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Ridge regression for minimizing the couplings of hyperon resonances in K+� photoproduction
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We employed the isobar model for investigating the K+� photoproduction process. We paid special attention
to the recent CLAS polarization data and enhanced the χ2 minimization by adding a penalty term. Without
changing the set of included resonances used by the model, this technique known as Ridge regression leads to
reduced couplings that in previous studies acquired unreasonably large values. As a result, we have arrived at a
much more robust model with hyperon couplings which are reduced to more physical values. This model serves
us to extract valuable information on the background to the K+� photoproduction and particularly on the role of
various hyperon resonances. The set of the nucleon resonances is the same with respect to previous fits but their
role may have changed due to different couplings which they acquire in the present fit.
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I. INTRODUCTION

The study of photoproduction and electroproduction of
hyperons from nucleons in the third nucleon resonance re-
gion gives us important information about the spectrum of
baryon resonances and interactions in systems of hyperons
and nucleons which arise from quantum chromodynamics
(QCD). Besides learning more about the reaction mechanism,
a correct description of the elementary production process
is important for getting reliable predictions of the excitation
spectra for production of � hypernuclei [1].

The nucleon resonances and their properties were studied
quite thoroughly by using the kaon photoproduction process.
Over the past few decades, a number of theoretical studies
of the hyperon production have been performed and they
focused mainly on the process of K+� photoproduction.
Let us here briefly present the body of research on K+�

photoproduction done in the past. First studies of this topic
were performed in 1960s when Kuo [2] and then Thom [3]
published their phenomenological analyses of the p(γ , K+)�
reaction. When more data had become available, several new
studies of the K+� process were performed in the 1980s
[4,5] and also in the 1990s [6–9] and the studies focused
also on the problem of missing nucleon resonances [10]. At
the end of the century, the study of meson photoproduction
at energies above 4 GeV became experimentally accessible
which motivated development of a model for high energy
kaon photoproduction [11]. After the turn of the century,
the theory group at Ghent University studied the effects of
background contributions to the K+� photoproduction [12]
and attempted to extract the information on nucleon reso-
nances from the then still somewhat limited data set [13].
Most importantly for the present paper, they also examined
the role of hyperon resonances in the K+� photoproduction
[14]. After the publication of the CLAS data on differential
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cross sections and a few polarization observables [15], new
fits to these data were performed [16]. In the following years,
the aforementioned Ghent group developed a model capable
of simultaneously describing the process near the threshold
and also at high energies [17,18]. Worth mentioning are also
the coupled-channel analyses [19–22], particularly the ex-
tensive work by the Bonn-Gatchina [23–26], Juelich-Bonn
[27], and ANL-Osaka [28] groups. Even though the body of
research done in the past is quite substantial, extracting reso-
nances in baryon spectroscopy still remains a very demanding
task.

There are number of studies focusing on the spectrum of
nucleon resonances in the K+� photoproduction while the
amount of studies on hyperon resonances is somewhat limited
[29]. In an ideal case, this kind of study should be done
in a process where the hyperon resonances propagate in the
s channel, such as kaon-nucleon scattering. An experiment
on kaon-nucleon scattering became one of the main subjects
to be studied at JPARC, Japan [30]. However, one needs a
very intense kaon beam in order to be able to achieve accu-
racy which was obtained in experiments with electromagnetic
beams. Moreover, it is quite well known that the hadronic
interaction is not as easy to grasp as the electromagnetic
interaction, which further impedes extracting information on
hyperon resonances from this process. With this in mind, one
can say that the photoinduced process of kaon production
could become a valuable source of knowledge on hyperon
resonances. They are being exchanged in the u channel of
the process and thus their contributions are sensitive to the
observables at backward kaon angles.

