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Reduced nuclear helicity amplitudes for deuteron electrodisintegration and other processes
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We extend the original idea of reduced nuclear amplitudes to capture individual helicity amplitudes and
discuss various applications to exclusive processes involving the deuteron. Specifically, we consider deuteron
form factors, structure functions, tensor polarization observables, photodisintegration, and electrodisintegration.
The basic premise is that nuclear processes at high momentum transfer can be approximated by tree graphs for
point-like nucleons supplemented by empirical form factors for each nucleon. The latter represent the internal
structure of the nucleon, and incorporate nonperturbative physics, which can allow for early onset of scaling
behavior. The nucleon form factors are evaluated at the net momentum transfer experienced by the given nucleon,
with use of GE for a no-flip contribution and GM for a helicity-flip contribution. Results are compared with data
where available. The deuteron photodisintegration asymmetry � is obtained with a value of �(90◦) � −0.06,
which is much closer to experiment than the value of −1 originally expected. The method also provides an
estimate of the momentum transfer values required for scaling onset. We find that the deuteron structure function
B is a good place to look, above momentum transfers of 10 GeV2.
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I. INTRODUCTION

With the advent of the upgraded electron accelerator at
the Thomas Jefferson National Accelerator Facility, scattering
experiments with polarized beams and targets at high energy
and high momentum transfer become possible. In the regime
of high momentum transfer to all relevant nucleons, quantum
chromodynamics (QCD) implies that the internal structure
of every nucleon is important. Until ab initio QCD (lattice)
calculations for nuclear scattering processes are available for
more than very simple processes, one is led to consider models
that can represent the basic physics.

One such approach is the reduced nuclear amplitude
(RNA) analysis pioneered by Brodsky and Chertok [1]. In
addition to their application to a generic deuteron form fac-
tor, the approach has been applied to deuteron disintegration
[2], pion photoproduction [3], and photodisintegration of 3He
[4]. As originally developed, a nuclear process was mod-
eled as a tree-level amplitude multiplied by a generic form
factor for each nucleon, with each form factor evaluated at
the net momentum transferred to that nucleon. In order to
model the behavior of polarization observables [5–15], we
extend this approach to a reduced nuclear helicity amplitude
(RNHA) method to combine a tree-level helicity amplitude for
point-like nucleons with the appropriate form factor for each
nucleon. When the nucleon does (not) flip its helicity, we use
the electric (magnetic) form factor GEN (GMN ). As a check on
the procedure, virtual photon absorption by a single nucleon
in the RNHA approach is consistent with the definitions of
GEN and GMN .

A caveat in applications of the RNA approach is that the
normalization is not determined by the model and is fixed to
data at infinite momentum transfer by the coefficient of the
leading power-law behavior. This means that the normaliza-
tion cannot be determined in practice; fitting to a data point at
some intermediate kinematics will give the wrong normaliza-
tion and the wrong magnitude at higher momentum transfer.
Instead, ratios need to be considered, so that the normalization
becomes irrelevant.

The primary criterion for the asymptotic region is in the
momentum transfer to each nucleon. For every nucleon in the
process, the momentum transfer must be above some common
threshold, which is at least 1 GeV2. For example, for deuteron
photodisintegration, the momentum transfer to a nucleon is
−tN = −(pN − p/2)2, where pN is the final four-momentum
of the nucleon and p is the initial deuteron momentum. When
expressed in terms of the photon energy Eγ and the final
nucleon angle θ , the constraint to be above 1 GeV2 becomes
[16]

mN Eγ

[
1 −

√
Eγ

mN + Eγ

| cos θ |
]
� 1 GeV2. (1.1)

This relationship is illustrated in Fig. 1. Notice that away from
90◦, the lower limit is quite high. For electrodisintegration,
only the most recent data [17,18] begins to reach this thresh-
old.

Here, we will focus on deuteron processes, including
photodisintegration and electrodisintegration. For recent re-
views of deuteron studies at high momentum transfer, see
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FIG. 1. Angular dependence of the scale for large momentum
transfer in deuteron photodisintegration.

[16,19,20]. Elastic electron scattering data at high momentum
transfer is presented in [21–25]. Recent photodisintegration
data can be found in [26–29], and for electrodisintegration
data, in [17,18,30–33]. Other analyses of deuteron processes
include hidden-color contributions to deuteron form fac-
tors [34], the hard rescattering mechanism [35], quark-gluon
strings [36], the Moscow NN potential [37], and anti–de Sitter
(AdS)/QCD models [38,39].

One recent experiment [17] used the 10.6 GeV electron
beam at JLab and the Hall C spectrometers to measure
electron scattering from a liquid deuterium target. The final
electron and the proton were detected, with the kinematics
restricted to the exclusive process ed → e′ pn. One spectrom-
eter measured the final electron at a nominal 12.2◦ degrees
from the beam direction, with a momentum of 8.5–9.1 GeV
such that the recorded events had a distribution of momentum
transfer squared reaching 5 GeV2. The events studied were
taken from a bin of 4.5 ± 0.5 GeV2 in the tail of the distri-
bution; however, the nominal transfer was 4.2 GeV2, because
the majority of the events were in the lower half of the bin.

A second spectrometer measured the proton momentum
at a range of angles to the beam direction, tuned to select
events where the (missing) neutron had an angle relative to the
direction of the momentum transfer that fell within a chosen
bin. In the one-photon exchange approximation, which we
assume, the momentum transferred is, of course, the photon
momentum. The published neutron angles are binned at 35◦,
45◦, and 75◦, with the first two selected to minimize final-state
interactions. For our purposes, the importance of these two
angles is that the momentum transferred to the neutron reaches
1 GeV in a zero-binding approximation, so that, rather than
focus on the internal structure of the deuteron, we can consider
the response to a large momentum transfer to all the nucleons
involved and we can see that experiments may be approaching
the threshold where our model can be applied.

