energies, GT strengths to the first 1+ state
of 136Cs, B(E2) ↑ to the first 2+ state in the parent and daugh-
ter nuclei, and single particle (s.p.) occupation probabilities,
are calculated using the established shell model methodology.
Here we use in all cases the same effective charges [ep = 1.5
and en = 0.5)] for the B(E2) ↑, and the same quenching fac-
tor (q = 0.70) for the the GT strengths and M2ν .

III. RESULTS OF THE STATISTICAL ANALYSIS

The experimental data used in this study are listed in Ta-
ble I. The excitation energies of the 2+, 4+, and 6+ states
of 136Xe and 136Ba in MeV are taken from Ref. [67]. The
2νββ NME (in MeV−1) is from Ref. [68]. B(E2) ↑ elec-
tric quadrupole transition probabilities (in e2b2) come from
Ref. [69]. The Gamow-Teller transition probabilities to the
first excited 1+ state in 136Cs are from Ref. [70]. 136Ba neutron
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TABLE I. All relevant data and statistics for all selected observables. See Sec. III for notations and details.

Observable Data Error svds gcns j5ts μsvd σsvd μgcn σgcn μ j5t σ j5t

M0ν N/A N/A 1.763 2.645 2.314 1.749 0.111 2.632 0.135 2.306 0.156
M2ν 0.018 0.001 0.025 0.069 0.060 0.022 0.003 0.061 0.007 0.052 0.007
PGT 0.150 0.021 0.163 0.545 0.512 0.141 0.059 0.457 0.105 0.333 0.220
PBE2 0.286 0.081 0.154 0.121 0.096 0.153 0.009 0.122 0.013 0.099 0.012
PE2+ 1.313 0.150 1.498 1.363 1.513 1.494 0.089 1.352 0.089 1.507 0.098
PE4+ 1.694 0.150 2.073 1.747 2.012 2.070 0.089 1.740 0.107 2.011 0.107
PE6+ 1.892 0.150 2.178 1.892 2.254 2.192 0.088 1.884 0.125 2.212 0.096
POPg7 2.930 0.100 2.705 2.716 3.143 2.702 0.187 2.705 0.209 3.082 0.267
POPs1 0.057 0.006 0.089 0.025 0.020 0.090 0.018 0.025 0.006 0.021 0.006
POPh11 0.400 0.040 0.190 0.375 0.265 0.189 0.020 0.373 0.050 0.265 0.045
POPd 0.520 0.030 1.016 0.884 0.572 1.019 0.180 0.896 0.197 0.632 0.250
DGT 0.012 0.005 0.001 0.009 0.004 0.001 0.000 0.008 0.003 0.003 0.003
DBE2 0.413 0.011 0.342 0.194 0.158 0.337 0.023 0.195 0.026 0.163 0.028
DE2+ 0.819 0.150 0.662 0.842 0.917 0.660 0.067 0.836 0.056 0.919 0.049
DE4+ 1.867 0.150 1.389 1.873 2.113 1.403 0.131 1.861 0.116 2.087 0.082
DE6+ 2.207 0.150 2.157 2.196 2.502 2.171 0.151 2.197 0.090 2.507 0.117
DVNg7 0.000 0.150 0.102 0.174 0.130 0.100 0.010 0.172 0.014 0.132 0.023
DVNs1 0.080 0.020 0.271 0.251 0.415 0.286 0.117 0.255 0.058 0.407 0.110
DVNh11 1.680 0.130 1.205 0.726 0.347 1.177 0.237 0.724 0.132 0.385 0.162
DVNd 0.240 0.050 0.423 0.850 1.108 0.437 0.132 0.850 0.118 1.076 0.158
DOPg7 3.860 0.100 3.189 3.475 4.145 3.187 0.209 3.477 0.249 4.078 0.436
DOPs1 0.200 0.020 0.263 0.083 0.049 0.264 0.047 0.084 0.020 0.052 0.017
DOPh11 0.620 0.060 0.264 0.658 0.625 0.269 0.049 0.658 0.093 0.613 0.121
DOPd 1.290 0.080 2.285 1.785 1.181 2.280 0.227 1.781 0.265 1.258 0.447

vacancies are taken from Ref. [71], while 136Xe and 136Ba
proton occupancies are from Ref. [72]. The experimental
errors for the excitation energies are very small, and for the
calculations we use the typical theoretical rms value of 150
keV [73]. All observables have experimental data available,
except for the 0νββ NME. Therefore, a statistical analysis of
the 0νββ NME is performed using the Bayesian averaging
model (see Sec. IV).

The primary outcomes of this study are presented in Table I
and Figs. 1–3. Here, the “parent nucleus” stands for 136Xe,
“daughter nucleus” stands for 136Ba, and “intermediary nu-
cleus” stands for 136Cs from the perspective of ββ transitions.
When presenting the results referring to one single nucleus,
we use the the letter “P” at the beginning of a label for an
observable indicates that it is related to the parent nucleus,
while the letter “D” denotes observables for the daughter
nucleus. In the table and figures M0ν are the 0νββ NMEs,
and M2ν denote the 2νββ NMEs. With PGT and DGT we
present the Gamow-Teller strengths to the first excited 1+
state in the 136Cs intermediate nucleus from 136Xe and from
136Ba, respectively. PB(E2) ↑ and DB(E2) ↑ are the electric
quadrupole transition probabilities (0+ → 2+) for 136Xe and
136Ba, respectively. PE2+ , PE4+ , PE6+ , and DE2+ , DE4+ , and
DE6+ denote the energy of the first 2+, 4+, and 6+ excited
states, for 136Xe and 136Ba and, respectively. POPg7, POPs1,
POPh1, and POPd stand for the proton occupation probabili-
ties of the 0g7/2, 2s1/2, 0h11/2, and d orbitals in 136Xe, while
DOPg7, DOPs1, DOPh1, and DOPd are the proton occupation
probabilities of the 0g7/2, 2s1/2, 0h11/2, and d orbitals in 136Ba.
DVNg7, DVNs1, DVNh1, and DVNd represent the neutron

vacancy probabilities in 136Ba. The experimental proton oc-
cupancies do not distinguish between the 1d5/2 and 1d3/2

orbitals, thus we add our results for both orbitals into a single
proton occupation probability.