Models based on effective Lagrangians belong to the most
effective tools we have to describe the K+� photoproduc-
tion. Since there is no explicit connection to QCD in these
models, the number of parameters is related to the number
of resonances included. In the case of kaon photoproduction
this number is relatively large. In the isobar-model descrip-
tion of the kaon photoproduction process, there has been a
longstanding issue of having too large coupling constants of
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the hyperon resonances. In many isobar models, the hyperon
resonances’ couplings acquired values larger than one, for
example the Saclay-Lyon model [8], the model by Williams,
Ji, and Cotanch [7] and the model of Janssen et al. [12]
introduce spin-1/2 hyperon resonances with couplings larger
than one. In 2016, we analyzed the data, available at the time,
for K+� photoproduction which resulted in two new models
called BS1 and BS2 [31] and also in these models the hyperon
couplings tend to be large. At the tree-level approximation,
which we use, couplings larger than one are still acceptable
but they are not reasonable in view of the philosophy of
perturbation calculations. Furthermore, it can be said that the
model assumptions with respect to the way the background
terms are treated influence the extracted information about the
resonant terms.

A year after the publication of BS1 and BS2 models, the
K+� database was replenished by CLAS data [32] on photon-
beam asymmetry �, target asymmetry T , and beam-recoil
polarization asymmetries with linearly polarized photons, Ox′

and Oz′ . It was these polarization data that motivated us
to look once again at the K+� channel trying to disentan-
gle the spectrum of hyperon resonances contributing to this
process.

Another reason for analyzing the K+� channel again was a
more thorough fitting method which penalizes the introduced
parameters for their values. This technique, known as Ridge
regularization, helps us to solve the issue of unphysically large
hyperon couplings. Regularization techniques are commonly
used in statistics and machine learning in order to prevent
overfitting and produce models that generalize better to new
data. Although this is usually achieved by making the model
sparser, Ridge regression allows one to still work within a
certain model—a given set of resonances, in our case—and
mitigate the values of its fitted parameters. We demonstrate
this method by applying it on two models which were derived
from the BS2 model.

This paper is organized as follows. In Sec. II, we show
the method we use in this study for describing the K+�

photoproduction off the proton. In Sec. III, we introduce the
reader to the method which we use in order to adjust the values
of model parameters to experimental data. In Sec. IV, we
discuss our results and in Sec. V we give a short summary
and conclusion.

II. FORMALISM OF THE ISOBAR MODEL

In this study, we use an isobar model where the ampli-
tude is constructed from effective meson-baryon Lagrangians.
The nonresonant part of the amplitude consists of exchanges
of the ground-state hadrons (Born terms) and exchanges of
resonances in the t (K∗ and K1) and u channel (� and � res-
onances), so-called non-Born terms. The resonant part of the
model is given by s-channel exchanges of nucleon resonances
with masses from around the threshold of the process to ap-
proximately 2.2 GeV. The contributions beyond this tree-level
order, such as rescattering or interactions in the final state, are
neglected in this approach.

Since the exchanged particles are not point-like, we in-
troduce a hadronic form factor in the strong vertex. Besides

accounting for the extended structure of exchanged particles,
the role of the hadronic form factors is to regularize the am-
plitude at large energies. Too large a contribution of the Born
terms to the cross sections is one of the characteristic features
of the isobar-model description of the p(γ , K+)� process.
Introducing hadronic form factors in the strong vertices is one
way to deal with this issue. The other way of suppressing Born
terms is to introduce exchanges of hyperon resonances in the u
channel. These resonances, which we pay special attention to
in this paper, can also play an important role in the dynamics,
as shown, e.g., in the Saclay-Lyon model [8]. What is more,
the presence of hyperon resonances can substantially improve
the agreement of the model prediction with data, reduce the
χ2 value, and shift the value of the hadron cut-off parameter
to a harder region.

The process of photoproduction of kaons occurs in the so-
called third nucleon resonance region, where there are plenty
of excited states of the nucleon and none of these resonances
dominates. Therefore, we have to take into account a priori
more than 20 nucleon, kaon, and hyperon resonances. This
leads to a large number of resonance combinations that de-
scribe the data in an acceptable way with a reasonably small
χ2. In order to reduce the amount of acceptable models, we
impose constraints on the values of the coupling constants in
the K�N and K�N vertices, relating them to the well-known
πNN value by means of the SU(3) symmetry [31].

