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Baryon and meson masses in the Nambu–Jona-Lasinio model: A Bayesian approach
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We investigate the capabilities of the Nambu–Jona-Lasinio model to describe and reproduce fundamental
vacuum properties of quantum chromodynamics, notably the hadronic spectrum. Mesons are described as quark-
antiquark bound states at the level of the random phase approximation of the Bethe-Salpeter equation, while
baryons are characterized as quark-diquark bound states within the static approximation of the Faddeev equation.
Within a Bayesian framework, we constrain the model by phenomenologically known quantities and study the
implications on its parameters and predictions in vacuum, as well as the correlations between the two. We find
that within our framework the vacuum masses of mesons and baryons can be reasonably well reproduced. Scalar
diquarks need to be significantly bound in order to correctly reproduce the masses of the baryon octet, therefore
enforcing values of the scalar diquark coupling larger than what is suggested by the canonical Fierz values.
These findings could have important implications on the phenomenology of strongly interacting matter at high
temperature and density as well as of compact star physics.
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I. INTRODUCTION

Modeling of hadrons—and their possible composite
nature—is a challenging task because their internal structure
lies out of the realm of perturbative quantum chromodynamics
(QCD). In addition, they are confined color neutral objects,
and confinement is one of the least understood properties
of QCD. Hadrons are, however, in the center of interest of
current research on physical systems composed of strongly
interacting particles. Besides, these systems can be exposed
to a finite temperature, like the medium formed in relativistic
heavy-ion collisions, or to finite density, such as that in the
nuclear medium or the interior of neutron stars. The study
of hadrons in matter is therefore in the center of interest of
present nuclear physics.

An attractive possibility is to solve the QCD field equa-
tions on a discretized lattice using a fully numerical approach.
This idea has been very successful in extracting hadron prop-
erties, both in vacuum [1–4] and at finite temperature [5–7].
The latest lattice-QCD (LQCD) calculations for the light sec-
tor can in most cases approach the “physical point” (with
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a physical pion mass mπ ≈ 138 MeV), and the extrapola-
tion to the continuum limit can address the spectroscopy in
a rather faithful way [8–10]. However, calculations of the
baryon spectrum reaching the physical point have not been
implemented yet. In addition, LQCD calculations are com-
putationally costly, and cannot be straightforwardly extended
to finite baryon densities due to the so-called numerical sign
problem.

Another option to address hadron spectroscopy is the
application of (truncated) QCD Dyson-Schwinger and Bethe-
Salpeter equations which can accommodate both finite
temperature and density (see Ref. [11] and references therein).
Results of this approach on vacuum spectroscopy are pre-
sented in the review [12], while at finite temperature some
results for light mesons have been recently published [13,14].

In this work we take the approach of QCD-inspired models.
In particular, we would like to describe a substantial set of
hadrons—including mesons and baryons—but incorporating
the minimal set of degrees of freedom and parameters in the
model. We also would eventually like to extend the calcu-
lations to finite temperature and density (while in this work
we restrict ourselves to the vacuum case). With this goal in
mind, we focus on the Nambu–Jona-Lasinio (NJL) model:
a low-energy approach of QCD which describes interactions
among quarks while gluons are integrated out. The final in-
teractions result (in the simplest local version of the model)
in multiquark contact terms with an energy-independent
strength. This interaction can be tuned to reproduce the phys-
ical value of several observables in the low-energy hadron
sector.
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The NJL model has been profusely used in the literature—
both in vacuum and in a thermal/dense medium—due to its
technical simplicity and its properties [15–20]: it describes
the spontaneous symmetry breaking property of QCD and
the generation of (pseudo)Goldstone bosons, it can easily be
extended to include in-medium properties, it illustrates the
chiral symmetry restoration at finite temperatures/densities,
it can accommodate the effects of the U(1)A axial anomaly
at the meson level (η − η′ mass splitting), and, using the
Bethe-Salpeter or the Faddeev equations, it can describe the
dynamical generation of colorless mesons and baryons, which
can be identified with physical hadrons.

With respect to the last point, the local NJL model is
able to generate the masses of ground state mesons (scalar,
pseudoscalar, vector, and axial vector) as bound states in the
quark-antiquark scattering, as well as baryons [members of
the SU(3) f octet and decuplet] as bound states of a quark and
a diquark (the latter itself being a bound state of two quarks).
The original formalism is based on the relativistic Faddeev
equation for three quarks which, under certain approxima-
tions, can be simplified to a two-body equation [21,22].
Using the NJL model, some vacuum baryon masses were
already obtained in [22–24] and, more recently, as functions
of temperature and/or density in [25–29]; notice that at finite
temperature/density one can also use the Polyakov-loop ex-
tended NJL (PNJL) model [30,31], which incorporates certain
gluonic components, allowing one to suppress part of the
unphysical quark modes in the partition function at low T and
n.

In a previous publication [29], some of us studied the
thermal evolution of several baryons with three flavors with
the NJL and PNJL models. We were able to satisfacto-
rily reproduce the vacuum masses of eight baryon states
(N,�,�,�,�,��,��,	) with only two additional param-
eters in the NJL model (scalar and axial-vector couplings
within the diquark sector). This was achieved without spoil-
ing the good agreement of meson masses, but at the cost of
having a sizable light quark dressed mass of mq � 480 MeV.
Because it is not an observable, such a value for the quark
mass is not a particularly troubling result—a typical quark
mass would be of the order of m�/3 � 400 MeV, as seems
to be required in previous calculations [22–24]—but it was
unclear whether this was a necessary condition of the model
in order to fit the meson and baryon spectroscopy, or whether
a different parametrization with a smaller quark mass could
also be found.

In this paper we employ the Bayesian formalism to perform
a systematic analysis of the NJL model prediction for the
vacuum hadron spectrum. The Bayesian approach has notably
been implemented with the NJL model in the context of the
study of the compact star equation of state, where the models
are conditioned by measurements of the star masses, radii,
and tidal deformabilities [32–35]. However, in the current
work the parametrization of the model is instead constrained
by a likelihood informed with the experimentally measured
masses of the full pseudoscalar meson octet, baryon octet,
and baryon decuplet as well as the pion and kaon weak decay
constants. Our goals in this work are to (i) find whether the
minimal version of the NJL model (local, mean field, and with

the minimal number of couplings) is able to provide a good
matching of these quantities overall in a systematic approach,
(ii) obtain and analyze the actual correlations between param-
eters, and between parameters and observables, (iii) address
the question whether a good fit of the hadron spectrum in
the NJL model requires to have a relatively massive quark, as
indicated in the recent studies [27,29,36], and (iv) sketch an
“optimal” parametrization which can be used in future studies
of hadron spectrum and the phase diagram of the model at
finite temperature and density.

This paper is organized as follows: In Sec. II we introduce
our minimal version of the NJL model and detail the level of
approximations employed to compute both meson and baryon
vacuum masses. In Sec. III we describe the Bayesian method
that we apply to explore the full parameter space and con-
front the outcome of the model to the experimental results.
Finally, in Sec. IV we analyze the posterior distributions of
the parameters and physical observables (with a particular
emphasis on the diquark and baryon sector), and comment on
the most interesting correlations found. We present a summary
of this work in Sec. V, and conclude the paper with a set of
appendices, to which one can refer for all the technical details.