In the columns of Table I we show from left to right
the experimental values (Data), the adopted experimental er-
rors (Error), the calculated values of the observables using
the starting Hamiltonians SVD (labeled “svss”), GCN5082
(labeled “gcns”), and jj55t (labeled “ j5ts”), the mean value
obtained after 1000 samples for each starting Hamiltonian,
denoted with μ, followed by the standard deviation σ . Overall,
one can see from Table I that the SVD starting Hamiltonian
produces M2ν NMEs that are closest to the experimental value,
thus needing the least amount of quenching when compared
to those of GCN5082 or jj55t. For the PGT and DGT one
observes that the SVD results are closest to the experimental
data for the parent nucleus, overestimating the result by much
less than GCN5082 and jj55t. However, for the daughter’s
GT, GCN5082 was best, with SVD underestimating the result
the most. For PB(E2) ↑ and DB(E2) ↑ SVD shows values
closest to the experiment. Carefully adjusting the values of
the effective charges would improve the results for all three
Hamiltonians, but that is beyond the scope of our analysis.
The excitation energies are better described by GCN5082, in
large part because the GCN5082 starting Hamiltonian was
fine-tuned with data for more nuclei and energy levels than
SVD and jj55t. Overall, GCN5082 appears to describe the
occupations and vacancies best.

Figures 1–3 present more detailed statistical results ob-
tained with the SVD starting Hamiltonian. The corresponding
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FIG. 1. The heat-map for all 24 observables when using the SVD effective Hamiltonian. See Sec. III for notations and analysis.

figures for GCN5082 and jj55t starting effective Hamiltonians
look similar and are not included here. Figure 1 presents the
complete correlation matrix for all 24 observables that we
calculate, with the number values denoting the Pearson co-
efficient R. The color intensity highlights the value of Pearson
coefficient R between −1 as white and 1 as dark blue. For
ease of use, a color scale is also shown on the right side. The
lines are listed in descending order for the value of the Pearson
coefficient R of an observable and M0ν . This figure is particu-
larly interesting because it reveals the correlations between all
of the observables, not just related to M0ν .

Figure 2 illustrates the more interesting cases for correla-
tions between the observables, where the value of the Pearson

coefficient R of an observable and M0ν is higher than 0.5.
Since on the diagonal every observable would correlate per-
fectly with itself, we utilize that space to plot the histograms
for the probability distributions. On top of the diagonal we
present scatter plots for pairs of observables forming the coor-
dinates with a reduced set of data points for ease of viewing,
while below the diagonal we show contour plots emphasis-
ing the density of points considering all the available data.
Visually, higher values of the Pearson correlation coefficient
R result in scatter plots and contour plots clustering closer
to a diagonal line in each graph. Most noticeable examples
include the energy levels that correlate with each other and,
significantly for this study, the 0νββ NME and the 2νββ
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FIG. 2. Correlation matrix for observables that have correlation factor greater than 0.5, when using the SVD Hamiltonian. See Sec. III for
notations and analysis.

NME with R = 0.8 in the case of the SVD Hamiltonian.
Similar strong correlations between the 0νββ NME and the
2νββ NME were recently reported in Ref. [74]

Figure 3 details the histograms of the 24 observables with
increased detail of the data bins and adding the experimental
data in the form of a Gaussian distribution displayed with a
red curve. This Gaussian was obtained with the experimental
values providing the mean and its width constrained by the
experimental error for the standard deviation. Encasing the
probability distributions with a blue line is the kernel-density
estimate used for the analysis detailed in Sec. IV. Each his-
togram has 20 bins and they are normalized to unity as well as
the red Gaussian curves describing the experimental data and
their errors.

Interestingly, the correlations between the 0νββ NME and
the strengths of the parent and daughter Gamow-Teller transi-

tions to the first 1+ state in 136Cs are significantly reduced,
while the correlation with the 2νββ NME is very strong.
One explanation for this phenomenon could be related to the
fact that the product of the GT matrix elements describing
transitions to the first 1+ state in 136Cs in Eq. (1) does not
significantly contribute to the total sum of all excited 1+ states
in the intermediate nucleus.

Other observables that have relatively high correlations
with the 0νββ NME (detailed in Fig. 2) are the energies of
the 2+, 4+, and 6+ states in both 136Xe and 136Ba with the
correlators R between 0.64 and 0.78. The g7/2 neutron vacan-
cies in 136Ba correlate with the 0νββ NME at R = 0.61. The
proton occupancies of the h11/2 orbital in 136Ba correlate with
the 0νββ NME at R = 0.55, while the proton occupancies
of the h11/2 orbital in 136Xe correlate with the 0νββ NME
at R = 0.53.
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FIG. 3. Distributions based on experimental data in red compared with the those obtained from the SVD starting Hamiltonian.

From the full correlation matrix in Figure 1, we notice
the B(E2) ↑ of the 136Xe and 136Ba cases. PBE2 correlates
very strongly with POPd (R = 0.9) and DOPd (R = 0.91),
while it anticorrelates significantly with DOPg7 (R = −0.91)
and POPg7 (R = −0.93). PBE2 also shows reasonable an-

ticorrelations with DE2+ (R = −0.54), DE4+ (R = −0.55),
DE6+ (R = −0.56), PE2+ (R = −0.58), and DE4+ (R =
−0.52). For PBE2 (right-most column of Fig. 1) we high-
light the correlations with DOPs1 (R = 0.74) and DVNh11

(R = 0.88), anticorrelating with DVNd (R = −0.84), DVNs1
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(R = −0.82) and the energy levels DE2+ (R = −0.79), DE4+

(R = −0.88), DE6+ (R = −0.84). The energy levels usually
correlate strongly with each other, and this is inherited by the
BE (2) ↑-s that depend on the 2+ states. The same is true about
the occupancies and vacancies that correlate, passing on their
correlation properties to other observables that depend on any
of them.

IV. STATISTICAL INFERENCE BASED ON THE BAYESIAN
MODEL AVERAGING

An in-depth statistical analysis of the 0νββ NME may
yield valuable insights into its potential range and mean value.
It appears that the values of all observables listed in Table I
remain relatively consistent in response to slight variations in
the effective Hamiltonian. There is no indication of any signif-
icant deviation from the main values, which may be attributed
to the preservation of nuclear many-body symmetries in the
nuclear shell model. Further investigations, such as utilizing
the distributions of available effective Hamiltonians, may aid

in determining optimal values and a potential range of error
for the 0νββ NME. One possible approach investigated in
Ref. [42] for 48Ca is to combine the distributions for each
starting effective Hamiltonian depicted in Fig. 3 using weight-
ing factors WH ,

P(x = M0ν ) = WsvdPsvd(x) + WgcnPgcn(x)