One of the most important ingredients of our model
is the consistent formalism for the exchange of high-spin
resonances. The Rarita-Schwinger description of high-spin
fermion fields includes nonphysical degrees of freedom which
are connected to their lower-spin content. If the Rarita-
Schwinger field is off its mass shell, the nonphysical parts
can, in principle, participate in the interaction, which is the
reason to call it “inconsistent”. In our work, we use inter-
action Lagrangians which are invariant under the local U(1)
gauge transformation of the Rarita-Schwinger field [33,34].
This property then removes all nonphysical contributions of
lower-spin components from the amplitude.

Since in the isobar model we construct the amplitude with
tree-level Feynman diagrams only, the unitarity is broken. In
order to restore it, we use the energy-dependent decay widths
of the nucleon resonances. The energy dependence of the
width is given by the possibility of a resonance to decay into
various open channels.

As the purpose of the current paper is not to reintroduce
our model, see Refs. [31,35] for more details.

III. FITTING PROCEDURE

In both BS1 and BS2 models there is a significant overlap
in the set of nucleon resonances but also a substantial differ-
ence in the set of hyperon resonances (for details, see Table II
in [31]), which leads to a different description of background.

In the BS1 model, there is only one hyperon resonance
[�(1520)3/2−] with its couplings below one (in the absolute
value), the rest of the hyperon couplings rise well above
one. Similarly, in the BS2 model there is only one hyperon
resonance [�(1940)3/2−] whose couplings are below one,
the remaining hyperon resonance’s couplings are above one.
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From what we see, hyperon resonances whose couplings do
not rise above one are spin-3/2 resonances. It is typical for
couplings of spin-1/2 hyperon resonances to acquire values
well above one.

Up to now, the general approach in dealing with the high
values of the hyperon couplings, that was also followed in
[31], has been to impose constrains on their values during the
error minimization procedure. The regularization approach
that we propose in the current paper provides a less arbitrary
solution to this problem.

A. Ridge regularization

As already mentioned, regularization is the standard ap-
proach used in machine learning in order to prevent a model
from overfitting the data [36,37]. This is achieved by adding
to the error function a penalty term that contains powers of
the absolute values of the parameters. The regularized error
function thus becomes

χ2
P = χ2 + P(λ) (1)

with

χ2 =
N∑

i=1

[di − pi(w1, . . . ,wm)]2

(
σdi

)2 , (2)

the ordinary χ2 error function, where di represents a data
point, pi the corresponding prediction of the model, depend-
ing on a set of parameters {w1 . . . wm}, and σdi the error
connected with each measurement. The penalty term

P(λ) = λ

m∑

j=1

|w j |q, (3)

contains an Lq norm of the parameter vector and, in effect,
converts the problem of ordinary error minimization to one
of constrained minimization, where the parameters are not
allowed to take arbitrarily large (absolute) values that would
cause the model to fit the noise in the sample.

The regularization parameter λ determines the magnitude
of suppression of the parameter values, while the power q
determines its character. In the two most commonly used
cases q = 1 and q = 2—known in the literature as LASSO
(least absolute shrinkage and selection operator) and Ridge
regression, respectively—the constraint affects the position of
the minimum differently.

As can be seen in Fig. 1, with LASSO, due to the geometry
of the constraint, some parameters are forced to take zero
values, while with Ridge they approach, but do not become
exactly zero. This tendency of LASSO to drive some parame-
ters to zero, thus favoring sparser models, makes it a suitable
tool for model selection [38–41].

Ridge, on the other hand, shrinks the values of the pa-
rameters, without annihilating them, so their number is not
affected. The penalty term can also have 1 < q < 2 and thus
combine features of both LASSO and Ridge, without the
problems that arise from the points of nondifferentiability
encountered in LASSO [37]. One reason Ridge is more rel-
evant in our case than LASSO, is that the set of resonances
included in the BS2 model have been chosen according to a

FIG. 1. Schematic illustration of the effect of LASSO and Ridge
regularization on the optimal parameter values. The ellipses repre-
sent the contours of the error function with the free minimum in
the middle, while the colored area around the origin represents the
constraint. The point w∗ = (w∗

1 , w
∗
2 ) is the constrained minimum,

and it can be seen that in the case of LASSO w∗
1 = 0, while with

Ridge w∗
1 ≈ 0.

previous model selection study which had been motivated by
a robust Bayesian analysis [42]. The second model that we
use to demonstrate this technique is a variant of BS2 based on
results from Ref. [29].