The RNHA model is constructed in detail in Sec. II for two-
nucleon processes. In the remainder of the paper, we consider
various processes for the deuteron. In Sec. III, the form fac-
tors,1 structure functions, and tensor polarization observables
of elastic electron scattering from the deuteron are obtained.
Photodisintegration and electrodisintegration are analyzed in

1For discussion specifically in terms of perturbative QCD, see [34].

Secs. IV and V. Within the zero-binding approximation, elas-
tic scattering and photodisintegration live at edges of the
kinematic range of electrodisintegration and are essentially
special cases that provide introductory examples. Section VI
contains a summary of the results and suggestions for addi-
tional applications. Many details of the electrodisintegration
helicity amplitudes are left to an Appendix.

II. CONSTRUCTION OF THE MODEL

The basic process for a two-nucleon system to absorb a
photon and exchange momentum between the nucleons is
illustrated in Fig. 2. These diagrams are modeled on the prim-
itive process of γ ∗ f f → f f , with f representing a point-like
nucleon.2 The structure of each nucleon is then introduced
by combining the Feynman amplitude for each diagram with
the appropriate form factor for each nucleon, evaluated at
the net momentum transfer for that nucleon. For a deuteron
process in the zero-binding limit, the initial nucleons share the
initial deuteron momentum p equally, so that pp = pn = p/2.
We also neglect the nucleon mass difference, setting mp =
mn ≡ m. The distinction between different photon-absorption
processes is then in the nature of the photon, being either real
or virtual, and in the outcome for the final nucleons, bound as
a deuteron or not.

The tree-level amplitudes for the four diagrams in Fig. 2
are

Mν
a (λ′

p, λ
′
n, λp, λn)

= Aμν
p (p/2 + q; λ′

p, λp)
1

(p′
n − p/2)2

Bnμ(λ′
n, λn), (2.1)

Mν
b (λ′

p, λ
′
n, λp, λn)

= Aνμ
p (p′

p − q; λ′
p, λp)

1

(p′
n − p/2)2

Bnμ(λ′
n, λn), (2.2)

Mν
c (λ′

p, λ
′
n, λp, λn)

= Aμν
n (p/2 + q; λ′

n, λn)
1

(p′
p − p/2)2

Bpμ(λ′
p, λp), (2.3)

Mν
d (λ′

p, λ
′
n, λp, λn)

= Aνμ
n (p′

n − q; λ′
n, λn)

1

(p′
p − p/2)2

Bpμ(λ′
p, λp), (2.4)

where

Aμν
N (p; λ′

N , λN ) = ū′
Nγ μ � p + m

p2 − m2
γ νuN ,

Bμ
N (λ′

N , λN ) = ū′
Nγ μuN (2.5)

with uN (ū′
N ) the initial (final) spinor for the nucleon N

with helicity λN (λ′
N ). The subamplitude AN represents the

2In [2], the primitive process was γ ∗qq̄ → qq̄, with q correspond-
ing to a point-like proton and q̄ to a point-like neutron, and direct
interaction of the photon with the neutron was neglected. Here, we
amend and extend this, to retain information about helicity states of
the fermions and include photon absorption by the neutron.
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FIG. 2. Tree graphs for deuteron processes that absorb a photon of momentum q and helicity λγ . The initial (final) nucleon momentum
and helicity are pN (p′

N ) and λN (λ′
N ), with N = p or n. The two nucleons exchange momentum via a vector particle. The four diagrams differ

in the nature of the photon-absorbing nucleon and the order of this absorption and momentum transfer between nucleons.

fermion line that absorbs the photon, and BN represents the
other fermion line. Calculation of these subamplitudes can be
checked against the trace theorem for sums over helicities:

∑
λN ,λ′

N

Aν ′μ′∗
N (p; λ′

N , λN )Aμν
N (p; λ′

N , λN )

= Tr

[
γ ν ′ � p+ m

p2 − m2
γ μ′

(� p′
N + m)γ μ � p + m

p2 − m2
γ ν (� pN + m)

]
,

(2.6)∑
λN ,λ′

N

Bμ′∗
N (λ′

N , λN )Bμ
N (λ′

N , λN )

= Tr[γ μ′
(� p′

N + m)γ μ(� pN + m)]. (2.7)

The full amplitude is constructed from the MX by combin-
ing them with form factors for each nucleon. For a deuteron
with initial helicity λd , we have

Mν (λ′
p, λ

′
n, λd ) =

∑
λp,λn

Cλd
λpλn

⎡
⎣ ∑

X=a,b,c,d

Mν
X (λ′

p, λ
′
n, λp, λn)

⎤
⎦

× Gpλ′
pλp

(
Q2

p

)
Gnλ′

nλn

(
Q2

n

)
, (2.8)

where Q2
N = −(p′

N − pN )2,

Cλd
λpλn

=
{

δλp± 1
2
δλn± 1

2
, λd = ±1,

1√
2

(
δλp

1
2
δλn− 1

2
+ δλp− 1

2
δλn+ 1

2

)
, λd = 0,

(2.9)

and

GNλ′λ =
{

GEN , λ′ = λ,

GMN , λ′ = −λ.
(2.10)

The form factors GEN and GMN represent the internal structure
of the nucleons. They can be represented by data or empirical
fits. For simplicity, we use the fits [40]

GE p �
(

1 + Q2
N

m2
0

)−2

, GM p � μpGE p,

GMn � μnGE p, GEn � − μnτ

1 + 5.6τ
GE p, (2.11)

where m2
0 = 0.71 GeV2, τ = Q2

N
4m2 , μp = 2.79, and μn =

−1.91. To limit the analysis to a single mass scale, we take
the parameter m0 to be proportional to the nuclear mass, with
m2

0 = 0.80 m2. We do not attempt to compute or assign an
overall normalization to Mν , and the running of the strong
coupling constant is not included.