II. NAMBU–JONA-LASINIO MODEL

Our analysis is based on the description of the low-energy
hadronic spectrum of the three-flavor Nambu–Jona-Lasinio
(NJL) quark model [15–20], with the following Lagrangian
density:

LNJL = q(i/∂ − m̂0)q + G[(qτ aq)2 + (qiγ5τ
aq)2]

− K (det f [q(1 + γ5)q] + det f [q(1 − γ5)q])

+ Gd (qiγ5CτAλA′
qT )(qT Ciγ5τ

AλA′
q)

− Gd,V (qγ μCτ SλA′
qT )(qT Cγμτ SλA′

q). (1)

In Eq. (1) we denote by τ a, a = 0, 1, . . . , 8 the su(3)

Gell-Mann matrices in flavor space (with τ 0 =
√

2
3 1 f ) and

by λa′
, a′ = 0, 1, . . . , 8 the su(3) matrices in color space

(with λ0 =
√

2
3 1c). A and A′ are summed over the indices of

antisymmetric Gell-Mann matrices, A, A′ = 2, 5, 7, while S is
summed over the indices of symmetric Gell-Mann matrices,
S = 0, 1, 3, 4, 6, 8. In the diquark sector—last two lines of
Eq. (1)—the charge conjugation matrix is given by C = iγ0γ2.

The quarks are described by the flavor triplet spinor field
q = (u, d, s) with bare masses m̂0 = diag(m0,u, m0,d , m0,s).
Quarks interact with each other through four- and six-fermion
contact vertices controlled by four coupling constants: the
scalar-pseudoscalar coupling G, the ’t Hooft coupling K , the
scalar diquark coupling Gd , and the axial diquark coupling
Gd,V .

The NJL Lagrangian shown in Eq. (1) obeys the global
SU(3)R×SU(3)L×U(1)B symmetry of QCD in the limit of
vanishing bare quark masses (m̂0 = 0), and substitutes its
local color gauge symmetry with a global invariance un-
der SU(3)c transformations. The so-called axial anomaly of
QCD is accounted for by the presence of the six-fermion
Kobayashi–Maskawa–’t Hooft interaction term, which breaks

045204-2



BARYON AND MESON MASSES IN THE … PHYSICAL REVIEW C 107, 045204 (2023)

the U(1)A symmetry explicitly [37–39]. We neglect the quark-
antiquark vector channel as it does not have any effect in
the vacuum at the mean field level, and we checked that the
vector meson spectrum is essentially uncorrelated to the rest
of the properties of the model, yielding only minor physical
constraints. Although other diquark channels are in principle
needed in order to meet the symmetry requirements, they are
not considered in this work as they do not contribute to the
baryons in our scheme.

The form of the four-fermion part of the NJL Lagrangian
can be directly derived by carrying out a Fierz transformation
of a global color current-current interaction, which can be
seen as an approximation of QCD in the limit of low gluon
momentum exchange [20]. Following this procedure, four-
fermion interaction terms in all possible spin, flavor, and color
channels emerge, and we only kept in Eq. (1) the ones that
give rise to the low-mass hadronic spectrum of interest. Since
the original theory of QCD has only one coupling constant
(the strong coupling gs), the Fierz method yields fundamental
relationships between the coupling constants in each interact-
ing channel [15,20,29]. For the terms appearing in Eq. (1)
and for Nc = 3, the relevant Fierz relations are Gd = 3G/4
and Gd,V = 3G/8 [20]. In this work, however, we will forego
these relations and keep Gd and Gd,V as free parameters. As
we shall see below, the above relations are not compatible
with the experimental masses of the baryon spectrum in our
framework.

From the Lagrangian of Eq. (1), the dressed mass m f

of the quark of flavor f can be obtained by solving the
self-consistent Dyson equation [40] for the quark propagator,
which in the Hartree approximation eventually yields

mi = mi,0 − 4G〈qiqi〉 + 2K〈q jq j〉〈qkqk〉, (2)

where (i, j, k) denotes any permutation of (u, d, s). The chiral
condensates 〈q f q f 〉 are related themselves to the quark masses
by the single line loop integral:

〈q f q f 〉 = −i
∫

d4k

(2π )4
TrS f (k), (3)

where the traces are performed in color and spinor spaces, and
S f (p) is the dressed quark propagator, given at zero tempera-
ture by

S f (k) = /k + m f

k2 − m2
f + iε

. (4)

After performing the traces, one simply obtains

〈q f q f 〉 = − 4im f Nc

∫ � d4k

(2π )4

1

k2 − m2
f + iε

= −4im f NcI1(m f ,�).

, (5)

Since the integral I1 is divergent, it must be regularized by
the introduction of an ultraviolet cutoff �, whose scale is
related to the asymptotic freedom scale of QCD. In this work,
we use a simple three-momentum noncovariant regularization
scheme in which the cutoff � is imposed after carrying out
the k0 integration. Details on the evaluation of the integrals
are relegated to Appendix A.

Mesons and diquarks can be described within the NJL
model by solving the Bethe-Salpeter equation for the scat-
tering of a quark and an antiquark (or two quarks in the
case of diquarks). The existence of a bound state can then
be inferred from the T matrix. In the so-called ring approx-
imation (random phase approximation) for the T matrix, the
infinite resummation of diagrams is reduced to a geometric
sum involving the quartic coupling and the two-particle loop
function �X (p),

TX (p) = GX + GX �X (p)GX + · · ·

= GX

1 − GX �X (p)
, (6)

where GX = 2GX is, up to a loop factor 2, the four-quark
coupling constant appearing in the Lagrangian, that selects the
appropriate interaction channel associated with the quantum
numbers X . TX refers to the T matrix in the channel X , which
can describe a bound state if a pole in the physical Riemann
sheet of p is generated. The mass of the bound state can be
inferred as the pole position in the real energy axis. Therefore,
we identify the mass mX (at rest) of the meson/diquark X as
the solution of the equation

1 − GX �X (p)|p0=mX , p=0 = 0. (7)

This pole can in principle lie outside of the real axis, reflecting
a finite width related to a decay into a quark-(anti)quark pair.
If this is the case, we will identify the mass as the real part of
the pole. One should keep in mind, however, that such a decay
is unphysical and only reflects the lack of confinement of the
NJL model and its description of bound states. In addition, we
will consider stable bound states in almost every cases, such
that their masses are indeed real.

Each bound state X can be associated with an appropri-
ate quark-antiquark (or quark-quark in the case of diquarks)
interaction channel �X depending on the quantum numbers
exchanged through the interaction vertex (e.g., the pseu-
doscalar pion π0 is associated with the vertex �π0 = iγ5τ31c).
The expression of the loop function �X (p) can be obtained
using the Feynman rules for fermions, and is given by

�X (p) = i
∫ � d4k

(2π )4
Tr(�X S(p + k)�†

X S(k)), (8)

where S(k) = diag(Su(k), Sd (k), Ss(k)) and the trace must be
performed in color, flavor, and spinor spaces. Further details
on the calculation of this loop function in the meson and
diquark channels of interest are given in Appendix B.