+Wj5t Pj5t (x) , (2)

where x is the random value of the 0νββ NME. The nor-
malized weights Wk with k = svd, gcn, j j5 can be inferred
using the statistical distributions of the evidence observables
in Table I and their correlations with the calculated M0ν NME.
However, in Ref. [42] not all data that strongly correlated to
the 0νββ NME was available, and therefore we only used
”democratic” weights for three effective Hamiltonians. In the
case of 136Xe we have all needed data listed in Table I. Here,
we use the Bayesian model averaging method [46,47] by
remapping the quantities in Eq. (2) in the framework of the
Bayesian approach to updating probabilities,

p(x = M0ν |ye, σe) =
j5t∑

k=svd

p(x = M0ν |ye, σe,Mk )p(Mk|ye, σe), (3)

where p(x = M0ν |ye, σe,Mk ) correspond to the probability densities Pk in Eq. (2) and p(Mk|(ye, σe) correspond to the weights
Wk . Here, the Mk models are represented by the TBME of different starting Hamiltonians in the jj55 model space, such as
SVD, jj55t or gcn5082. The ye and σe represent a set of relevant experimental data and their uncertainties for the nuclei involved
in the decay. The TBME values for the starting Hamiltonians of each model were determined from a wider set of data (more
specific only a set of excitation energies) describing a larger class of nuclei in a given s.p. space. One would like to calibrate
the weighting factors Wk to the evidence data ye and their errors σe that are relevant for the 0νββ decay, evidence data listed in
the first three columns of Table I. In Eq. (4), θ j represents a set of parameters describing the model Mk Hamiltonians, i.e., their
two-body matrix elements. To obtain the weights Wk one needs the so called evidence integrals

p(ye, σe|Mk ) =
∫ Nobs∏

i

dyi pye,σe (yi )

⎡
⎣

∫ Ntbme∏
j

dθ j p(yi|θ j,Mk )π (θ j |Mk )

⎤
⎦, (4)

which can be used in Bayesian theorem to obtain the posterior
probabilities

p(Mk|ye, σe) = p(ye, σe|Mk )π (Mk )∑ j5t
k=svd p(ye, σe|Mk )π (Mk )

. (5)

Here, the π (Mk ) are the prior probabilities for each model,
which are considered uniform. In Eq. (4) π (θ j |Mk ) represents
the distribution of the parameters θ j in a given model, which
we generate uniformly, although with a compact support. In
addition, the evidence likelihood function is taken as a typical
product for independent observables,

pye,σe (yi ) ∝
Nobs∏

i

exp[−(yi − yei )
2/(2σ 2

ei
)], (6)

where the overall proportionality factor is irrelevant if the
same set of observables are used with all models. In Eqs. (3)–
(4) the integration variable yi run on a subset of observables
that correlate strongly with M0ν . Here, we take the ten observ-
ables that have R > 0.5, listed below 0νββ in the heat map

of Fig. 1 and included in the correlation matrix of Fig. 2. The
integrals in Eq. (4) are done using multidimensional Monte
Carlo techniques, provided that the integration hypervolume is
the same for all models Mk . Having the posterior probabilities
p(Mk|ye, σe), one often calculates the Bayesian factors

Bk
m = p(Mk|ye, σe)/p(Mm|ye, σe) (7)

to either infer that one model is dominant or to use them in
Eq. (2) [equivalent of Eq. (3)] to obtain an average probability
density. In our case, using a standard quenching factor of
0.7 for all GT matrix elements one gets a clearly dominant
contribution of the SVD model. In principle, one could infer
that all Wk are 0, but the Wsvd. However, given the inherent
bias embedded in the Bayesian approach, and in the spirit
of the predictor-corrector approach to step-by-step evolution
schemes, we consider for the weights Wk an average between
the prior probabilities π (Mk ) and the posterior probabilities
p(Mk|ye, σe) ≡ Wk , where k = svd, gcn, j j5. Therefore, we
take Wsvd = 4/6,Wgcn = Wj j5 = 1/6.
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FIG. 4. PDFs of the 0νββ NME distributions for the SVD, jj55t,
and gcn5082 Hamiltonians, and their weighted sum (red curve, see
text for details).

Figure 4 shows the probability distribution functions
(PDF) for the three starting effective Hamiltonians and their
weighted sum, Eq. (2) (the red curve). To calculate each PDF
we use kernel-density estimates [75,76] for the histograms de-
scribing the M0ν , such as that of the upper-left panel of Fig. 3.
Based on the results of our statistical analysis summarized in
Fig. 4 (see the “weighted sum” curve) one can infer that with
90% confidence the 0νββ NME lies in the range between
1.55 and 2.65, with a mean value of about 1.99 and a standard
deviation of 0.37.

The results presented above may vary if a different quench-
ing factor, q, is used. In this study, q = 0.7 was employed,
which aligns with values used in commonly studied model
spaces such as sd , f p, and j j44 [42,77,78]. For instance, if a
very low quenching factor, less than 0.45, is used, the impact
of the GCN5082 effective Hamiltonian in Eq. (2) will in-
crease, resulting in a shift of the weighted distribution in Fig. 4
towards higher values. This correlation between the 0νββ

NME and the 2νββ NME, and the need for a small quenching
factor, q ≈ 0.35, to describe the 2νββ NME could be an effect
of excessive adjustments to the TBME of the effective Hamil-
tonian due to fine-tuning the energies [77]. Similarly, when
0.45 < q < 0.56, the distribution for the j j55t dominates the
weighted distribution in Fig. 4.

V. CONCLUSION AND OUTLOOK

In this paper we presented a statistical model for analyzing
the distribution and the theoretical uncertainty of the 0νββ

NME of experimentally relevant isotope 136Xe (see, e.g.,
Ref. [49] for the latest 0νββ lower half-life limit), using the
interacting shell model in the j j55-shell model space. For this
analysis we used three known starting effective Hamiltonians
that were widely tested for tin isotopes and other nuclei near
132Sn, namely SVD, GCN5082, and jj55t. Considering po-
tential uncertainties of these starting effective Hamiltonians,
we added to their TBME random contributions of ±10%.
Using sample sizes of 1000 points we analyzed for each
starting effective Hamiltonian: (i) the correlations between

0νββ NME and other 23 observables that are accessible
experimentally; (ii) the theoretical ranges for each observ-
ables; (iii) the shape of different distributions for each
observables and each starting Hamiltonian; (iv) the weighted
contributions from different starting Hamiltonians to the “op-
timal” distribution of the 0νββ NME; (v) an “optimal” value
of the 0νββ NME and its predicted probable range (theoreti-
cal error).

As in the case of 48Ca [42], we found that the 0νββ NME
correlates strongly with the 2νββ NME, but much less with
the Gamow-Teller strengths to the first 1+ state in 136Cs. We
also found that the 0νββ NME exhibits reasonably strong
correlations with the energies of the 2+, 4+, and 6+ states in
136Ba, and with the neutron occupation probabilities in 136Xe.
We also noticed that there are additional correlations between
observables, such as the energies of the 2+, 4+ and 6+ states
in 136Ba and the neutron occupation probabilities, as well as
between BE (2) ↑ values in 136Ba and proton and neutron
occupation probabilities, which can indirectly influence the
0νββ NME.