The initial nucleon spinor, for a deuteron traveling along
the negative z direction, is [41]

uN = � p/2 + m√
Ed/2 + m

(
φ(λN )(−ẑ)

0

)
(2.12)

with

φ(1/2)(−ẑ) =
(

0
1

)
, φ(−1/2)(−ẑ) =

(
1
0

)
. (2.13)
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FIG. 3. Kinematics for elastic electron-deuteron scattering in the
Breit frame. The photon travels along the positive z direction, and the
deuteron comes from the right, along the negative z direction.

The final nucleon spinor is

u′
N = � p′

N + m√
E ′

N + m

(
φ(λ′

N )( p̂′
N )

0

)
(2.14)

with

φ(1/2)( p̂′
N ) =

(
cos(θN/2)

eiφN sin(θN/2)

)
,

φ(−1/2)( p̂′
N ) =

(
−e−iφN sin(θN/2)

cos(θN/2)

)
, (2.15)

where θN and φN are the polar and azimuthal angles of the
outgoing momentum of the particular nucleon.

As discussed in the Introduction, the overall normalization
of the RNHA amplitude is unknown. For comparison with
data, we consider quantities which are themselves ratios or
a ratio of the model to data.

III. ELASTIC ELECTRON SCATTERING

A. Form factors

The three deuteron form factors, GC , GM , and GQ, are read-
ily obtained from the hadronic helicity amplitudes of elastic
electron-deuteron scattering in the Breit frame [42]. The kine-
matics are shown in Fig. 3. The photon four-momentum is q =
(0, 0, 0, qz ) and the initial (final) deuteron four-momentum
is p = (Ed , 0, 0,−qz/2) (p′ = (Ed , 0, 0, qz/2)), with q2

z = Q2

and Ed =
√

Q2/4 + m2
d . In the zero-binding limit,3md = 2m

and the individual nucleon four-momenta are pp = pn = p/2
and p′

p = p′
n = p′/2. The hadronic matrix elements are given

by

Gμ

λ′
d ,λd

=
∑
λ′

p,λ
′
n

C
λ′

d
λ′

pλ
′
n
Mμ(λ′

p, λ
′
n, λd ). (3.1)

The initial spinors are as in Eq. (2.12); the final spinors are
specified by

u′
N = � p′/2 + m√

Ed/2 + m

(
φ(λ′

N )(ẑ)
0

)
. (3.2)

3The difference between the proton and neutron masses is neglected
in addition to the deuteron binding energy, the two being of the same
order.

The three form factors are then extracted as [42,43]

GC = −1

2md
√

1 + η

G+
00 − 2G+

+−
3

, GM = 2

2md
√

1 + η

Gx
+0√
2η

,

GQ = −1

2md
√

1 + η

G+
00 + G+

+−
2η

(3.3)

with η ≡ Q2

4m2
d

and the + superscript denoting the light-front

sum of the 0 and z components. For the helicity matrix ele-
ments, the model yields the following Q2 dependence:

G+
00 = 0.5588Nm

(
m

Q

)9[
1 + 129.1

m2

Q2
+ O

(
m4

Q4

)]
, (3.4)

G+
+− = −69.85Nm

(
m

Q

)11[
1 + 4.8

m2

Q2
+ O

(
m4

Q4

)]
, (3.5)

Gx
+0 = 8.851Nm

(
m

Q

)10[
1 + 4.8

m2

Q2
+ O

(
m4

Q4

)]
(3.6)

with N the unknown normalization. The factor of m/Q asso-
ciated with each helicity flip [44] is clearly evident. For the
form factors, we find

GC = − 0.5588√
1 + η

N
12

(
m

Q

)9[
1 + 379.1

m2

Q2
+ O

(
m4

Q4

)]
,

(3.7)

GM = 8.851√
η(1 + η)

N
2
√

2

(
m

Q

)10[
1 + 4.8

m2

Q2
+ O

(
m4

Q4

)]
,

(3.8)

GQ = − 0.5588

η
√

1 + η

N
8

(
m

Q

)9[
1 + 4.086

m2

Q2
+ O

(
m4

Q4

)]
.

(3.9)

The leading ± signs are as expected for large Q2.
We have left the kinematic factor η = Q2/16m2 without

substitution, because there can be three regimes for Q2. In
addition to Q2 large or small, there can be an intermediate
region where Q2 is large but η is not. Such an intermediate
regime does exist for GM and GQ, where the coefficients of
the nonleading terms are small enough for this correction to
be small while η is also small. For GC , this is not the case,
because the coefficient of the nonleading term is large enough
to require a Q2 value for which η is also large. In the interme-
diate regime, we obtain

GM ∼
(

m

Q

)11

, GQ ∼
(

m

Q

)11

, (3.10)

and for the large-η regime

GC ∼
(

m

Q

)10

, GM ∼
(

m

Q

)12

, GQ ∼
(

m

Q

)12

. (3.11)

Ratios of these form factors at very large Q2 can be
compared with the tree-level ratios for a point-like spin-one
particle, such as the W +, which are [43]

GC

GQ
= 2

3
η − 1,

GM

GQ
= −2. (3.12)
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FIG. 4. Ratios GC/GQ − 2η/3 (dashed lines) and GM/GQ (solid
lines) for the model deuteron form factors.