For each bound state, one can additionally compute its
coupling strength gX→qq′ corresponding to the residue of the
propagator of bound state X at its pole,

g2
X→qq′ =

(
∂�X

∂ p2

∣∣∣
p2=m2

X

)−1

. (9)

Around its pole, the T -matrix element of the bound state X
can then be expressed in the form

TX (p) ≈ − g2
X→qq′

p2 − m2
X

, (10)
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which can readily be interpreted as the bound state propagator.
Note that the equations above apply strictly speaking only for
spin 0 bound states. In the case of spin 1 (in particular for the
axial diquarks), a similar procedure can be applied in order
to take into account the Lorentz structure of the propagator
[17,29].

Finally, the axial decay constants fX can be obtained from
the evaluation of the transition matrix element between a
meson and the vacuum:

i fX pμ = 〈0| jμ5,X |X 〉. (11)

In the NJL model, the evaluation of the diagram at one-loop
level gives [15]

i fX pμ = i
gX→qq′

2

∫ � d4k

(2π )4
Tr(γ μ�X S(p + k)�†

X S(k)),

(12)

which is computed as explained in Appendix C. In this work,
we will only focus on the pion and kaon decay constants,
which are experimentally well-known quantities.

In an analogous way to the modeling of mesons as quark-
antiquark bound states, baryons can be constructed by solving
the so-called Faddeev equation [41] for the scattering of three
quarks. While even in the NJL model this equation is difficult
to solve, the quark-diquark framework provides an appealing
approximation in order to simplify the problem (see [12] and
references therein). In this case, the three-body scattering
problem can be simplified to a two-body problem with a quark
and a diquark, in which case the Faddeev equation reduces
to a Bethe-Salpeter-like equation, and the interaction between
a quark and a diquark is brought down to a simple quark
exchange.

To simplify further the calculation, we apply the “static ap-
proximation” consisting of neglecting the momentum carried
by the exchanged quarks in the diagram summation [22]. The
calculation is then reduced to a geometric sum very similar
to Eq. (6). Such an approximation is valid as long as the
in-medium mass of the quark remains high and the chiral
symmetry remains spontaneously broken. At high temperature
and density, chiral symmetry should be restored and the static
approximation is not justified anymore. However, since in
this work we are only interested in studying chiral properties
in the vacuum, this approximation should remain valid. We
refer to Ref. [29] and Appendix D for further details on the
calculation.

Since diquarks are colored objects, each baryon wave
function must be decomposed with a specific superposition
of quark and diquark combinations in order to ensure that
the constructed baryons are colorless. Baryons of the octet
(with Jπ = 1

2
+

) are assumed to be constituted only of scalar

diquarks, while baryons of the decuplet (with Jπ = 3
2

+
) are

assumed to be constituted of axial diquarks. The correspond-
ing projection for each baryon can be found in Ref. [29,42],
following the principle that the total baryon wave function
should be antisymmetric in its decomposition.

III. METHODOLOGY

The purpose of this work is to investigate the parameter
dependence of the NJL model predictions, as well as to un-
derstand how to choose these parameters in order to be in
agreement with experimentally measured properties of the
hadronic spectrum. To do so, we adopt a Bayesian method-
ology in order to constrain Monte Carlo generated models
to satisfy the physical constraints. A large number of NJL
parameter sets are generated within a large and uninformed
(uniform) prior. The predictions of each set are then computed
and confronted with experimental data [here observables of
the SU(3) f hadronic spectrum] to select parameter sets that
are consistent with real world physics. All calculations are
performed in vacuum.

Our framework based on the NJL model comprises a total
of seven different parameters; two bare masses for the light
and strange quarks (we work in the isospin limit where m0 ≡
m0,u = m0,d ), four coupling constants (G, K , Gd , and Gd,V ),
and one momentum cutoff �. In other works using a similar
framework [27–29,43–46], these parameters were partially or
totally fine tuned in order to reproduce several phenomenolog-
ical quantities of the hadronic spectrum. However, this method
possesses some drawbacks:

(1) there are more than seven quantities that can be fit-
ted from hadron phenomenology, meaning that the
choice of the fitted quantities can affect the results
significantly and that the resulting parameter set is not
necessarily optimal for reproducing known experimen-
tal quantities,

(2) this method does not reflect the uncertainties (both
experimental and theoretical) that can blur the model
inputs.

(3) this method cannot account for the correlations be-
tween the model parameters and the observables,
which carry significant information on the relation-
ships between physical sectors of the model.

For these reasons, we propose a method to consistently take
into account the uncertainties on all available quantities.

A. Bayesian statistical analysis

The core of a Bayesian statistical analysis lies on Bayes’s
theorem in probability theory [47]. Assuming a set of observ-
ables {oi} constrained by some data, the theorem states

P ({oi}|data) = NP (data|{oi})P ({oi}). (13)

It relates the posterior probability of a model P ({oi}|data)
to both its prior probability P ({oi}) and the likelihood func-
tion P (data|{oi}). The quantity N is a normalization factor
also known as evidence. Here, each individual parameter set
(which will be also denote as “individual model,” as it is
the accepted term in this framework) is represented by the
collection of predictions it makes on the observables {oi}.

The prior probability represents the initial knowledge that
we have of the observables {oi}. It is entirely determined by
the modeling of the observables and the amount of freedom
that is allowed within this modeling. In order to perform a
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TABLE I. Minimum and maximum values employed for the
prior on each of the independent parameters of the SU(3) f NJL
model.

� m0 m0,s

Parameter (MeV) G�2 K�5 (MeV) (MeV) Gd/G Gd,V /G

Min 550 1.75 4 4 95 1.0 0.75
Max 625 4 15 7 150 1.89 1.3

study that is the most agnostic possible and spans the largest
uncertainties, the prior distribution should remain as uninfor-
mative as possible.

The likelihood estimates the compatibility of the model
with the data by attributing a probability to the experimental
results (the data) for each possible underlying model. In this
sense, it acts as a filter on the different models considered,
by performing a selection to give a preference to the models
that reproduce best the data. Its effects can be dependent on
the degree of trust one can put on the available experimental
results relevant to the analysis.

The posterior probability distribution illustrates the degree
of credibility attributed to a model given the quality of its
reproduction of experimental data. This distribution can be
marginalized over a subset of observables to obtain marginal
probability distribution functions (PDFs) on a single quantity
o j :

P (o j |data) =
⎛
⎝∏

i 	= j

∫
doi

⎞
⎠P ({oi}|data). (14)

B. Numerical setup

1. Prior knowledge

The first step consists of generating an uninformative
prior on the parameters. We span the model uncertainty by
drawing each of the seven model parameters randomly and
independently, using a uniform prior distribution. The interval
boundaries considered for each of the model parameters are
summarized in Table I. These ranges were chosen heuristi-
cally from previous SU(3) f parametrizations that have been
suggested in the literature using similar models [19,29,36].
Values far outside of these boundaries may typically lead to
unphysical behavior (unbound mesons or baryons, absence of
resonances, unusually large chiral condensate, etc.). One can
check a posteriori that they indeed span a satisfactory uncer-
tainty on the hadron spectrum masses. Note that we choose
as independent variables the quantities (G�2, Gd/G, Gd,V /G)
instead of (G, Gd , Gd,V ) for the convenience of working with
dimensionless quantities that are easier to interpret.