Therefore, the penalty term that we used in our study is
specifically written as

P(λ) = λ4
m∑

j=1

g2
j, (4)

where g j are the couplings of the resonances included in our
model and m is the number of couplings. Please note that the
number of parameters exceeds the number of resonances since
a spin-1/2 resonance introduces one free parameter whereas a
spin-3/2 resonance introduces two free parameters.

The presence of the regularization term introduces some
bias in the model and will increase the error anyway; however,
if λ is too large the penalty on the parameters will be too
high, causing the model to underfit the data, while if it is too
small it will fail to prevent overfitting the data. Apparently, the
optimal value of λ must represent a balance between these two
extremes. This is done by examining a set of λ values from
an appropriately chosen range and applying cross validation
for each value, as we will see in the next section. Using λ4

as a regularization parameter and varying λ in equidistant
steps, for values smaller than one, allows us to focus more
on the region of small λ, which is more relevant in our
case.

B. Cross validation

Cross validation is a model assessment tool, whereby the
performance of a model is evaluated according to how well
it describes new data, i.e., data that have not been used for
fitting. To that end, the data set is split randomly into a training
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FIG. 2. Schematic illustration of the evolution of the training and
validation errors with increasing model complexity. Please note that
the regularization parameter λ increases from right to left.

set used to fit the model and a validation set used only to test
the quality of the fitting. The model with the lowest validation
error is the preferred one.

Even though Ridge does not produce a new model by
changing the number of parameters like LASSO, it clearly
affects the model’s complexity by restraining its parameters
and the optimal λ can be chosen as the one that yields the
lowest error on the validation set. More precisely, we start
with a λmax and reduce it in steps, where in each step the
model is fitted on the training set and the resulting parameter
values are used to calculate the error on the validation set.
Those parameter values are passed as starting values in the
next step where the training set is fitted with the new value of
λ and this process is repeated until a λmin (usually λmin = 0)
is reached.

As shown schematically in Fig. 2 the training error de-
creases with decreasing λ, as the constraint on the parameters
is relaxed, while the validation (or prediction) error, which is
consistently higher, decreases up to a certain λ value, below
which it starts increasing. That is the point where the model
starts overfitting the training set and as a result is getting worse
at predicting the validation set. Thus, the minimum of the
validation error indicates the optimum value of λ.

Due to the arbitrariness in the division into training and
validation set, the technique known as k-fold cross validation
is employed. The original data set is divided into k parts of
equal size and cross validation is performed k times, using
each of the k parts for validation and the rest of the data for
training, every time.

Since each of these cross-validation runs yields a different
outcome, we end up with k different results for the train-
ing error and k different results for the validation error, for
each value of λ. The averages of these values provide esti-
mates of the training and validation errors corresponding to
the given λ. In particular, we are interested in the errors on
the validation set since their minimum will help us determine
the optimal value of λ, as demonstrated in Fig. 2. If we denote
the validation error corresponding to the lth run by CVl (λ),
then the average over all k runs, for a certain λ, can be

written as

CV (λ) = 1

k

k∑

l=1

CVl (λ) (5)

and the optimal λ, as discussed above, is

λ∗ = argmin
λ∈{λmin,...,λmax}

CV (λ). (6)

In order to take into account the uncertainty associated with
the estimation of the validation error and subsequently of the
optimal value of λ, cross validation is often accompanied by
the “one standard-error” rule. According to this rule (see [37]
and [39]), the most parsimonious model within one standard
error from the minimum of the validation error should be cho-
sen. This implies, in our case, an optimal λ that corresponds
to one standard-error above the minimum.

More precisely, after estimating the sample standard devi-
ation of the k validation errors

SD(λ) =
√

Var(CV1(λ), . . . ,CVk (λ)), (7)

the standard error is computed as

SE (λ) = SD(λ)/
√

k. (8)

Thus, the new optimal λ̃, chosen according to the ‘1-se rule’,
is such that

CV (λ̃) = CV (λ∗) + SE (λ∗). (9)

Figures 4 and 5, demonstrate the application of the ‘1-se rule’
in two different instances.