Such behavior is immediately reproduced for form factors
separated according to a Drell-Yan frame [45], with the
assumption of strict G+

00 dominance [43]. In terms of our
hadronic matrix elements, we have

GC

GQ
= 2

3
η − 2η

G+
+−

G+
00 + G+

+−
,

GM

GQ
= −2

√
2η

Gx
+0

G+
00 + G+

+−
.

(3.13)

As already observed in [43], these Breit-frame ratios cannot
both be resolved by simply assuming G+

00 dominance. From
our model, we obtain

GC

GQ
= 2

3
η + 15.6 + O

(
m2

Q2

)
,

GM

GQ
= −11.2 + O

(
m2

Q2

)
.

(3.14)

The leading 2
3η is just kinematic. The deviations of 15.6 and

−11.2 from −1 and −2, respectively, are due to nonleading
contributions multiplied by powers of η. Similar deviations
will arise for calculations done in the Drell-Yan frame, be-
cause η factors again interfere with strict G+

00 dominance.
Plots of these ratios are shown in Fig. 4.

B. Structure functions

Experiments designed to extract these form factors mea-
sure cross sections and polarization observables in elastic
electron-deuteron scattering. The unpolarized cross section

dσ

d�
∝ S, S ≡ A(Q2) + B(Q2) tan2(θe/2) (3.15)

depends on the electron scattering angle θe and two structure
functions

A(Q2) ≡ G2
C + 8

9η2G2
Q + 2

3ηG2
M, (3.16)

B(Q2) ≡ 4
3η(1 + η)G2

M . (3.17)

These have been measured at the highest Q2 yet attained at
JLab [22–24], and A has been measured at comparable Q2 at
SLAC [21]. However, these do not yet reach the Q2 values

FIG. 5. Data for the deuteron structure function A(Q2) divided
by the model function, including an arbitrary normalization. Experi-
mental values are taken from [23] (circles) and [24] (squares).

needed for a definitive comparison. Figures 5 and 6 show
plots of the data divided by the model, including an arbitrary
normalization factor.

In our model, expansions of these functions in inverse
powers of Q2 are

A(Q2) = 0.1041N 2

(
m

Q

)20[
1 + 1246

m2

Q2
+ O

(
m4

Q4

)]
,

(3.18)

B(Q2) = 13.06N 2

(
m

Q

)20[
1 + 9.6

m2

Q2
+ O

(
m4

Q4

)]
. (3.19)

Because the expansion for GC is valid only for large η, we
have used the explicit form of η in constructing the expansion
for A. The function B is independent of η; the leading factor
of η(1 + η) in its definition exactly cancels against factors
in the relationship of GM to hadronic matrix elements. The
expansion for B converges much faster than the expansion
for A, and the leading Q2 behavior is dominant for Q2 �
10 GeV2 only for B. For A, one must wait until impossibly
large Q2, which enters a regime where the collective quark

FIG. 6. Data for the deuteron structure function B(Q2) divided
by the model function, including an arbitrary normalization. Experi-
mental values are taken from [22].
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FIG. 7. Ratio of B to A for the model deuteron structure functions.

substructure is important, including hidden-color effects [34],
and the point-like approximation used in our model is invalid.

In [22] the large Q2 behavior of B is quoted as being Q−24

from perturbative QCD. This faster fall off compared to A is
attributed to the extra suppression of the helicity flip involved
in GM . However, there are other compensating factors, and,
just as in our model, the behavior of B should be Q−20, which
is the same as A. In Fig. 7 we plot the ratio of B to A for a
large range of Q2. This ratio becomes constant at very large
Q2. Although the plots begin at low Q2, there is nothing in
the model that could reproduce diffractive minima, hence the
smooth appearance.

C. Tensor polarization observables

Experiments can also extract tensor polarization observ-
ables [20,25]

t20 ≡ − 1√
2S

[
8

3
ηGCGQ + 8

9
η2G2

Q

+ 1

3
η
(
1 + 2(1 + η) tan2(θe/2)

)
G2

M

]
, (3.20)

t21 ≡ 2η√
3S cos(θe/2)

√
η + η2 sin2(θe/2)GMGQ, (3.21)

t22 ≡ − η

2
√

3S
G2

M . (3.22)

The highest Q2 measurements of these were also done at JLab
[25]. When η is held explicit, expansions in m/Q are

t20 = −
√

2 + 1064[1 + 2(1 + η) tan2(θe/2)]

(
m

Q

)2

+O
(

m4

Q4

)
, (3.23)

t21 = 38.8 sec(θe/2)
√

η + sin2(θe/2)
m

Q

+ sec(θe/2)
√

η + sin2(θe/2)[48606 + 77869(1 + η)

× tan2(θe/2)]

(
m

Q

)3

+ O
(

m4

Q4

)
, (3.24)

FIG. 8. Deuteron tensor polarization observables t20 (solid line),
t21 (dashed line), and t22 (dotted line) as computed in the model at
an angle of θe = 0◦. The asymptotic value of t20(0◦) is −√

2, as
predicted by perturbative QCD [44,46].

t22 = −434.5

(
m

Q

)2

+ [544703 + 872133(1 + η)

× tan2(θe/2)]

(
m

Q

)4

+ O
(

m6

Q6

)
. (3.25)

While at very large Q2, they are

t20 = −
√

2+ 133 tan2(θe/2)+ 1064[1 + 2 tan2(θe/2)]

(
m

Q

)2

+O
(

m4

Q4

)
, (3.26)

t21 = 1217 sec(θe/2) sin(θe/2)[tan2(θe/2) − 0.007972]

+114351[0.829452 − cos θe + 0.191998 cos(2θe)

−0.0214498 cos(3θe)] sin3 θe sin(θe/2)

(
m

Q

)2

+O(
m4

Q4
), (3.27)

t22 = −[434.5 − 54508 tan2(θe/2)]

(
m

Q

)2

+ [544703 + 872133 tan2(θe/2)]

(
m

Q

)4

+ O
(

m6

Q6

)
.