From the prior distribution, we first generate a large num-
ber (N = 5 × 107) of random parameter sets. For each one of
these parameter sets, the self-consistent Dyson equations are
solved in order to find the vacuum quark masses, and the
masses of the meson pseudoscalar octet as well as baryons
from the octet and decuplet are computed by finding the poles
of the corresponding propagator using the methods described
above. All the models that cannot account for the full set of

the chosen hadrons are considered as unrealistic; if any of
the hadronic states is either found not to exist or found to be
unbound (unstable) within the model, the model is discarded
from the analysis. This enforces that our prior model popu-
lation is always able to predict at least the existence of the
correct spectrum for the mesons and baryons of interest. This
“stability condition” imposes

0 � mX � m f1 + m f2 (15)

for the mesons and diquarks constituted of a quark and
(anti)quark with flavors f1 and f2. For the baryons, the analog
condition reads

0 � mB � md + mq, (16)

where d and q represent the diquark and quark that compose
the baryon B. Both of these conditions ensure that the cal-
culated bound state masses are found on the real axis [48].
Note that if a baryon state is constructed as a superposition
of several quark-diquark states, we enforce the inequality (16)
for all the quark-diquark pairs involved.

2. Bayesian likelihood from experimental data

In order to select the models that are the most consistent
with phenomenological knowledge, likelihood weights are as-
signed depending on their quality to reproduce the low-energy
hadronic spectrum properties. The quantities that we compute
and confront with experimental data are

(1) the masses of the pseudoscalar mesons: mπ , mK , mη,
mη′ ,

(2) the pion decay constant and the ratio between
kaon/pion decay constants: fπ , fK/ fπ ,

(3) the light quark chiral condensate: � = −〈qq〉 1
3 ,

(4) the masses of the baryon octet: mN , m�, m� , m�,
(5) the masses of the baryon decuplet: m�, m�� , m�� , m	.

Note that since we assume isospin symmetry, isospin de-
generate states have been gathered into the same state. In
principle, scalar mesons could also be used to further con-
strain the parameters, but it is known that such resonances
are very poorly described in terms of pure quark-antiquark
states and without the inclusion of confining effects [49]. For
instance, the f0(500) scalar is believed to be rather better
characterized by a two-pion state, which our treatment of the
NJL model cannot account for at the mean field level due
to our lack of description of the two-pion continuum. The
scalar masses are in addition more difficult to measure and
are therefore not very well constrained by experiments [50].

We determine the likelihood by assigning to the models
a Gaussian weight for each quantity oi (except for the chiral
condensate; see below),

wi = 1√
2πσi

exp

[
− (oi − oi )2

2σ 2
i

]
, (17)

where oi is the recommended empirical value for the quantity
oi, and σi is the associated uncertainty. The total likelihood
function is obtained by combining the weights associated with
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TABLE II. Mean and standard deviation used for the Gaussian weights associated with each quantity. All quantities (except fK/ fπ which
is dimensionless) are given in units of MeV.

mπ fπ mK fK/ fπ mη mη′ −〈qq〉1/3

o 138.04 92.07 495.64 1.1928 547.862 957.78 210 - 275
σ 4.6 1.3 3.93 0.075 18.23 31.87 10

mN m� m� m� m� m�� m�� m	

o 938.92 1115.683 1193.15 1318.28 1232 1384.57 1533.40 1672.45
σ 64.66 76.84 82.18 90.79 117 131.49 145.62 158.83

each quantity,

P (data|{oi}) =
∏

i

wi, (18)

where the index i runs over all physical quantities that need to
be constrained. All the mean values oi and standard deviations
σi used to implement the Gaussian filters are detailed in Ta-
ble II. We discuss now how these quantities were determined.

For the pion and kaon masses, these values are not neces-
sarily straightforward to choose since the neutral pion (kaon)
and the charged pion (kaon) do not have the same mass.
According to the Particle Data Group (PDG), the experimental
masses are [51]

mπ0 = 134.9768(5) MeV, mπ± = 139.57039(18) MeV,

(19)

mK0 = 497.611(13) MeV, mK± = 493.677(16) MeV.

(20)

Since the experimental uncertainties are very small, we can
neglect them compared to systematic uncertainties arising
from the various approximations made within the model.
However, since we assume mu,0 = md,0 and hence all our
results are isospin independent, there is a problem of iden-
tification of the NJL pion/kaon with the real life hadrons.
In the real world, the masses of π0 and π± are the result of
the combination of strong, electromagnetic, and weak effects,
while in the NJL description only the strong interaction is
taken into account, leading to a degeneracy in our approach.
This problem is discussed in details in Refs. [52,53] where
electromagnetic corrections were applied to the NJL model to
describe the mass splitting of the pions. This is, however, be-
yond the scope of this work. Therefore, we estimate the mass
of the isospin symmetric state to a barycenter of the physical
states, and the systematic uncertainty is simply related to the
mass splitting of the states:

mπ = 2mπ± + mπ0

3
, σmπ

= mπ± − mπ0 (21)

mK = mK± + mK0

2
, σmK = mK± − mK0 (22)

For the η and η′ mesons, the PDG reports

mη = 547.862(17) MeV, mη′ = 957.78(6) MeV (23)

While the state identification is unequivocal in this case, the
experimental uncertainties are very small compared to the
expected systematics of our modeling approach. Therefore,
we choose to scale the mass uncertainty of these mesons over

their mass, similar to the pion ratio σmπ
/mπ :

σmη
= mη

mπ

σmπ
, σmη′ = mη′

mπ

σmπ
(24)

Concerning the pion decay constant, similar considerations
on the isospin dependence are in order. It has been argued that
isospin symmetry breaking brings only a second-order correc-
tion in chiral perturbation theory, such that fπ± ≈ fπ0 should
be a good approximation [54]. Unfortunately, leptonic decay
constants cannot be measured directly from experiments as
only their product with Cabibbo-Kobayashi-Maskawa (CKM)
matrix elements appear in their (measurable) weak decay
width. Therefore, their determination must rely on some ad-
ditional theoretical framework (typically LQCD together with
chiral perturbation theory). From Ref. [54] the theoretical
preferred value for fπ is

fπ = 1√
2

(130.2 ± 1.7) ≈ 92.1 ± 1.2 MeV. (25)

The factor 1/
√

2 is due to a different choice of normalization
to that of the NJL literature. To take systematic uncertainties
into account, the recommended uncertainty was inflated by
10%.

Surprisingly, the quantity fK/ fπ is not very well repro-
duced by the NJL model [15]. Anticipating our results,
the predicted values of the ratio lie typically between 1
and 1.1, while the experimental value of Ref. [54] is
fK/ fπ = 1.1928(26). Such a discrepancy indicates a large
systematic error coming from the model for this quantity that
is not well understood. To still favor larger values of this ratio,
we increase the systematic uncertainty to σ fK / fπ = 0.075.