C. Experimental data

In the fitting procedure, we have used experimental data
on differential cross sections from the CLAS Collaboration
[15,43], which were limited in (center-of-mass) energy up to
W = 2.355 GeV, differential cross sections from the LEPS
Collaboration [44] and we also used the differential-cross-
section data collected in Ref. [6]. Moreover, we used the
hyperon polarization P data from the CLAS Collaboration
[43], which were limited to W = 2.225 GeV. These data,
which we used previously in order to reach the BS1 and BS2
models, were replenished with several data sets from CLAS
on photon beam polarization asymmetry �, target polariza-
tion asymmetry T , and beam-recoil polarization observables
Ox′ and Oz′ [32]. These data span the energy range from
W = 1.71 GeV to 2.19 GeV. In total, we have used 4640 data
points to fit the free parameters of our model.

Single polarization asymmetries have the form

dσ+ − dσ−

dσ+ + dσ− , (10)

where dσ denotes the differential cross section and the super-
script (+ or −) the polarization state (parallel or antiparallel)
with respect to the corresponding quantization axis. So, the
target polarization asymmetry (T ) refers to the spin projection
of the nucleon on the y axis, while the recoil polarization (P)
refers to the polarization of the hyperon on the y′ axis.
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FIG. 3. Kinematics of the p(γ , K+)� process together with
the center-of-mass reference frames before (no primes) and after
(primed) the reaction.

The photon beam asymmetry

� = dσ⊥ − dσ ‖

dσ unpol
, (11)

refers to linearly polarized photons along the x axis (⊥) and
the y axis (‖).

For the double polarization asymmetries, which are
defined as

dσ (++) + dσ (−−) − dσ (+−) − dσ (−+)

dσ (++) + dσ (−−) + dσ (+−) + dσ (−+)
, (12)

the polarizations of two particles are taken into account, which
appear as superscripts in the dσ ’s. In the case of beam-recoil
asymmetries (Ox′, Oz′ ) that we examine in this work, the pho-
tons are linearly polarized along the direction that bisects the
x and y axes, while the hyperon polarizations are along the x′
and z′ axes. The beam-recoil asymmetries (Cx,Cz) correspond
to circularly polarized photons. The kinematics of the process
together with the reference frames are shown in the Fig. 3.
A more rigorous treatment of polarization observables can be
found in Ref. [45].

IV. RESULTS AND DISCUSSION

The two fittings that we conducted using Ridge regulariza-
tion are denoted BS2r and BS2Mr and they contain different
sets of resonances (see discussion below). In both cases, we
used three-fold cross validation in order to extract the optimal
value for the regularization parameter λ and the results are
demonstrated in Figs. 4 and 5. As described in Sec. III B,
the points depicting the training and validation errors rep-
resent the averages of the three cross validation runs, for
each value of λ, while the optimum λ̃ is obtained by the
‘1-se rule’.

As can be seen in Fig. 4, in the case of BS2r, this process
leads to a value λ̃ = 0.27, while in the case of BS2Mr (Fig. 5)
λ̃ = 0.13. Using these λ values in the penalty term of Eq. (4)
and refitting the whole data set with the error function of
Eq. (1) gives the BS2r and BS2Mr results, respectively. The
corresponding versions of these two models with no regular-
ization (λ = 0) are called BS2r0 and BS2Mr0.

FIG. 4. Results of three-fold cross validation to determine the
optimal λ value used in the BS2r fit. The inset shows the position of
the minimum of the validation error, which is not visible in the plot.
The colored area shows the errors associated with the estimation of
the validation error, while the error bar around the minimum and the
dashed lines illustrate the ‘1-se rule’, which points to λ̃ = 0.27.

In the BS1 and BS2 models of Ref. [31] the couplings of
spin-1/2 hyperon resonances acquire values around or above
10. With the help of Ridge regression, we were able to shrink
most of them by an order of magnitude. The couplings of
the spin-3/2 hyperon resonance �(1940) are decreased (in
absolute values) as well; they change from g1 = −0.86 and
g2 = 0.18 to g1 = −0.69 and g2 = 0.079, respectively. In this

FIG. 5. Same as Fig. 4, but for the determination of the λ value
used in the BS2Mr fit (λ̃ = 0.13).
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TABLE I. Properties of considered resonances in the BS2r and BS2Mr fits. We show masses, widths, and couplings of the included
resonances. Labels of the resonances are the same as in [31].