(3.28)

The coefficients of nonleading terms are quite large. Thus,
very large Q2 is required for the leading term to be dominant,
well beyond any available data. The limit of −√

2 for t20 at
θe = 0◦ was an early prediction of perturbative QCD [44,46].
However, as argued elsewhere [43], this value is obtained only
at very large Q2, and the value is quite different for small
η. Figures 8 and 9 show plots of these observables at angles
of 0◦ and 30◦, respectively. We also compare with data [25]
in Figs. 10–12. At these ‘small’ values of Q2, only t22 is
consistent with data, something which is likely accidental with
both data and model values near zero.
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FIG. 9. Same as Fig. 8 but for an angle of θe = 30◦.

IV. PHOTODISINTEGRATION

In the photodisintegration of a deuteron, a real photon
is absorbed and the two constituent nucleons emitted. This
process is depicted in Fig. 13. The initial deuteron and photon
four-momenta in the center-of-mass (c.m.) frame are p =
(Ed , 0, 0,−qz ) and q = (qz, 0, 0, qz ), where the incident pho-
ton is taken along the positive z axis. The final proton and
neutron four-momenta are p′

p = (E ′
p, 
p ′

p) and p′
n = (E ′

n, 
p ′
n),

with θp and φp the polar and azimuthal angles of the final
proton. By ignoring the nucleon mass difference, we have
E ′

p = E ′
n, because momentum conservation guarantees 
p ′

n =
−
p ′

p in the c.m. frame.
In terms of the Mandelstam variable s, the c.m. energies

and momenta are

Ed = (s + 4m2)/(2
√

s), qz = (s − 4m2)/(2
√

s),

E ′
p = √

s/2, | 
p ′
p| =

√
s − 4m2/2. (4.1)

FIG. 10. Plots of the tensor polarization observable t20 of the
deuteron from both data [25] (circles) and the model (squares) con-
sidered in the text. The angle θe varies and is as follows in order of
increasing Q2: 35.6◦, 33.4◦, 29.8◦, 27.3◦, 23.0◦, and 19.8◦.

FIG. 11. Same as Fig. 10 but for t21.

The photon energy in the laboratory frame is Eγ = (s −
4m2)/4m. We will work at large s, so that momentum transfers
are large.

The standard definition of helicity amplitudes for photodis-
integration is [47]

Fi± ≡ εν (λγ )Mν (λ′
p, λ

′
n, λd ) (4.2)

with ε the polarization vector for a photon with helicity λγ and
Mν given in Eq. (2.8). The index i is associated with particular
helicity combinations as follows:

F1± = εν (1)Mν
(± 1

2 ,± 1
2 , 1

)
, F2± = εν (1)Mν

(± 1
2 ,± 1

2 , 0
)
,

(4.3)

F3± = εν (1)Mν
(± 1

2 ,± 1
2 ,−1

)
, F4± = εν (1)Mν

(± 1
2 ,∓ 1

2 , 1
)
,

(4.4)

F5± = εν (1)Mν
(± 1

2 ,∓ 1
2 , 0

)
, F6± = εν (1)Mν

(± 1
2 ,∓ 1

2 ,−1
)
.

(4.5)

The other helicity combinations are related to these by parity.
The helicity amplitudes can be used to compute various

polarization observables. The recoil-proton polarization Py

measures the asymmetry parallel/antiparallel to the normal

FIG. 12. Same as Fig. 10 but for t22.
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q, λγ p, λd

pp, λp

pn, λn

θn = π − θp

θp

z

FIG. 13. Kinematics for deuteron photodisintegration in the c.m.
frame, with 
q the photon momentum and 
p = −
q the deuteron mo-
mentum. The final proton and neutron momenta are 
p ′

p and 
p ′
n. The

λ’s are helicities. Coordinates are chosen such that the photon enters
along the positive z direction and the azimuthal angle φp of the proton
is zero.

ŷ ∝ 
q × 
p ′
p to the scattering plane

Py = 2Im
3∑

i=1

[F †
i+Fi+3,− + F †

i+3,+Fi−]/ f (θp), (4.6)

where f (θp) = ∑6
i=1[|Fi+|2 + |Fi−|2] is the sum of all the

helicity amplitudes squared. The transferred polarizations Cx′

and Cz′ measure asymmetries parallel/antiparallel to the x̂′ ∝

p ′

p × ŷ and ẑ′ = p̂ ′
p directions:

Cx′ = 2Re
3∑

i=1

[F †
i+Fi+3,− + F †

i+3,+Fi−]/ f (θp), (4.7)

Cz′ =
6∑

i=1

[|Fi+|2 − |Fi−|2]/ f (θp). (4.8)

The asymmetry � for linearly polarized photons is given by

� = −2Re

[∑
±

(F †
1±F3∓ − F †

4±F6∓)

− F †
2+F2− + F †

5+F5−

]/
f (θp). (4.9)

Each observable is formed as a ratio, which sets aside ques-
tions of normalization.