The significant difference in the present analysis relative to
that for 48Ca [42] is that reliable experimental values for the
occupation probabilities in 136Ba and 136Xe are available. This
made possible a statistical analysis of the 0νββ NME within
the Bayesian Averaging Model that can all the available exper-
imental data for the nuclei involved in the transition to update
the weights corresponding to each starting Hamiltonian to the
overall NME distribution. We found that the Bayesian averag-
ing model favors the SVD model, mainly because of the strong
correlations observed between the 0νββ NME and 2νββ

NME. Based on this statistical analysis with three independent
starting effective Hamiltonians we propose a common prob-
ability distribution function for the 0νββ NME, which has
a range (theoretical error) of (1.55–2.65) at 90% confidence
level, with a mean value of 1.99 and a standard deviation of
0.37.

Unfortunately, our results still depend on the choice
of the quenching factor for the Gamow-Teller operator.
Ab initio studies, however, can overcome this shortcoming by
consistently producing effective operators that can describe
Gamow-Teller transition without the need of a quenching
factor. We thus believe that the present analysis will help ab
initio studies, such as those reported in Refs. [37–39], to better
identify correlations and further reduce the uncertainties of
the 0νββ NME, given that such ab initio analyses, e.g., that
recently reported on 76Ge [43], seem to be confined to fewer
observables and much smaller statistics.

ACKNOWLEDGMENTS

M.H. acknowledges support from the US Department of
Energy Grant no. DE-SC0022538 “Nuclear Astrophysics and
Fundamental Symmetries”. A.N. and S.S. acknowledge sup-
port by grants of Romanian Ministry of Research, Innovation
and Digitalization through the project CNCS – UEFISCDI
No. 99/2021 within PN-III-P4-ID-PCE-2020-2374 and the
project CNCS – UEFISCDI No. TE12/2021 within PN-III-
P1-1.1-TE-2021-0343. We are grateful for the resources at
INCDFM-CIFRA HPC Cluster.

045501-9



M. HOROI, A. NEACSU, AND S. STOICA PHYSICAL REVIEW C 107, 045501 (2023)

[1] F. T. Avignone, III, S. R. Elliott, and J. Engel, Rev. Mod. Phys.
80, 481 (2008).

[2] J. D. Vergados, H. Ejiri, and F. Simkovic, Rep. Prog. Phys. 75,
106301 (2012).

[3] M. Doi, T. Kotani, H. Nishiura, and E. Takasugi, Prog. Theor.
Phys. 69, 602 (1983).

[4] M. Doi, T. Kotani, and E. Takasugi, Prog. Theor. Phys. Suppl.
83, 1 (1985).

[5] J. Suhonen and O. Civitarese, Phys. Rep. 300, 123 (1998).
[6] J. Kotila and F. Iachello, Phys. Rev. C 85, 034316 (2012).
[7] S. Stoica and M. Mirea, Phys. Rev. C 88, 037303 (2013).
[8] M. Mirea, T. Pahomi, and S. Stoica, Rom. Rep. Phys. 67, 872

(2015).
[9] W. Rodejohann, J. Phys. G: Nucl. Part. Phys. 39, 124008

(2012).
[10] F. F. Deppisch, M. Hirsch, and H. Pas, J. Phys. G: Nucl. Part.

Phys. 39, 124007 (2012).
[11] M. Horoi and A. Neacsu, Phys. Rev. D 93, 113014 (2016).
[12] A. Neacsu and M. Horoi, Adv. High Energy Phys. 2016,

1903767 (2016).
[13] F. Ahmed, A. Neacsu, and M. Horoi, Phys. Lett. B 769, 299

(2017).
[14] M. Horoi and A. Neacsu, Phys. Rev. C 98, 035502 (2018).
[15] J. Engel and J. Menéndez, Rep. Prog. Phys. 80, 046301

(2017).
[16] C. Adams, K. Alfonso, C. Andreoiu, E. Angelico, I. J. Arnquist,

J. A. A. Asaadi, F. T. Avignone, S. N. Axani, A. S. Barabash,
P. S. Barbeau, L. Baudis, F. Bellini, M. Beretta, T. Bhatta, V.
Biancacci, M. Biassoni, E. Bossio, P. A. Breur, J. P. Brodsky,
C. Brofferio, E. Brown, R. Brugnera, T. Brunner, N. Burlac, E.
Caden, S. Calgaro, G. F. Cao, L. Cao, C. Capelli, L. Cardani,
R. C. Fernandez, C. M. Cattadori, B. Chana, D. Chernyak,
C. D. Christofferson, P. H. Chu, E. Church, V. Cirigliano, R.
Collister, T. Comellato, J. Dalmasson, V. D’Andrea, T. Daniels,
L. Darroch, M. P. Decowski, M. Demarteau, S. D. M. Peixoto,
J. A. Detwiler, R. G. DeVoe, S. Di Domizio, N. Di Marco,
M. L. di Vacri, M. J. Dolinski, Y. Efremenko, M. Elbeltagi,
S. R. Elliott, J. Engel, L. Fabris, W. M. Fairbank, J. Farine, M.
Febbraro, E. Figueroa-Feliciano, D. E. Fields, J. A. Formaggio,
B. T. Foust, B. Franke, Y. Fu, B. K. Fujikawa, D. Gallacher,
G. Gallina, A. Garfagnini, C. Gingras, L. Gironi, A. Giuliani,
M. Gold, R. Gornea, C. Grant, G. Gratta, M. P. Green, G. F.
Grinyer, J. Gruszko, Y. Guan, I. S. Guinn, V. E. Guiseppe,
T. D. Gutierrez, E. V. Hansen, C. A. Hardy, J. Hauptman, M.
Heffner, K. M. Heeger, R. Henning, H. Hergert, D. H. Aguilar,
R. Hodak, J. D. Holt, E. W. Hoppe, M. Horoi, H. Z. Huang,
K. Inoue, A. Jamil, J. Jochum, B. J. P. Jones, J. Kaizer, G.
Karapetrov, S. A. Kharusi, M. F. Kidd, Y. Kishimoto, J. R.
Klein, Y. G. Kolomensky, I. Kontul, V. N. Kornoukhov, P.
Krause, R. Krucken, K. S. Kumar, K. Lang, K. G. Leach,
B. G. Lenardo, A. Leonhardt, A. Li, G. Li, Z. Li, C. Licciardi,
R. Lindsay, I. Lippi, J. Liu, M. Macko, R. MacLellan, C.
Macolino, S. Majidi, F. Mamedov, J. Masbou, R. Massarczyk,
A. T. Mastbaum, D. Mayer, A. Mazumdar, D. M. Mei, Y.
Mei, S. J. Meijer, E. Mereghetti, S. Mertens, K. Mistry, T.
Mitsui, D. C. Moore, M. Morella, J. T. Nattress, M. Neuberger,
X. E. Ngwadla, C. Nones, V. Novosad, D. R. Nygren, J. C. N.
Ondze, T. O’Donnell, G. D. O. Gann, J. L. Orrell, G. S. Ortega,
J. L. Ouellet, C. Overman, L. Pagani, V. Palusova, A. Para, M.
Pavan, A. Perna, L. Pertoldi, W. Pettus, A. Piepke, P. Piseri,
A. Pocar, P. Povinec, F. Psihas, A. Pullia, D. C. Radford,