Label Resonance Mass (MeV) Width (MeV) g1 (BS2r) g2 (BS2r) g1 (BS2Mr) g2 (BS2Mr)

K∗ K∗(892) 891.7 50.8 −0.163 ± 0.002 0.045 ± 0.003 −0.098 ± 0.001 −0.249 ± 0.005
K1 K1(1272) 1272 90 0.286 ± 0.004 −1.042 ± 0.010 0.521 ± 0.006 −0.550 ± 0.008
N3 N (1535) 1/2− 1530 150 0.002 ± 0.005 – 0.684 ± 0.004 –
N4 N (1650) 1/2− 1650 125 −0.078 ± 0.002 – −0.287 ± 0.001 –
P5 N (1860) 5/2+ 1860 270 −0.014 ± 0.001 0.006 ± 0.001 0.057 ± 0.001 −0.060 ± 0.001
N7 N (1720) 3/2+ 1720 250 0.145 ± 0.002 0.0001 ± 0.0004 0.089 ± 0.002 0.027 ± 0.0004
P4 N (1875) 3/2− 1875 265 0.116 ± 0.002 0.112 ± 0.001 0.360 ± 0.002 0.367 ± 0.002
P2 N (1900) 3/2+ 1920 200 −0.028 ± 0.001 −0.005 ± 0.0003 0.025 ± 0.001 −0.031 ± 0.0003
P3 N (2050) 5/2+ 2050 220 −0.012 ± 0.0002 0.012 ± 0.0002 −0.007 ± 0.0001 0.005 ± 0.0001
N9 N (1685) 5/2+ 1685 130 0.046 ± 0.001 −0.038 ± 0.001 −0.081 ± 0.001 0.077 ± 0.001
N6 N (1710) 1/2+ 1710 140 −0.141 ± 0.004 – −0.358 ± 0.004 –
L1 �(1405) 1/2− 1405 51 2.624 ± 0.078 – 12.52 ± 0.12 –
S1 �(1660) 1/2+ 1660 100 −5.925 ± 0.126 – −10.47 ± 0.50 –
L2 �(1405) 1/2+ 1600 150 −16.34 ± 0.44 –
L4 �(1800) 1/2− 1800 300 −1.409 ± 0.161 –
S4 �(1940) 3/2− 1940 220 −0.685 ± 0.022 0.079 ± 0.005 −3.08 ± 0.04 0.408 ± 0.010
L5 �(1810) 1/2+ 1810 150 −2.83 ± 0.76 –

case the difference is not so large as in the case of spin-1/2
hyperon couplings. In general, it can be said that the larger
couplings get penalized more. The results of this fitting are
summarized in Table I. Compared to its unregularized version
(BS2r0), the χ2 error in BS2r is increased by ≈9%, while the
hyperon couplings are reduced on average by 70%.

Motivated by Ref. [29] we found that when we replace
�(1800)1/2− (L4) that is used in the BS2 model with
�(1600)1/2+ (L2) and �(1810)3/2+ (L5), while keeping the
rest of the resonance set from the BS2 model, we describe
the polarization observables in some kinematic regions much
better and reproduce the data very aptly. This set of resonances
is used in the BS2Mr and BS2Mr0 fits. In the fit without
regularization (BS2Mr0) the hyperon couplings acquire ex-
tremely large values, which decrease substantially after the
introduction of regularization in BS2Mr. Figure 6 shows the
effect of regularization in the absolute values of the couplings.
One sees that couplings with magnitudes greater than 1 (which
correspond to the kaons and the hyperons) get decreased by
over 90%. The rest of the couplings (corresponding to the nu-
cleons) undergo more moderate reductions, or even increase
in some cases, but still remain within physically acceptable
limits.