The chiral condensate � = −〈qq〉 1
3 is another vacuum pa-

rameter that cannot be accessed easily by experiments. We
must therefore rely again on ab initio approaches such as
LQCD or QCD sum rules (QCDSR) to obtain estimates. Early
estimations from LQCD with two flavors [55] led to the result

� = 231 ± 11 MeV (26)

at a renormalization scale of 1 GeV. Estimations for the
QCDSR, on the other hand, suggest the wider range [20,56]

� = 229+33
−36 MeV (27)

Today, the ranges recommended by the Flavour Lattice Data
Group (FLAG) for two and three flavors are [57]

� = 266 ± 10 MeV (2f), � = 272 ± 5 MeV (3f), (28)

which are larger than the previous estimations. These results
were however obtained in the chiral limit (vanishing mu and
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md ) and at the renormalization scale of 2 GeV (which is
conventional in LQCD simulations).

With all these conflicting results, it is difficult to find a
proper restriction on the chiral condensate �. It seems to
be reasonable to exclude models predicting chiral conden-
sates larger than �max ≈ 275 MeV and smaller than �min ≈
210 MeV. Therefore, in the conservative approach we im-
plemented a Gaussian passband filter to constrain the chiral
condensate in this range:

w� = 1

4

[
1 − erf

(
� − �max√

2σ�

)][
1 + erf

(
� − �min√

2σ�

)]
,

(29)

with an estimate of the standard deviation σ� = 10 MeV.
For all baryons of the octet, we have naturally very pre-

cise measurements of their experimental masses from the
PDG. Just like for mesons, the isospin partners are degener-
ate in our approximation and we determine the mass of the
isospin-averaged state (that we will call nucleon, �, �, and
� baryons) by calculating the barycenter of the masses of
the different physical states. Clearly, the uncertainties coming
from the isospin mass splittings (≈1 MeV for the nucleon,
� 10 MeV for the � and � baryons) are very small. The
difficulty lies in the estimation of the systematic uncertainty
of our formalism for the construction of baryons, that relies
on several nested approximations (NJL model, mean field
approach, quark-diquark reduction of the three-body equa-
tion, and static approximation). To be on the conservative
side we choose to fix the nucleon mass uncertainty with
σmN = 50 × (mn − mp) ≈ 60 MeV, and scale this uncertainty
to the other octet baryons with the same method, as we did for
η mesons in Eq. (24).

In the case of the � baryon, the PDG database reports
a Breit-Wigner mass m� = 1232 ± 2 MeV and a full width
�� = 117 ± 3 MeV. The masses of the individual �++, �+,
�0, and �− resonances are not known very precisely. Since
the decay of the � baryon is not predicted within our model,
we suggest that the width of the resonance is a good indicator
of the scale of precision that cannot be accounted for by the
NJL model, such that we choose σm�

= ��. For the remaining
baryons of the decuplet (�∗, �∗, and 	) we determine again
the isospin symmetric mass by averaging the physical masses
from the PDG database, and scale σm�

to the mass of the
corresponding baryon in a similar fashion to Eq. (24).

IV. RESULTS AND DISCUSSION

To compare the effects brought by each weight in the
likelihood, they were gathered in three weighting procedures
that are then compared on the following figures:

(i) W1 (represented in blue): No weight is assigned to
the data, i.e., P (data|{oi}) = 1 according to Eq. (18).
The distribution simply reflects the natural predictions
of the model in the explored prior parameter space.
However, one should keep in mind that the additional
conditions on the stability of the bound states [see
Eqs. (15) and (16)], which may seem minor at first,
already affect the model selection process.

(ii) W2 (represented in red): All weights associated with
the properties of the meson octet (including fπ and
fK/ fπ ), as well as the chiral condensate filter, are
implemented.

(iii) W3 (represented in green): The weights associated
with each baryon of the octet and decuplet are added
on top of the ones already in W2.

In this section, we will compare the posterior probability
distribution functions (PDFs) conditioned by each weighting
procedure, W1, W2, and W3, in order to reveal the role
that is played by the different constraints. As a summary of
our results, we provide in Appendix E a table collecting the
predicted mean values and uncertainties associated with each
quantity examined in this paper for the weighting W3, that is,
when all possible physical constraints have been applied.

A. Model parameters

In Fig. 1, we show the PDFs of the five model param-
eters (leaving the discussion of the diquark parameters to
Sec. IV B). As expected, if no weights are assigned to the data
(W1), the probability distributions remain almost flat, reflect-
ing our use of a flat prior for these parameters. The deviations
from a flat distribution (particularly notable for the quantity
G�2) epitomize the effect of selecting models that are able
at least to produce a stable spectrum of mesons and baryons.
Low values of G�2 (� 2) typically lead to relatively small
quark masses, which may damage the stability of baryons due
to Eq. (16). Once we enforce physical values for the hadron
spectrum (W2 and W3), the distributions of all parameters
become peaked around a preferred value, which validates
our choice for the prior. The parameter set employed in a
previous work using the same set of approximations is in good
agreement with these results [29]. We should mention that we
also checked with larger priors that there is no statistically
significant increase of these PDFs outside of the parameter
ranges used in this work.

The PDFs of the dressed quark masses and chiral conden-
sates are presented in Fig. 2. The light quark mass is found to
lie between 315 and 1015 MeV within our parameter prior.
Once the W2 filter on meson masses is implemented, this
range is narrowed down to mu,d � 600 MeV, with a prefer-
ence around 430 MeV. The reproduction of baryon masses
disfavors smaller values and narrows down further the light
quark mass to mu,d = 515 ± 53 MeV, although W2 and W3
remain largely compatible. A similar pattern is observed in
the strange sector. Such an effect can be explained by the
requirement of a finite binding energy for both diquarks
and baryons, as we shall discuss below. In addition, it is
interesting to notice that values close to the naive estimate
mu,d ≈ mN/3 ≈ 313 MeV are rejected already by W1. This
implies that low quark masses are not compatible with the re-
production of the full hadron spectrum, as long as the stability
conditions (15) and (16) are satisfied. This is in agreement
with the findings of Ref. [22].

The light chiral condensate � = −〈qq〉 1
3 is found to lie

in the range 218 < � < 282 MeV in our prior. This is al-
ready in good agreement with previous empirical knowledge
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(a) (b)

(d) (e)

(c)

FIG. 1. Posterior distributions of the SU(3) f NJL model parameters with weights W1 (dot-dashed blue line), W2 (dashed red line), and
W3 (solid green line); see text for details.

on this quantity, implying that the effects of the weight w�

(29) will be overall very small. Imposing the matching of
the meson spectrum only gives a small range of compatible
values � = 243 ± 6 MeV, which is not affected much by the
additional conditions of W3 on baryons, contrary to the quark
mass distribution. This result is quite small compared to the
estimations from LQCD [see Eq. (28)].

(a) (b)

(c) (d)

FIG. 2. Posterior distributions of the quark mass and chiral con-
densates for light and strange flavors with weights W1 (dot-dashed
blue), W2 (dashed red), and W3 (solid green) (see main text for
details).