G. J. Ramonnye, H. Rasiwala, M. Redchuk, S. Riboldi, G.
Richardson, K. Rielage, L. Rogers, P. C. Rowson, E. Rukhadze,
R. Saakyan, C. Sada, G. Salamanna, F. Salamida, R. Saldanha,
D. J. Salvat, S. Sangiorgio, D. C. Schaper, S. Schoenert, M.
Schwarz, S. E. Schwartz, Y. Shitov, F. Simkovic, V. Singh, M.
Slavickova, A. C. Sousa, F. L. Spadoni, D. H. Speller, I. Stekl,
R. R. Sumathi, P. T. Surukuchi, R. Tayloe, W. Tornow, J. A.
Torres, T. I. Totev, S. Triambak, O. A. Tyuka, S. I. Vasilyev,
M. Velazquez, S. Viel, C. Vogl, K. von Strum, Q. Wang, D.
Waters, S. L. Watkins, M. Watts, W. Z. Wei, B. Welliver, L.
Wen, U. Wichoski, S. Wilde, J. F. Wilkerson, L. Winslow, C.
Wiseman, X. Wu, W. Xu, H. Yang, L. Yang, C. H. Yu, J. Zeman,
J. Zennamo, and G. Zuzel, arXiv:2212.11099.

[17] E. Caurier, A. Poves, and A. P. Zuker, Phys. Lett. B 252, 13
(1990).

[18] E. Caurier, F. Nowacki, A. Poves, and J. Retamosa, Phys. Rev.
Lett. 77, 1954 (1996).

[19] E. Caurier, G. Martinez-Pinedo, F. Nowack, A. Poves, and A. P.
Zuker, Rev. Mod. Phys. 77, 427 (2005).

[20] M. Horoi, S. Stoica, and B. A. Brown, Phys. Rev. C 75, 034303
(2007).

[21] M. Horoi and S. Stoica, Phys. Rev. C 81, 024321 (2010).
[22] M. Horoi, Phys. Rev. C 87, 014320 (2013).
[23] M. Horoi and B. A. Brown, Phys. Rev. Lett. 110, 222502

(2013).
[24] R. A. Sen’kov and M. Horoi, Phys. Rev. C 90, 051301(R)

(2014).
[25] A. Neacsu and M. Horoi, Phys. Rev. C 91, 024309

(2015).
[26] M. Horoi and A. Neacsu, Phys. Rev. C 93, 024308 (2016).
[27] F. Šimkovic, G. Pantis, J. D. Vergados, and A. Faessler, Phys.

Rev. C 60, 055502 (1999).
[28] S. Stoica and H. Klapdor-Kleingrothaus, Nucl. Phys. A 694,

269 (2001).
[29] V. Rodin, A. Faessler, F. Simkovic, and P. Vogel, Nucl. Phys. A

766, 107 (2006).
[30] M. Kortelainen and J. Suhonen, Phys. Rev. C 75, 051303(R)

(2007).
[31] A. Faessler, V. Rodin, and F. Simkovic, J. Phys. G: Nucl. Part.

Phys. 39, 124006 (2012).
[32] F. Šimkovic, V. Rodin, A. Faessler, and P. Vogel, Phys. Rev. C

87, 045501 (2013).
[33] J. Barea and F. Iachello, Phys. Rev. C 79, 044301 (2009).
[34] J. Barea, J. Kotila, and F. Iachello, Phys. Rev. C 87, 014315

(2013).
[35] T. R. Rodriguez and G. Martinez-Pinedo, Phys. Rev. Lett. 105,

252503 (2010).
[36] P. K. Rath, R. Chandra, K. Chaturvedi, P. Lohani, P. K. Raina,

and J. G. Hirsch, Phys. Rev. C 88, 064322 (2013).
[37] S. Novario, P. Gysbers, J. Engel, G. Hagen, G. R. Jansen, T. D.

Morris, P. Navrátil, T. Papenbrock, and S. Quaglioni, Phys. Rev.
Lett. 126, 182502 (2021).

[38] J. M. Yao, B. Bally, J. Engel, R. Wirth, T. R.
Rodríguez, and H. Hergert, Phys. Rev. Lett. 124, 232501
(2020).

[39] A. Belley, C. G. Payne, S. R. Stroberg, T. Miyagi, and J. D.
Holt, Phys. Rev. Lett. 126, 042502 (2021).

[40] J. Yao, J. Meng, Y. Niu, and P. Ring, Prog. Part. Nucl. Phys.
126, 103965 (2022).

[41] M. Agostini, G. Benato, J. A. Detwiler, J. Menéndez, and F.
Vissani, arXiv:2202.01787.

045501-10

https://doi.org/10.1103/RevModPhys.80.481
https://doi.org/10.1088/0034-4885/75/10/106301
https://doi.org/10.1143/PTP.69.602
https://doi.org/10.1143/PTPS.83.1
https://doi.org/10.1016/S0370-1573(97)00087-2
https://doi.org/10.1103/PhysRevC.85.034316
https://doi.org/10.1103/PhysRevC.88.037303
https://doi.org/10.1088/0954-3899/39/12/124008
https://doi.org/10.1088/0954-3899/39/12/124007
https://doi.org/10.1103/PhysRevD.93.113014
https://doi.org/10.1155/2016/1903767
https://doi.org/10.1016/j.physletb.2017.03.066
https://doi.org/10.1103/PhysRevC.98.035502
https://doi.org/10.1088/1361-6633/aa5bc5
http://arxiv.org/abs/arXiv:2212.11099
https://doi.org/10.1016/0370-2693(90)91071-I
https://doi.org/10.1103/PhysRevLett.77.1954
https://doi.org/10.1103/RevModPhys.77.427
https://doi.org/10.1103/PhysRevC.75.034303
https://doi.org/10.1103/PhysRevC.81.024321
https://doi.org/10.1103/PhysRevC.87.014320
https://doi.org/10.1103/PhysRevLett.110.222502
https://doi.org/10.1103/PhysRevC.90.051301
https://doi.org/10.1103/PhysRevC.91.024309
https://doi.org/10.1103/PhysRevC.93.024308
https://doi.org/10.1103/PhysRevC.60.055502
https://doi.org/10.1016/S0375-9474(01)00988-5
https://doi.org/10.1016/j.nuclphysa.2005.12.004
https://doi.org/10.1103/PhysRevC.75.051303
https://doi.org/10.1088/0954-3899/39/12/124006
https://doi.org/10.1103/PhysRevC.87.045501
https://doi.org/10.1103/PhysRevC.79.044301
https://doi.org/10.1103/PhysRevC.87.014315
https://doi.org/10.1103/PhysRevLett.105.252503
https://doi.org/10.1103/PhysRevC.88.064322
https://doi.org/10.1103/PhysRevLett.126.182502
https://doi.org/10.1103/PhysRevLett.124.232501
https://doi.org/10.1103/PhysRevLett.126.042502
https://doi.org/10.1016/j.ppnp.2022.103965
http://arxiv.org/abs/arXiv:2202.01787


PREDICTING THE NEUTRINOLESS … PHYSICAL REVIEW C 107, 045501 (2023)

[42] M. Horoi, A. Neacsu, and S. Stoica, Phys. Rev. C 106, 054302
(2022).