In the MINUIT fitting procedure, the variable parameters
with limits undergo a transformation which is nonlinear and
thus it is recommended to avoid constraining the parameters
if it is not needed [46]. It is the Ridge regression which can
help us preventing this issue as the penalty function imposed
on the parameters restricts their values instead of the im-
posed limits. If we let the hyperon couplings vary freely, they
tend to acquire large values leading to large contributions of
corresponding amplitudes. The tool to suppress these contri-
butions in our model is the hadronic form factor, particularly
its cut-off parameter �; the smaller its value the stronger the
suppression. But in the fits with large hyperon couplings we
have unphysically small cut-off parameter. Before opting for

the Ridge regression technique, the only way to deal with this
problem was imposing limits on the cut-off parameter. How-
ever, once we penalize the hyperon couplings, we end up with
a model, which has not only decreased hyperon couplings but
also larger and thus more physically acceptable value of the
cut-off parameter. In general, one can therefore say that the
use of Ridge regression leads to more physically acceptable
values of the fitted parameters.

In Fig. 7, we show the photon-beam asymmetry data and
the corresponding predictions of BS2r, BS2Mr, BS2r0, and
BS2Mr0 fits. The BS2r fit captures the shape of the data rea-

FIG. 6. Relative percentage reduction in absolute values of the
resonance couplings as a function of the logarithm of their magni-
tudes, as a result of regularization. The gj values are the couplings
that result from the unregularized BS2Mr0 fitting, while g̃ j are
the corresponding values after performing Ridge regularization in
BS2Mr.
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FIG. 7. Photon-beam asymmetry data measured by CLAS [32] in comparison with the BS2r (solid line), BS2r0 (dashed line), BS2Mr
(dash-dotted line), and BS2Mr0 (dotted line) fits.

sonably well from the threshold up to around 1.9 GeV. Above
2 GeV the BS2r fit can still capture the sign and magnitude of
the data above cos θ c.m.

K = −0.5, whereas it fails to describe
data below cos θ c.m.

K = −0.5—while the data are around 0.5,
the model gives photon-beam asymmetry which is of the
same magnitude but opposite sign. Above W = 2.1 GeV the
BS2r fit cannot reproduce the peak around central angles. The
BS2r0 version behaves in a similar way, but it underestimates
the data at energies above 2.0 GeV and then above W =
2.1 GeV, where there is a peak in the data, it gives rather a dip.
Up to 2 GeV, the BS2Mr fit works in a similar fashion to the
BS2r fit, above 2 GeV it gives beam asymmetries which are
flat. Interestingly, the BS2r fit is the only fit that can reproduce
the shape in the beam-asymmetry data around W = 2 GeV.

The target polarization asymmetry data and their descrip-
tion by our fits are shown in Fig. 8. At energies below 2 GeV,
the BS2r and BS2r0 fits behave in a similar manner but above
2 GeV they can capture the shapes in the data at backward
angles giving rise to a broad peak. The two other fits, BS2Mr
and BS2Mr0, give similar description of target polarization
asymmetry data as the BS2r and BS2r0.

The beam-recoil asymmetry data, Ox′ , are compared with
our fits in Fig. 9. The BS2r and BS2r0 fits captures the data
above W = 1.9 GeV and in the forward kaon angles quite
well. A slightly different description of data can be seen from
the BS2Mr and BS2Mr0 fits. From W = 1.9 Gev they can
capture the data at forward angles and beyond 2 GeV they
give overall good description of all available Ox′ data.

Another set of beam-recoil asymmetry data, Oz′ , and re-
sults of our fits are plotted in Fig. 10. The BS2r and BS2r0 are
a bit more successful in describing Oz′ data than they are in
describing the Ox′ data as they more or less agree with the data
for W > 1.8 GeV at forward kaon angles. Reliable description
of Oz′ data at backward angles beyond 2 GeV is given by the
BS2Mr and BS2Mr0 fits.

In our analysis, we did not fit the double-polarization data
Cx and Cz measured by the CLAS Collaboration [47]. Instead,
we used these data for testing the predictive power of our
results. In Figs. 11 and 12 we collect experimental data and
model predictions on Cx and Cz, respectively. In general, we
see better agreement with the data of both the BS2Mr and
BS2Mr0 predictions than the BS2r and BS2r0 predictions,
especially in the case of Cz, Fig. 12. This may prove the supe-
riority of the BS2M set of hyperon resonances for description
of double-polarization data.