We show in Fig. 3 the PDFs of the observables for the
pseudoscalar octet, i.e., meson masses and decay constants.
For each quantity, we also show with a dotted line the weight
distribution of the likelihood illustrating the constraints imple-
mented in both W2 and W3. In the case of the pion mass, pion
decay constant, and kaon mass, the posterior distributions of
W2 and W3 follow very well the likelihood, such that the
uncertainties on these quantities are accurately reproduced.
On the other hand, the likelihood on the ratio fK/ fπ is poorly
reproduced, as the model is known to be unable to produce
values larger than ≈1.05 for this ratio [15], unless a very
small quark mass is adopted (see, e.g., [58]). For the η and
η′ mesons, we see that while the physical values for the
masses of both states are reachable by the model, they unfor-
tunately cannot be simultaneously accounted for. Therefore,
when trying to enforce physical values, one needs to make
a compromise with slightly larger m′

η and smaller mη. Both
of these failures could be indicators of the limits of the NJL
model as well as the mean field and ring approximation used
to treat the problem. It also shows the limits of a strategy of
direct fitting of the model parameters to the data. For instance,
the ’t Hooft coupling K is often used in order to fine tune
the η − η′ mass splitting, but it turns out this cannot be done
without damaging the quality of the fit to other quantities.
Treating all experimental quantities on equal footing (factor-
ing the uncertainties), we guarantee to find the best middle
ground the NJL model can offer.

B. Predictions for the baryon spectrum

In Fig. 4, we show the prior and posterior PDFs of the
diquark coupling ratios Gd/G and Gd,V /G. In both cases, we
see that relatively large coupling ratios are needed to sustain
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(a) (b)

(c) (d)

(e) (f)

FIG. 3. Posterior distributions of the meson octet masses and
decay constants with weights W1 (dot-dashed blue), W2 (dashed
red), and W3 (solid green) (see main text for details). The black
long-dashed lines indicate the likelihood weights implemented in W2
and W3 for each quantity.

the existence of the baryon states. The meson and baryon
constraints altogether (W3) select rather precise values for
the ratios, Gd/G = 1.53 ± 0.04 and Gd,V /G = 0.97 ± 0.06.
These results are surprisingly far from those obtained via the
Fierz formulas, which suggest Gd/G = 3/4 and Gd,V = 3/8,

(a) (b)

FIG. 4. Posterior distributions of the scalar diquark coupling
(a) and axial-vector diquark coupling (b) with weights W1 (dot-
dashed blue), W2 (dashed red), and W3 (solid green) (see main text
for details).

(a) (b)

FIG. 5. Posterior distributions of the scalar diquark binding en-
ergy (left) and axial-vector diquark binding energy (right) with
weights W1 (dotdashed blue), W2 (dashed red), and W3 (solid green)
(see main text for details).

respectively. This confirms that one should take caution when
applying these relationships within a NJL-like model. This
value of the diquark coupling Gd/G is also typically larger
than the one used in the literature to study the transition to
color superconducting matter at high density [33,59–61].

Even though the quantity Gd/G affects only the diquark
and baryon sectors, we can also observe in Fig. 4(a) a strong
preference towards large values with weighting W2 (which
remains agnostic on the baryon masses). This is explained
by the preference of W2 towards smaller quark masses, as
baryons require stronger binding to remain stable in this case.

In Fig. 5 we show the posterior distributions of the binding
energies Bd = 2mq − md for both of the nonstrange scalar
and axial diquarks. We can observe a striking difference of
behavior between the two species: while the axial diquark
is allowed to be very weakly bound within the NJL model,
this is not the case for the scalar diquark, whose binding
energy is bounded to be larger than Bmin

(ud ) ≈ 500 MeV. This
behavior can be explained by the fact that, even with W1,
our description of the nucleon requires a very large diquark
coupling to be bound, which prevents the diquark to be weakly
bound. This effect is not present for the axial diquark because
of its larger mass and the lower value of the diquark-vector
coupling required to fit the physical � mass. We observed
a similar behavior for the other scalar and axial diquarks in
the strange sector. It should be stressed that this feature is
not a consequence of our optimization of the parameters to
reproduce experimental results, but is inherent to the NJL
model (at least within our approximations).

This property explains why our assumption of the existence
of stable baryons (and the nucleon in particular) requires a suf-
ficiently large quark mass. Indeed, if we rewrite the stability
conditions [Eqs. (15) and (16)] in the form

3mu/d = mN + B(ud ) + BN , (30)

where BN = m(ud ) + mu/d − mN � 0 is the nucleon binding
energy, it becomes apparent that the minimum possible value
for the quark mass is mu/d = (mN + Bmin

(ud ) )/3 ≈ 480 MeV
when mN is fixed to its physical value.

Finally, we compare in the top panel of Fig. 6 the posterior
distributions of the binding energy of the nucleon and �
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(a) (b)

(c) (d)

FIG. 6. Posterior distributions of the baryon binding
energy BB = md + mq − mB and energy per quark difference
�EB = mB/3 − md/2 for the nucleon (left column) and the �

baryon (right column).

baryon. We notably see that the constraints from W3 restrict
the nucleon binding energy to a maximum of about 100 MeV,
while values as large as 500 MeV can be obtained for the �

baryon. The most probable scenario is that of a very weakly
bound nucleon with BN < 30 MeV. Since our framework de-
scribes both the nucleon and its constituent diquark with a
single coupling constant Gd , we can expect that the diquark
and nucleon binding are very heavily correlated. This lack of
freedom can explain why the only possibility compatible with
the physical value of mN is that of a very unbalanced repar-
tition of the binding energies with a strongly bound diquark
and a weakly bound nucleon. Because of the larger mass of
the �, both diquark and baryon can bear reasonable binding
energies. This discrepancy is also related to the larger value of
the scalar coupling compared to the vector one.

In the bottom panel, we also compare the distributions of
the quantity �EB = mB/3 − md/2 which represents the en-
ergy per quark difference between the baryon and the diquark.
While this difference is always positive for the nucleon in
our model, it is almost always negative for the � baryon.
The same pattern is observed for every other members of the
baryon octet and decuplet. This illustrates again the difference
of behavior between the two baryon families in our frame-
work; in the case of the octet, the diquark is very strongly
bound and therefore very light, whereas the binding energy
is well distributed between the axial diquarks and baryons of
the decuplet. The sign of �EB may have strong implications
in medium due to the lack of color confinement of the model
[62,63]. The fact that it is positive for the baryon octet means
that scalar diquarks are energetically favored over baryons.
Since there are no confinement mechanism to prevent the
diquark colored state to remain, they are allowed to survive
in medium. At finite chemical potential and low temperatures,

FIG. 7. Correlation coefficients between the parameters and
observables in the meson sector. The bottom-left half contains corre-
lations when no weighting procedure is applied to the data (weight
W1; see Sec. IV), while the top right corner highlights the remaining
correlations after all the constraints have been applied (weight W3).

this may lead to the formation of a diquark Bose-Einstein
condensate [64,65].

C. Correlations

To complete our analysis of the posterior distributions,
we provide correlation tables to understand the interplay on
one side between the model parameters and the pseudoscalar
sector in Fig. 7, and on the other side between the model
parameters and the baryon sector in Fig. 8. The correlation
between two quantities oi and o j is interpreted through their
linear Pearson coefficient Ci j defined by

Ci j = E[oio j] − E[oi]E[o j]√
E
[
o2

i

] − E[oi]2
√

E
[
o2

j

] − E[o j]2
, (31)

where E is the expectation operator. In each figure, the co-
efficients are shown for the probability distributions obtained
with weightings W1 and W3 in the lower left and upper right
triangles, respectively. This allows us to distinguish between
the correlations coming from the modeling itself and the ones
created by the constraints we impose on each parameter sets.
In the following, we highlight the most important conclusions
that we draw from these two figures.