Because we only need to consider photons with helicity
+1, the polarization vector is always ε = − 1√

2
(0, 1, i, 0), rel-

ative to the momentum in the positive z direction. The final
Dirac spinors are

u′
N = � p′

N + m√
E ′

N + m

(
φ(λ′

N )( p̂′
N )

0

)
(4.10)

with θn = π − θp, φn = φp + π = π , and

φ(1/2)( p̂′
N ) =

(
cos(θN/2)

eiφN sin(θN/2)

)
,

φ(−1/2)( p̂′
N ) =

(−e−iφN sin(θN/2)
cos(θN/2)

)
. (4.11)

With these spinors as input, the amplitudes ενMν
X can be

evaluated in terms of Dirac matrix and spinor products and
then combined to construct the predefined amplitudes Fi±. At
large s, these RNHA predictions for the helicity amplitudes
reduce to

F1+ ∼ 4

√
2√
s

csc2

(
θp

2

)
GEn(θp)GE p(θp), F1− ∼ 0, (4.12)

F2+ ∼ 2
m

s
cot3

(
θp

2

)
[GEn(θp)GM p(θp) − GMn(θp)GE p(θp)],

(4.13)

(a) (b)

FIG. 14. Recoil proton polarization Py as a function of (a) photon energy Eγ and (b) proton angle θ . For the latter, the photon energy is 2
GeV. The solid line is the RNHA prediction; the data points are from [48,49].
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(a) (b)

FIG. 15. Same as Fig. 14 but for the transferred polarization Cx′ .

F2− ∼ 2
m

s
cot

(
θp

2

)
[GMn(θp)GE p(θp) − GEn(θp)GM p(θp)],

F3+ ∼ 0, F3− ∼ 0, (4.14)

F4+ ∼ −4
√

2
m

s
cot

(
θp

2

)
GMn(θp)GE p(θp),

F4− ∼ 4
√

2
m

s
cot

(
θp

2

)
GEn(θp)GM p(θp), (4.15)

F5+ ∼ 2√
s

cot2

(
θp

2

)
GEn(θp)GE p(θp),

F5− ∼ 2√
s

GEn(θp)GE p(θp), (4.16)

F6+ ∼ 4
√

2
m

s
cot3

(
θp

2

)
GEn(θp)GM p(θp),

F6− ∼ −4
√

2
m

s
cot

(
θp

2

)
GMn(θp)GE p(θp). (4.17)

Here GXN (θp) represents GXN (Q2) with Q2 =
mEγ [1−

√
Eγ

m+Eγ
cos θp]. From these we can calculate the var-

ious observables. Plots of the results and recent data [48–50]
are given in Figs. 14–17. Because the tree-level amplitudes are
real, Py is automatically zero. That Cx′ is of order m/

√
s, rather

than zero, is a correction to hadron helicity conservation [51].
Also, we find the asymmetry �(90◦) to be approximately
−0.06, rather than the nominal expectation [52] of −1. In
general, the trends with photon energy seem to be modestly
consistent with data.

V. ELECTRODISINTEGRATION

The kinematics of the electrodisintegration process are
shown in Fig. 18. The initial (final) momentum and helicity
of the electron are pe (p′

e) and λe (λ′
e). The intermediate

photon carries four-momentum q. The azimuthal angle φp of
the proton measures the rotation of the hadronic reaction plane
relative to the electron scattering plane.

(a) (b)

FIG. 16. Same as Fig. 15 but for Cz′ .
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(a) (b)

FIG. 17. Same as Fig. 14 but for the asymmetry �. The data points are from [50].

In the laboratory frame, with the z axis taken along the
photon three-momentum and the electron mass neglected, the
initial and final electron four-momenta are

pe = (Ee, Ee sin θe, 0, Ee cos θe),

p′
e = (E ′

e, E ′
e sin θ ′

e, 0, E ′
e cos θ ′

e) (5.1)

with E ′
e and θ̃ = θ ′

e − θe, the angle of the scattered electron
to the beam direction, being measured. The photon four-
momentum q = (Eγ , 0, 0, qz ) is just pe − p′

e, which yields

Q2 ≡ −q2 = 2EeE ′
e(1 − cos θ̃ ),

Eγ = Ee − E ′
e, qz =

√
E2

γ + Q2. (5.2)

The deuteron four-momentum is p = (md = 2m, 0, 0, 0), and
in the zero-binding limit, the initial proton and neutron four-
momenta are pp = pn = (m, 0, 0, 0). The final nucleon four-
momenta are

p′
p = (E ′

p =
√


p ′2
p + m2, | 
p ′

p| sin θp cos φp, | 
p ′
p| sin θp sin φp,

| 
p ′
p| cos θp), (5.3)

pe, λe

p ′
e, λ

′
ex

q

p ′
p, λ

′
p

p ′
n, λ

′
n

y′

x′

z, z′

y

θp

φp

θe

θ′e

z θn

θ̃

FIG. 18. Kinematics for deuteron electrodisintegration. The un-
primed axes are defined relative to the electron scattering plane, and
the primed axes relative to the final nucleon momenta. The final
proton momentum has polar angle θp and azimuthal angle φp relative
to the unprimed frame.

p′
n = (E ′

n =
√


p ′2
n + m2,−| 
p ′

n| sin θn cos φp,

−| 
p ′
n| sin θn sin φp, | 
p ′

n| cos θn). (5.4)

Within the one-photon-exchange approximation, the scat-
tering amplitude is proportional to

Med (λ′
p, λ

′
n, λ

′
e; λd , λe) = ū′

eγμue
Dμν

q2
Mν (λ′

p, λ
′
n, λd ) (5.5)

with ue (u′
e) the initial (final) spinor of the electron and Mν

given in Eq. (2.8). The numerator of the photon propagator is
the sum over photon polarizations

Dμν =
1∑

λ=−1

(−1)λε∗
μ(λ)εν (λ). (5.6)

The polarization four-vectors are4

ε(±1) = ∓ 1√
2

(0, 1,±i, 0), ε(0) = (qz/Q, 0, 0, Eγ /Q)

(5.7)
relative to the photon four-momentum q = (Eγ , 0, 0, qz ). Po-
larization observables [5–15] can then be computed from
these helicity amplitudes.