Among the hyperon resonances, the most important part is
played by the �(1405) which changes the model predictions
substantially once omitted. Without this resonance, the BS2r
fit beam asymmetries drop almost to zero and no longer give
the shape that can be seen in the data. The agreement with the
target-asymmetry and Ox′ data is also severed as the fit does
not catch the shapes in the data. Only in the case of Oz′ data the
correspondence between fit and experiment does not change
much. The other hyperon resonances which we include in
the BS2r fit, L4, S1, and S4 apparently do not play decisive
roles in the data description since when we omit them, we
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FIG. 8. Target asymmetry data measured by CLAS [32] in comparison with the BS2r (solid line), BS2r0 (dashed line), BS2Mr (dash-dotted
line), and BS2Mr0 (dotted line) fits.

FIG. 9. Double-polarization asymmetry, Ox′ , data measured by CLAS [32] in comparison with the BS2r (solid line), BS2r0 (dashed line),
BS2Mr (dash-dotted line), and BS2Mr0 (dotted line) fits.
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FIG. 10. Double-polarization asymmetry, Ox′ , data measured by CLAS [32] in comparison with the BS2r (solid line), BS2r0 (dashed line),
BS2Mr (dash-dotted line), and BS2Mr0 (dotted line) fits.

FIG. 11. Double-polarization asymmetry, Cx , data measured by CLAS [47] in comparison with predictions of the BS2r (solid line), BS2r0
(dashed line), BS2Mr (dash-dotted line), and BS2Mr0 (dotted line) fits.
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FIG. 12. Double-polarization asymmetry, Cz, data measured by CLAS [47] in comparison with predictions of the BS2r (solid line), BS2r0
(dashed line), BS2Mr (dash-dotted line), and BS2Mr0 (dotted line) fits.

notice only very slight changes in how the fit agrees with
data.

V. CONCLUSION

In this paper, we used the isobar model and studied the
photoproduction of K+� off a proton target in the resonance
region. The amplitude in the isobar model is constructed in the
tree level with help of effective meson-baryon Lagrangians. In
the corresponding Feynman diagrams we assume exchanges
of particles in their ground as well as excited states.

The most important part of this analysis lies in the en-
hancement of the fitting method. In machine learning, the
standard method to avoid overfitting the data is regulariza-
tion. In this method, a constraint is added to the χ2 which,
depending on its shape, either forces parameters to take zero
values, which can be used as a suitable model selection
tool (LASSO), or shrinks the parameters without annihilat-
ing them—a method which is known under the name Ridge
regression. In this work we used the Ridge regression and
applied this technique to our previously published BS2 model.
Our goal was not to find another model but rather to modify
overly large couplings of hyperon resonances present in the
BS2 model. With the help of Ridge, we could suppress their
values by an order of magnitude to more physically acceptable
values.

Unlike LASSO, which serves as a tool for model selection,
Ridge can be used within one’s model of choice. Apart from
the obvious benefit of preventing the couplings from obtaining

large values, a regularized model is less prone to overfitting
and therefore can generalize better to new data. We believe
that these gains more than compensate for the increase in error
that entails the use of regularization.

Subsequently, we studied the contributions of hyperon res-
onances and tried to disentangle the complicated structure
of the background to the K+� photoproduction. This led
us to replacing the �(1800)1/2− (L4) hyperon resonance
with �(1600)1/2+ (L2) and �(1810)3/2+ (L5) hyperon res-
onances which resulted into a slightly better agreement with
data in some kinematic regions. We identified the �(1405)
as the most important hyperon resonance for description of
polarization observables.

Obtaining a more realistic description of background al-
lows us to perform a more reliable analysis of the resonant
part of the amplitude, particularly on the role and importance
of the nucleon resonances.

In the near future, we would like to concentrate on the anal-
ysis of � photoproduction channels. To this end, we plan to
use both regularization methods mentioned here; LASSO for
selecting the most appropriate set of resonances contributing
to the process and Ridge, if needed, for naturally reducing the
values of fitted couplings.
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