[43] A. Belley, T. Miyagi, S. R. Stroberg, and J. D. Holt,
arXiv:2210.05809.

[44] C. Qi and Z. X. Xu, Phys. Rev. C 86, 044323 (2012).
[45] E. Caurier, F. Nowacki, A. Poves, and K. Sieja, Phys. Rev. C

82, 064304 (2010).
[46] V. Kejzlar, L. Neufcourt, W. Nazarewicz, and P.-G. Reinhard,

J. Phys. G: Nucl. Part. Phys. 47, 094001 (2020).
[47] V. Cirigliano, Z. Davoudi, J. Engel, R. J. Furnstahl, G. Hagen,

U. Heinz, H. Hergert, M. Horoi, C. W. Johnson, A. Lovato,
E. Mereghetti, W. Nazarewicz, A. Nicholson, T. Papenbrock,
S. Pastore, M. Plumlee, D. R. Phillips, P. E. Shanahan, S. R.
Stroberg, F. Viens, A. Walker-Loud, K. A. Wendt, and S. M.
Wild, J. Phys. G: Nucl. Part. Phys. 49, 120502 (2022).

[48] G. Adhikari, S. A. Kharusi, E. Angelico, G. Anton, I. J.
Arnquist, I. Badhrees, J. Bane, V. Belov, E. P. Bernard, T.
Bhatta, A. Bolotnikov, P. A. Breur, J. P. Brodsky, E. Brown,
T. Brunner, E. Caden, G. F. Cao, L. Cao, C. Chambers, B.
Chana, S. A. Charlebois, D. Chernyak, M. Chiu, B. Cleveland,
R. Collister, S. A. Czyz, J. Dalmasson, T. Daniels, L. Darroch,
R. DeVoe, M. L. D. Vacri, J. Dilling, Y. Y. Ding, A. Dolgolenko,
M. J. Dolinski, A. Dragone, J. Echevers, M. Elbeltagi, L. Fabris,
D. Fairbank, W. Fairbank, J. Farine, S. Ferrara, S. Feyzbakhsh,
Y. S. Fu, G. Gallina, P. Gautam, G. Giacomini, W. Gillis, C.
Gingras, D. Goeldi, R. Gornea, G. Gratta, C. A. Hardy, K.
Harouaka, M. Heffner, E. W. Hoppe, A. House, A. Iverson,
A. Jamil, M. Jewell, X. S. Jiang, A. Karelin, L. J. Kaufman,
I. Kotov, R. Krücken, A. Kuchenkov, K. S. Kumar, Y. Lan,
A. Larson, K. G. Leach, B. G. Lenardo, D. S. Leonard, G.
Li, S. Li, Z. Li, C. Licciardi, R. Lindsay, R. MacLellan, M.
Mahtab, P. Martel-Dion, J. Masbou, N. Massacret, T. McElroy,
K. McMichael, M. M. Peregrina, T. Michel, B. Mong, D. C.
Moore, K. Murray, J. Nattress, C. R. Natzke, R. J. Newby, K.
Ni, F. Nolet, O. Nusair, J. C. N. Ondze, K. Odgers, A. Odian,
J. L. Orrell, G. S. Ortega, C. T. Overman, S. Parent, A. Perna, A.
Piepke, A. Pocar, J.-F. Pratte, N. Priel, V. Radeka, E. Raguzin,
G. J. Ramonnye, T. Rao, H. Rasiwala, S. Rescia, F. Retière,
J. Ringuette, V. Riot, T. Rossignol, P. C. Rowson, N. Roy, R.
Saldanha, S. Sangiorgio, X. Shang, A. K. Soma, F. Spadoni,
V. Stekhanov, X. L. Sun, M. Tarka, S. Thibado, A. Tidball,
J. Todd, T. Totev, S. Triambak, R. H. M. Tsang, T. Tsang, F.
Vachon, V. Veeraraghavan, S. Viel, C. Vivo-Vilches, P. Vogel,
J.-L. Vuilleumier, M. Wagenpfeil, T. Wager, M. Walent, K.
Wamba, Q. Wang, W. Wei, L. J. Wen, U. Wichoski, S. Wilde,
M. Worcester, S. X. Wu, W. H. Wu, X. Wu, Q. Xia, W. Yan, H.
Yang, L. Yang, O. Zeldovich, J. Zhao, and T. Ziegler, J. Phys.
G: Nucl. Part. Phys. 49, 015104 (2022).

[49] S. Abe, S. Asami, M. Eizuka, S. Futagi, A. Gando, Y. Gando,
T. Gima, A. Goto, T. Hachiya, K. Hata, S. Hayashida, K.
Hosokawa, K. Ichimura, S. Ieki, H. Ikeda, K. Inoue, K.
Ishidoshiro, Y. Kamei, N. Kawada, Y. Kishimoto, M. Koga, M.
Kurasawa, N. Maemura, T. Mitsui, H. Miyake, T. Nakahata, K.
Nakamura, K. Nakamura, R. Nakamura, H. Ozaki, T. Sakai, H.
Sambonsugi, I. Shimizu, J. Shirai, K. Shiraishi, A. Suzuki, Y.
Suzuki, A. Takeuchi, K. Tamae, K. Ueshima, H. Watanabe, Y.
Yoshida, S. Obara, A. K. Ichikawa, D. Chernyak, A. Kozlov,
K. Z. Nakamura, S. Yoshida, Y. Takemoto, S. Umehara, K.
Fushimi, K. Kotera, Y. Urano, B. E. Berger, B. K. Fujikawa,
J. G. Learned, J. Maricic, S. N. Axani, J. Smolsky, Z. Fu, L. A.
Winslow, Y. Efremenko, H. J. Karwowski, D. M. Markoff, W.