First, we notice that both the light and strange quark masses
are very strongly correlated to the dimensionless scalar cou-
pling G�2. This is not surprising, as the scalar quartic term
is responsible for the mechanism of spontaneous symmetry
breaking in the theory. However, this shows that the second
term of Eq. (2) remains dominant against the bare mass and
the ’t Hooft term for all possible parametrizations. In addition,
we conclude that the quantity G�2 is the most relevant to con-
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FIG. 8. Correlation coefficients between the parameters and
observables in the baryon sector. The bottom-left half contains cor-
relations when no weighting procedure is applied to the data (weight
W1), while the top right corner highlights the remaining correlations
after all the constraints have been applied (weight W3).

trol the value of both quark masses, which are in turn heavily
correlated with each other. On the other hand, the chiral con-
densates (especially the strange one) are better characterized
by the value of the momentum cutoff �. In the absence of
constraints, the light bare mass only affects the pion mass,
which can be easily understood from its origin as a pseudo-
Goldstone boson. Once the pion mass is fixed to its physical
value, the value of m0,u is adapted to satisfy the condition to
bring mπ to its physical value, which brings minor correlations
with the masses and condensates. In a similar fashion, the
quantity K�5 influences the most the masses of the η and
η′ mesons due to its role in breaking the U(1)A symmetry,
but inherits significant anticorrelations with the quark masses
once the meson masses are filtered.

Regarding the baryon sector (Fig. 8), we observe, as ex-
pected, strong correlations between the diquark and baryon
sectors. In particular, in the case of W1, the masses of the
baryons are strongly determined by the mass of the corre-
sponding diquark, and to a lesser extent by the quark mass.
In addition, strong a anticorrelation is observed between the
diquark couplings, which are naturally proportional to the
baryon binding energy. After matching with the physical me-
son and baryon masses, the role of the quark mass mu becomes
much more significant, the binding energies B(ud ), B[ud], BN ,
and B� having Pearson coefficients close to unity with mu.
These correlations are easy to understand from Eq. (30) (and
its equivalent for the � baryon), where the relationship be-
tween the total binding energy and the quark mass appears
to be linear assuming the bound state mass to be fixed. This
emphasizes the central role of the quark mass as an energy
scale in the problem, as its value remains not very well con-
strained by the physical input (see Fig. 2). This correlation

with the quark mass is also very strong for the mass of the
axial diquark m[ud], but surprisingly disappears completely for
the scalar diquark mass m(ud ) once the nucleon mass is fixed.
We expect that this effect is related to the different behavior of
the scalar diquark observed in Sec. IV B as well as the larger
value of the diquark coupling required in the scalar sector
to match the mass of the baryon octet, which prevents large
deviations of m(ud ) from its average value. This difference is
also illustrated by the larger sensibility around the physical
point of the nucleon mass towards the mass of its diquark
component (Ci j ≈ 1) than for the � baryon (Ci j ≈ 0.3).

Note that, just like in Sec. IV B, we only discuss the
correlation coefficients related to the nucleon and � baryon
(together with their corresponding diquark), as we observed a
very similar correlation pattern for the other baryons belong-
ing to the same multiplet.

V. SUMMARY

In the present work, we have performed a Bayesian anal-
ysis of the properties of the meson and baryon spectra as
predicted by the SU(3) f Nambu–Jona-Lasinio model. The
Bethe-Salpeter equations in the RPA approximation as well as
the Faddeev equations in a quark-diquark static approximation
were solved to compute the masses of the lowest mesonic
and baryonic states for a large variation within the parameter
space. The results were then confronted with the experimen-
tally measured masses of the physical states to select plausible
models.

As shown by previous studies, we confirm that the NJL
model is able to satisfactorily describe the main traits of QCD
phenomenology in the vacuum, including the spectrum of
the pseudoscalar meson octet and of the baryon octet and
decuplet. Nevertheless, some discrepancies were observed for
the η and η′ masses as well as the kaon/pion decay constant
ratio fK/ fπ . This global view is new in our approach, as in
previous work the parameter set had been chosen to describe
a limited and arbitrary set of experimental observables.

These results highlight the importance of taking into ac-
count the maximum number of constraints to provide a
good parametrization of the model. Neglecting some of the
physical input or the uncertainties associated with the mea-
surement and modeling of the quantities described may lead to
misconceptions regarding the predictive power of the model
and overlook the subsequent uncertainties on the model
parameters and predictions. In addition, our Bayesian frame-
work allows us to inspect the correlations between parameters
and predictions to better understand the interplay between
each quantity.

In order for the predicted baryon masses to be in ac-
cordance with the physical masses, we find that large
values of the scalar and vector diquark couplings must be
required (Gd/G = 1.53 ± 0.04 and Gd,V /G = 0.97 ± 0.06).
In the scalar case, we find that the diquarks are sys-
tematically strongly bound (B(ud ) � 500 MeV), which in
turn also imposes the quark mass to be sufficiently large
(mu/d � 480 MeV). In consequence, the average binding en-
ergy of a quark in the nucleon is always smaller that its
average binding energy in the diquark which is a constituent.
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These findings could possibly have significant impact on the
phenomenology of dense quark matter in compact stars, where
the strength of the diquark coupling could lead to a strong ef-
fect of quark pairing and color superconductivity. This relies,
however, on the assumption that the large diquark couplings
could be maintained in medium, as the density dependences
of the couplings are very much uncertain.

ACKNOWLEDGMENTS

This study is part of a project that has received
funding from the European Union’s Horizon 2020 re-
search and innovation program under Grant Agreement
2020 No. 824093. The work of J.M.T.-R. is supported by
Project No. PID2020-118758GB-I00, financed by the Span-
ish MCIN/AEI/10.13039/501100011033/, and by Project
No. 315477589–TRR 211 (strong-interaction matter under
extreme conditions), financed by the Deutsche Forschungsge-
meinschaft.

APPENDIX A: ONE-QUARK LOOP INTEGRAL

The loop integral I1 appears in the calculation of the chiral
condensates, Eq. (5), and it is given by

I1(m,�) =
∫ � d4k

(2π )4

1

k2 − m2 + iε
. (A1)

In the three-dimensional noncovariant momentum cutoff
scheme, one obtains after applying Cauchy’s integral formula

iI1(m,�) =
∫ � d3k

(2π )3

1

2Ek

= �2

8π2

[√
1 + m2

�2
− m2

�2
ln

(
� + √

�2 + m2

m

)]
,

(A2)

where Ek =
√

k2 + m2. This expression can be used to solve
the self-consistent gap equation (2) in order to find the vacuum
quark masses.

TABLE III. Vertex factors in spinor, flavor, and color spaces for
the mesons and diquarks considered in this work.

X Spinor Flavor Color

π iγ 5 τ3 1c

K iγ 5 1√
2
(τ6 − iτ7) 1c

η iγ 5 (τ0, τ8) 1c

η′ iγ 5 (τ0, τ8) 1c

(ud ) Ciγ 5 −τ2 −λ2/λ5/−λ7

(us) Ciγ 5 τ5 −λ2/λ5/−λ7

[ud] Cγ μ τ1 −λ2/λ5/−λ7

[us] Cγ μ τ4 −λ2/λ5/−λ7

[ss] Cγ μ 1√
3
τ0 −

√
2
3 τ8 −λ2/λ5/−λ7

TABLE IV. Summary of the posterior mean, standard deviation,
and minimal and maximal values for the model parameters and
predicted hadronic observables with the full weights W3.