In keeping with the notation of [6,7] and [15], the differen-
tial cross section for electrodisintegration, summed over the
final electron and neutron helicities in the laboratory frame, is
[14,15]5

dσ ≡ dσ 5

dE ′d�′
ed�′

p

= mpmn| 
p ′
p|

16π3md

σMott

frec
[νLRL + νT RT + νT T RT T + νLT RLT

+ 2λeνLT ′TLT ′ + 2λeνT ′RT ′], (5.8)

4In the hadronic c.m. frame, the longitudinal polarization vector is
ε(0) = (q′

z/Q, 0, 0, E ′
γ /Q).

5In [6], h is 2λe but in [15], h is just λe, which leads to additional
factors of 2.
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where �′
e (�′

p) is the solid angle of the scattered elec-
tron (proton), σMott is the Mott cross section, frec = |1 +
(Eγ | 
p ′

p| − E ′
pqz cos θp)/(md | 
p ′

p|)| is the laboratory recoil
factor,

νL = Q4

q4
z

, νT = Q2

2q2
z

+ tan2 θ̃

2
, νT T = Q2

2q2
z

,

νLT = Q2

√
2q2

z

√
Q2

q2
z

+ tan2 θ̃

2
,

νLT ′ = − Q2

√
2q2

z

tan
θ̃

2
, νT ′ = tan

θ̃

2

√
Q2

q2
z

+ tan2 θ̃

2
, (5.9)

and θ̃ = θ ′
e − θe is the angle between the incoming and out-

going electron. The response functions RX depend upon the
hadronic helicity amplitudes and the azimuthal angle φp of the
hadronic scattering plane. The subscripts refer to the polariza-
tion of the intermediate photon, which enters on substitution
of the polarization expansion (5.6) for the numerator of the
photon propagator in the hadronic amplitude (5.5). The am-
plitude then decomposes into separate leptonic and hadronic
factors

Med (λ′
p, λ

′
n, λ

′
e; λd , λe) = −

1∑
λ=−1

ū′
e� ε∗(λ)ue

(−1)λ

Q2
εν (λ)

× Mν (λ′
p, λ

′
n, λd ). (5.10)

The leptonic factors give rise to the νX coefficients, and the
hadronic factors to the response functions in the square of
the amplitude used to construct the cross section [15]. The
subscript L(T ) indicates a purely longitudinal (transverse)
contribution, while LT is a cross term between longitu-
dinal and transverse photon helicities. The T T subscript
marks a cross term between different transverse helicities.
A prime indicates a different combination of transverse
helicities.

The response functions are computed from components of
the hadronic tensor

wλ′,λ = 2

3

∑
λ′′

p,λ
′
p,λ

′
n,λ

′′
d ,λd

ε∗
ν (λ′)Mν∗(λ′′

p, λ
′
n, λ

′′
d )ρ p

λ′′
p,λ

′
p
εμ(λ)

× Mμ(λ′
p, λ

′
n, λd )ρd

λ′′
d ,λd

(5.11)

with ρ p(ρd ) the density matrix for the proton (deuteron) he-
licity state. We construct these in the xyz coordinate system
of the electron scattering plane. The particular components
are [6]

RL = w0,0, RT = w1,1 + w−1,−1, RT ′ = w1,1 − w−1,−1,

RT T = 2Rew1,−1, RLT = −2Re[w0,1 − w0,−1],

RLT ′ = −2Re[w0,1 + w0,−1]. (5.12)

For an unpolarized target, the deuteron density matrix is
proportional to the identity, ρd = 1

3 I; similarly, if the pro-
ton helicity is not detected, ρ p = 1

2 I . We then have the

unpolarized cross section [6]

dσunpol = mpmn| 
p ′
p|

16π3md

σMott

frec
σ0,

σ0 ≡ νLRU
L + νT RU

T + νT T RU
T T + νLT RU

LT , (5.13)

where the RU
X are computed with the simple density matri-

ces. These are then computable in our model, with the basic
computation being the evaluation of ε(λγ )μMμ, which differs
from the photodisintegration calculation in only two ways: Q2

is not zero and λγ ranges over all three possibilities.
The unpolarized response functions RU

LT ′ and RU
T ′ are iden-

tically zero. With ρd replaced by 1
3 I and the form (5.7) of the

polarization vectors taken into account, Rew(0, 1) is just the
negative of Rew(0,−1), and w1,1 is equal to w−1,−1. Thus,
the inputs to RU

LT ′ and RU
T ′ , as given in Eq. (5.12), immediately

cancel.
The recent ed → e′ pn experiment at JLab [17] does not

include polarization but does begin to reach momentum
transfers sufficient to consider the RNHA approach. Once
polarization data is available, the expressions developed here
and in the Appendix can be compared.