Tornow, S. Dell’Oro, T. O’Donnell, J. A. Detwiler, S. Enomoto,
M. P. Decowski, C. Grant, A. Li, and H. Song (KamLAND-Zen
Collaboration), Phys. Rev. Lett. 130, 051801 (2023).

[50] L. Si, Z. Cheng, A. Abdukerim, Z. Bo, W. Chen, X. Chen, Y.
Chen, C. Cheng, Y. Cheng, X. Cui, Y. Fan, D. Fang, C. Fu, M.
Fu, L. Geng, K. Giboni, L. Gu, X. Guo, K. Han, C. He, J. He,
D. Huang, Y. Huang, Z. Huang, R. Hou, X. Ji, Y. Ju, C. Li, J.
Li, M. Li, S. Li, S. Li, Q. Lin, J. Liu, X. Lu, L. Luo, Y. Luo,
W. Ma, Y. Ma, Y. Mao, Y. Meng, N. Shaheed, X. Shang, X.
Ning, N. Qi, Z. Qian, X. Ren, C. Shang, G. Shen, W. Sun, A.
Tan, Y. Tao, A. Wang, M. Wang, Q. Wang, S. Wang, S. Wang,
W. Wang, X. Wang, Z. Wang, Y. Wei, M. Wu, W. Wu, J. Xia,
M. Xiao, X. Xiao, P. Xie, B. Yan, X. Yan, J. Yang, Y. Yang, C.
Yu, J. Yuan, Y. Yuan, Z. Yuan, D. Zhang, M. Zhang, P. Zhang,
S. Zhang, S. Zhang, T. Zhang, L. Zhao, Q. Zheng, J. Zhou, N.
Zhou, X. Zhou, and Y. Zhou, Research 2022, 9798721 (2022).

[51] E. Aprile, K. Abe, F. Agostini, S. Ahmed Maouloud,
M. Alfonsi, L. Althueser, B. Andrieu, E. Angelino, J. R.
Angevaare, V. C. Antochi, D. Antón Martin, F. Arneodo, L.
Baudis, A. L. Baxter, L. Bellagamba, R. Biondi, A. Bismark, A.
Brown, S. Bruenner, G. Bruno, R. Budnik, C. Cai, C. Capelli,
J. M. R. Cardoso, D. Cichon, M. Clark, A. P. Colijn, J. Conrad,
J. J. Cuenca-García, J. P. Cussonneau, V. D’Andrea, M. P.
Decowski, P. Di Gangi, S. Di Pede, A. Di Giovanni, R. Di
Stefano, S. Diglio, K. Eitel, A. Elykov, S. Farrell, A. D. Ferella,
H. Fischer, W. Fulgione, P. Gaemers, R. Gaior, A. Gallo Rosso,
M. Galloway, F. Gao, R. Glade-Beucke, L. Grandi, J. Grigat,
M. Guida, A. Higuera, C. Hils, L. Hoetzsch, J. Howlett, M.
Iacovacci, Y. Itow, J. Jakob, F. Joerg, A. Joy, N. Kato, M. Kara,
P. Kavrigin, S. Kazama, M. Kobayashi, G. Koltman, A. Kopec,
H. Landsman, R. F. Lang, L. Levinson, I. Li, S. Li, S. Liang,
S. Lindemann, M. Lindner, K. Liu, J. Loizeau, F. Lombardi,
J. Long, J. A. M. Lopes, Y. Ma, C. Macolino, J. Mahlstedt,
A. Mancuso, L. Manenti, A. Manfredini, F. Marignetti, T.
Marrodán Undagoitia, K. Martens, J. Masbou, D. Masson, E.
Masson, S. Mastroianni, M. Messina, K. Miuchi, K. Mizukoshi,
A. Molinario, S. Moriyama, K. Morå, Y. Mosbacher, M. Murra,
J. Müller, K. Ni, U. Oberlack, B. Paetsch, J. Palacio, R.
Peres, J. Pienaar, M. Pierre, V. Pizzella, G. Plante, J. Qi, J.
Qin, D. Ramírez García, S. Reichard, A. Rocchetti, N. Rupp,
L. Sanchez, J. M. F. dos Santos, I. Sarnoff, G. Sartorelli,
J. Schreiner, D. Schulte, P. Schulte, H. Schulze Eißing, M.
Schumann, L. Scotto Lavina, M. Selvi, F. Semeria, P. Shagin,
S. Shi, E. Shockley, M. Silva, H. Simgen, A. Takeda, P.-L.
Tan, A. Terliuk, D. Thers, F. Toschi, G. Trinchero, C. Tunnell,
F. Tönnies, K. Valerius, G. Volta, Y. Wei, C. Weinheimer, M.
Weiss, D. Wenz, C. Wittweg, T. Wolf, Z. Xu, M. Yamashita,
L. Yang, J. Ye, L. Yuan, G. Zavattini, S. Zerbo, M. Zhong,
and T. Zhu (XENON Collaboration), Phys. Rev. C 106, 024328
(2022).

[52] F. Agostini, S. E. M. A. Maouloud, L. Althueser, F. Amaro,
B. Antunovic, E. Aprile, L. Baudis, D. Baur, Y. Biondi,
A. Bismark, P. A. Breur, A. Brown, G. Bruno, R. Budnik,
C. Capelli, J. Cardoso, D. Cichon, M. Clark, A. P. Colijn,
J. J. Cuenca-García, J. P. Cussonneau, M. P. Decowski, A.
Depoian, J. Dierle, P. D. Gangi, A. D. Giovanni, S. Diglio,
J. M. F. d. Santos, G. Drexlin, K. Eitel, R. Engel, A. D.
Ferella, H. Fischer, M. Galloway, F. Gao, F. Girard, F. Glück, L.
Grandi, R. Größle, R. Gumbsheimer, S. Hansmann-Menzemer,
F. Jörg, G. Khundzakishvili, A. Kopec, F. Kuger, L. M.
Krauss, H. Landsman, R. F. Lang, S. Lindemann, M. Lindner,

045501-11

https://doi.org/10.1103/PhysRevC.106.054302
http://arxiv.org/abs/arXiv:2210.05809
https://doi.org/10.1103/PhysRevC.86.044323
https://doi.org/10.1103/PhysRevC.82.064304
https://doi.org/10.1088/1361-6471/ab907c
https://doi.org/10.1088/1361-6471/aca03e
https://doi.org/10.1088/1361-6471/ac3631
https://doi.org/10.1103/PhysRevLett.130.051801
https://doi.org/10.34133/2022/9798721
https://doi.org/10.1103/PhysRevC.106.024328


M. HOROI, A. NEACSU, AND S. STOICA PHYSICAL REVIEW C 107, 045501 (2023)

J. A. M. Lopes, A. L. Villalpando, C. Macolino, A. Manfredini,
T. M. Undagoitia, J. Masbou, E. Masson, P. Meinhardt, S.
Milutinovic, A. Molinario, C. M. B. Monteiro, M. Murra, U. G.
Oberlack, M. Pandurovic, R. Peres, J. Pienaar, M. Pierre, V.
Pizzella, J. Qin, D. R. García, S. Reichard, N. Rupp, P. Sanchez-
Lucas, G. Sartorelli, D. Schulte, M. Schumann, L. S. Lavina, M.
Selvi, M. Silva, H. Simgen, M. Steidl, A. Terliuk, C. Therreau,
D. Thers, K. Thieme, R. Trotta, C. D. Tunnell, K. Valerius, G.
Volta, D. Vorkapic, C. Weinheimer, C. Wittweg, J. Wolf, J. P.
Zopounidis, K. Zuber, and DARWIN Collaboration, Eur. Phys.
J. C 80, 808 (2020).