VI. SUMMARY

We have extended the reduced nuclear amplitude ap-
proach [1,2] to helicity amplitudes and applied this model
to analysis of elastic electron-deuteron scattering, deuteron
photodisintegration, and deuteron electrodisintegration. These
are just examples of the approach, which is generally appli-
cable to exclusive nuclear processes. The primary limitation
is that, for any process, the net momentum transfer to ev-
ery nucleon must be large; therefore, as the number of
nucleons increases, the required beam energy can increase
dramatically. The primary gain is precocious scaling in
the dependence on momentum transfer. What the model (or
the original RNA approach) does not provide, though, is an
overall normalization; comparisons must be made in terms
of ratios.

By considering helicity amplitudes, many more quantities
can be studied, including polarization dependence. All three
of the deuteron’s electromagnetic form factors can be cal-
culated and from there various elastic scattering observables
can be constructed. In Sec. III we considered the standard
structure functions A and B as well as the tensor polarizations
t2m. Generally, the model implies the need for momentum
transfers larger than one would have hoped for seeing simple
perturbative QCD scaling. However, our results do imply that
the deuteron structure function B is a good place to look,
above a transfer of 10 GeV2.

The RNHA results for polarization observables in
deuteron photodisintegration, considered in Sec. IV, are
somewhat consistent with experiment. In particular, our
result for the asymmetry �, with a value of �(90◦) �
−0.06, is much better than the value of −1 originally ex-
pected [52]. Higher photon energies would, of course, be
useful.

We have also constructed the RNHA framework for analy-
sis of deuteron electrodisintegration, in Sec. V. This stands
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ready for comparison with experiment when data is avail-
able at sufficient energies. One aspect that does remain is to
consider polarization of the outgoing proton, in addition to
polarization of the beam and target.

Other processes that one might consider include deeply
virtual Compton scattering on the deuteron, pion photopro-
duction on the deuteron [3], and photodisintegration of 3He
[4]. In each case, our approach can provide not only in-
formation about helicity amplitudes but also an analysis of
nonleading momentum transfer dependence with respect to

the onset of perturbative QCD scaling. We look forward to
experiments at larger momentum transfers for all of these
processes.
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APPENDIX: ELECTRODISINTEGRATION WITH POLARIZATION

If we consider polarization for the beam and the target,6 the proton density matrix is still just ρ p = 1
2 I , but the deuteron

density matrix in the xyz frame is [6]

ρd = 1

3

⎛
⎜⎜⎜⎜⎝

1 +
√

3
2 T10 + 1√

2
T20 −

√
3
2 (T ∗

11 + T ∗
21)

√
3T ∗

22

−
√

3
2 (T11 + T21) 1 − √

2T20 −
√

3
2 (T ∗

11 − T ∗
21)

√
3T22 −

√
3
2 (T11 − T21) 1 −

√
3
2 T10 + 1√

2
T20

⎞
⎟⎟⎟⎟⎠. (A1)

For a target polarization defined relative to the beam direction, rather than the xyz system used above, the tensor polarization
coefficients TJM are related to the coefficients T̃JM defined relative to the beam [6]. If only T̃10 and T̃20 are nonzero,7 the nonzero
TJM are

T10 = cos θ̃ T̃10, T11 = − 1√
2

sin θ̃ T̃10, T20 = 1

4
(1 + 3 cos 2θ̃ )T̃20, T21 = −

√
3

8
sin 2θ̃ T̃20, T22 =

√
3

32
(1 − cos 2θ̃ )T̃20.

(A2)

The density matrix can then be written as

ρd = (
1
3 I + T̃10ρ

dV + T̃20ρ
dT

)
, (A3)

where

ρdV = 1

3

⎛
⎜⎜⎜⎜⎝

√
3
2 cos θ̃

√
3

2 sin θ̃ 0
√

3
2 sin θ̃ 0

√
3

2 sin θ̃

0
√

3
2 sin θ̃ −

√
3
2 cos θ̃

⎞
⎟⎟⎟⎟⎠ (A4)

and

ρdT = 1

3

⎛
⎜⎜⎝

1
4
√

2
(1 + 3 cos 2θ̃ ) 3

4 sin 2θ̃ 3√
32

(1 − cos 2θ̃ )
3
4 sin 2θ̃ − 1

2
√

2
(1 + 3 cos 2θ̃ ) − 3

4 sin 2θ̃
3√
32

(1 − cos 2θ̃ ) − 3
4 sin 2θ̃ 1

4
√

2
(1 + 3 cos 2θ̃ )

⎞
⎟⎟⎠. (A5)

The response functions can then be separated into unpolarized, vector, and tensor contributions as RX = RU
X + T̃10RV

X + T̃20RT
X ,

with RU
X , RV

X , and RT
X computed with ρd replaced by 1

3 I , ρdV , and ρdT , respectively.
With dσunpol defined as the unpolarized cross section, given in Eq. (5.13), the full cross section can be written as

dσ = [
1 + T̃10

(
AV

d + 2λeAV
ed

) + T̃20
(
AT

d + 2λeAT
ed

)]
dσunpol, (A6)

in terms of the single and double asymmetries

AV
d = [

νLRV
L + νT RV

T + νT T RV
T T + νLT RV

LT

]/
σ0, (A7)

AV
ed = [

νLT ′RV
LT ′ + νT ′RV

T ′
]/

σ0, (A8)

6For discussion of a polarized outgoing proton, see [7] and [15].
7The spherical tensor moments are related to the Cartesian tensor moments as T̃10 =

√
3
2 Pz and T̃20 = 1√

2
Pzz.
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AT
d = [

νLRT
L + νT RT

T + νT T RT
T T + νLT RT

LT

]/
σ0, (A9)

AT
ed = [

νLT ′RT
LT ′ + νT ′RT

T ′
]/

σ0. (A10)

For a recent summary of data, see [54].
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