[53] B. Rebeiro, S. Triambak, P. Garrett, B. Brown, G. Ball,
R. Lindsay, P. Adsley, V. Bildstein, C. Burbadge, A. Diaz
Varela, T. Faestermann, D. Fang, R. Hertenberger, M. Horoi,
B. Jigmeddorj, M. Kamil, K. Leach, P. Mabika, J. Nzobadila
Ondze, J. Orce, and H.-F. Wirth, Phys. Lett. B 809, 135702
(2020).

[54] B. A. Brown, N. J. Stone, J. R. Stone, I. S. Towner, and M.
Hjorth-Jensen, Phys. Rev. C 71, 044317 (2005).

[55] M. Hjorth-Jensen, T. T. Kuo, and E. Osnes, Phys. Rep. 261, 125
(1995).

[56] R. Machleidt, Phys. Rev. C 63, 024001 (2001).
[57] D. J. Dean and M. Hjorth-Jensen, Rev. Mod. Phys. 75, 607

(2003).
[58] G. Audi, A. Wapstra, and C. Thibault, Nucl. Phys. A 729, 337

(2003).
[59] D. Zinatulina, V. Brudanin, V. Egorov, C. Petitjean, M.

Shirchenko, J. Suhonen, and I. Yutlandov, Phys. Rev. C 99,
024327 (2019).

[60] T. Siiskonen, J. Suhonen, V. Kuz’min, and T. Tetereva, Nucl.
Phys. A 635, 446 (1998).

[61] J. M. R. Fox, C. W. Johnson, and R. N. Perez, Phys. Rev. C 101,
054308 (2020).

[62] V. Cirigliano, W. Dekens, J. de Vries, M. L. Graesser, E.
Mereghetti, S. Pastore, and U. van Kolck, Phys. Rev. Lett. 120,
202001 (2018).

[63] R. A. Sen’kov and M. Horoi, Phys. Rev. C 88, 064312
(2013).

[64] R. A. Sen’kov, M. Horoi, and B. A. Brown, Phys. Rev. C 89,
054304 (2014).

[65] R. A. Sen’kov and M. Horoi, Phys. Rev. C 93, 044334
(2016).

[66] M. Horoi, Physics 4, 1135 (2022).
[67] E. Mccutchan, Nucl. Data Sheets 152, 331 (2018).
[68] A. Barabash, Universe 6, 159 (2020).
[69] B. Pritychenko, M. Birch, B. Singh, and M. Horoi, At. Data

Nucl. Data Tables 107, 1 (2016).
[70] D. Frekers, P. Puppe, J. H. Thies, and H. Ejiri, Nucl. Phys. A

916, 219 (2013).
[71] S. V. Szwec, B. P. Kay, T. E. Cocolios, J. P. Entwisle, S. J.

Freeman, L. P. Gaffney, V. Guimarães, F. Hammache, P. P.
McKee, E. Parr, C. Portail, J. P. Schiffer, N. de Séréville, D. K.
Sharp, J. F. Smith, and I. Stefan, Phys. Rev. C 94, 054314
(2016).

[72] J. P. Entwisle, B. P. Kay, A. Tamii, S. Adachi, N. Aoi,
J. A. Clark, S. J. Freeman, H. Fujita, Y. Fujita, T. Furuno, T.
Hashimoto, C. R. Hoffman, E. Ideguchi, T. Ito, C. Iwamoto,
T. Kawabata, B. Liu, M. Miura, H. J. Ong, J. P. Schiffer,
D. K. Sharp, G. Süsoy, T. Suzuki, S. V. Szwec, M. Takaki,
M. Tsumura, and T. Yamamoto, Phys. Rev. C 93, 064312
(2016).

[73] M. Honma, T. Otsuka, B. A. Brown, and T. Mizusaki, Phys.
Rev. C 69, 034335 (2004).

[74] L. Jokiniemi, B. Romeo, P. Soriano, and J. Menéndez, Phys.
Rev. C 107, 044305 (2023).

[75] M. Rosenblatt, Ann. Math. Stat. 27, 832 (1956).
[76] B. Silverman, Density Estimation for Statistics and Data Anal-

ysis (Chapman and Hall, London, 1986).
[77] B. A. Brown and W. A. Richter, Phys. Rev. C 74, 034315

(2006).
[78] M. Honma, T. Otsuka, T. Mizusaki, and M. Hjorth-Jensen,

Phys. Rev. C 80, 064323 (2009).

045501-12

https://doi.org/10.1140/epjc/s10052-020-8196-z
https://doi.org/10.1016/j.physletb.2020.135702
https://doi.org/10.1103/PhysRevC.71.044317
https://doi.org/10.1016/0370-1573(95)00012-6
https://doi.org/10.1103/PhysRevC.63.024001
https://doi.org/10.1103/RevModPhys.75.607
https://doi.org/10.1016/j.nuclphysa.2003.11.003
https://doi.org/10.1103/PhysRevC.99.024327
https://doi.org/10.1016/S0375-9474(98)00182-1
https://doi.org/10.1103/PhysRevC.101.054308
https://doi.org/10.1103/PhysRevLett.120.202001
https://doi.org/10.1103/PhysRevC.88.064312
https://doi.org/10.1103/PhysRevC.89.054304
https://doi.org/10.1103/PhysRevC.93.044334
https://doi.org/10.3390/physics4040074
https://doi.org/10.1016/j.nds.2018.10.002
https://doi.org/10.3390/universe6100159
https://doi.org/10.1016/j.adt.2015.10.001
https://doi.org/10.1016/j.nuclphysa.2013.08.006
https://doi.org/10.1103/PhysRevC.94.054314
https://doi.org/10.1103/PhysRevC.93.064312
https://doi.org/10.1103/PhysRevC.69.034335
https://doi.org/10.1103/PhysRevC.107.044305
https://doi.org/10.1214/aoms/1177728190
https://doi.org/10.1103/PhysRevC.74.034315
https://doi.org/10.1103/PhysRevC.80.064323