Unit Mean σ Min Max

� MeV 568 8 550 625
G�2 2.44 0.23 1.76 4.00
K�5 10.05 1.35 4.00 15.0
m0 MeV 5.69 0.42 4.00 7.00
m0,s MeV 134 5 95 150
mu,d MeV 515 53 315 1045
ms MeV 678 46 476 1160

−〈qq〉 1
3 MeV 243 4 219 282

−〈ss〉 1
3 MeV 250 4 235 284

mπ MeV 138.2 4.5 110.3 187.4
fπ MeV 92.1 1.2 82.6 101.8
mK MeV 497 4 437 554
fK/ fπ 1.01 0.01 0.98 1.15
mη MeV 510 8 357 604
mη′ MeV 987 27 680 1428
Gd/G 1.53 0.04 1.00 1.89
Gd,V /G 0.97 0.06 0.75 1.30
m(ud ) MeV 489 29 0 1442
m(us) MeV 682 22 368 1556
m[ud] MeV 918 54 586 1721
m[us] MeV 1060 49 728 1832
m[ss] MeV 1197 46 852 1944
mN MeV 952 41 0 2454
m� MeV 1099 40 292 2560
m� MeV 1183 37 691 2577
m� MeV 1294 35 768 2647
m� MeV 1240 73 0 2376
m�� MeV 1389 70 181 2500
m�� MeV 1538 67 361 2624
m	 MeV 1688 64 539 2752
B(ud ) MeV 541 114 407 1984
B[ud] MeV 112 59 10 808
BN MeV 53 51 2 1100
B� MeV 193 120 0 1951

APPENDIX B: MESON AND DIQUARK POLARIZATION
FUNCTIONS

We start by recalling the general expression of the loop
function associated with the bound state X ,

�X (p) = i
∫ � d4k

(2π )4
Tr(�X S(p + k)�†

X S(k)), (B1)

where the dressed fermion propagator S(k) is given by Eq. (4).
All the interaction vertices �X in spinor, flavor, and color
space associated with each bound state are gathered in Ta-
ble III. Pseudoscalar mesons have negative parity, yielding a
factor iγ5 in the spinor space. They are all colorless states, so
we select the singlet color representation. For the pion and
kaon, since we work under the isospin approximation, one
can choose in flavor space any representant of the pion triplet
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(π+, π−, π0) and kaon quadruplet (K+, K−, K0, K0); here we
choose the π0 and K0 channels for illustrative purposes. For
the η and η′ mesons, a diagonalization in the flavor subspace
(0,8) is necessary since the polarization matrix has nonzero
off-diagonal terms. We refer to Ref. [19] for the technical
details on this procedure (see also Ref. [27] for an extension
without the isospin approximation).

In the diquark case, scalar diquarks are needed for the
construction of the baryon octet, while axial diquarks are
required to describe the baryon decuplet. Their spinor channel
includes an additional C matrix in order to select a particle-
particle scattering channel. Scalar diquarks belong to the
antisymmetric flavor antitriplet 3 f ⊂ 3 f ⊗ 3 f . In the isospin
approximation, we can choose (us) as a representative of the
degenerate pair together with (ds). Axial diquarks belong to
the symmetric flavor sextet 6 f ⊂ 3 f ⊗ 3 f . We choose [ud] as
the representative of the isospin triplet ([ud], [uu], [dd]) and
[us] as the representative of the degenerate pair together with
[ds]. In order to produce colorless baryons, diquarks must
belong to the antisymmetric color antitriplet representation
of 3c ⊗ 3c. They are therefore colored objects with antisym-
metric color wave functions |rb − br〉, |gb − bg〉, or |rg − gr〉.
The color triplets are of course degenerate, and are combined
together with quarks of the different colors to form colorless
baryons.

After performing the traces, we obtain the respective po-
larization functions for pseudoscalar mesons, scalar diquarks,

and axial diquarks,

�
f1 f2
PS (p) = 4iNc

[
I1
(
m f1 ,�

) + I1
(
m f2 ,�

)
+ [(

m f1 − m f2

)2 − p2
]
I2
(
p, m f1 , m f2 ,�

)]
,

(B2)

�
f1 f2

d,S (p) = 8i
[
I1
(
m f1 ,�

) + I1
(
m f2 ,�

)
+ [(

m f1 + m f2

)2 − p2
]
I2
(
p, m f1 , m f2 ,�

)]
,

(B3)

�
f1 f2

d,A (p) = − 16

3
i
[
I1
(
m f1 ,�

) + I1
(
m f2 ,�

)
+ [(

m f1 + m f2

)2 − p2
]
I2
(
p, m f1 , m f2 ,�

)]
,

(B4)

where f1 and f2 are the two flavors of the quarks or antiquarks
involved in the bound state. Note that the diquark polarization
functions do not get an additional factor Nc since they do not
belong to a singlet representation of 3c ⊗ 3c. The two-line
loop integral I2 is expressed by

I2
(
p, m f1 , m f2 ,�

) =
∫ � d4k

(2π )4

1[
(p + k)2 − m2

f1

](
k2 − m2

f2

) .
(B5)

In the noncovariant cutoff scheme, and taking the bound state
at rest (p = 0), one can reduce this expression to

I2
(
p0, m f1 , m f2 ,�

) = − i

8π2 p0

[
m f1I

(√
1 + �2

m2
f1

,− p2
0 + m2

f1
− m2

f2

2p0m f1

)
− m f2I

(√
1 + �2

m2
f2

,
p2

0 + m2
f2

− m2
f1

2p0m f2

)]
, (B6)

where the remaining integral I appearing in the previous expression can be given analytically,

I (M, e0) =
∫ M

1
de

√
e2 − 1

e − e0
= �(M − 1)

⎛
⎜⎜⎝√M2 − 1 + e0 ln(M +

√
M2 − 1)

+

⎧⎪⎪⎨
⎪⎪⎩
√

e2
0 − 1 ln

(∣∣∣∣ M−e0

−1+Me0+
√

(M2−1)(e2
0−1)

∣∣∣∣
)

if |e0| � 1,

−
√

1 − e2
0 arccos

( 1−Me0
M−e0

)
if |e0| < 1

+ iπ
√

e2
0 − 1 �[(e0 − 1)(M − e0)]

⎞
⎟⎟⎠, (B7)

with � being the Heaviside step function.

APPENDIX C: PION AND KAON DECAY CONSTANTS

The pion and kaon decay constants are computed applying Eq. (12) to the corresponding channels (see the first two lines of
Table III). After performing the traces, one obtains

fπ/K (p) = −2iNcgπ/K→i j (mi + mj )I2(p, mi, mj,�), (C1)

where the i and j subscripts denote any two light flavors in the pion case, and one light flavor and one strange flavor for the kaon.
The vacuum values of the decay constants are then computed assuming the meson at rest and on shell (p0 = mX , p = 0).
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APPENDIX D: QUARK-DIQUARK LOOP FUNCTIONS FOR BARYONS

The evaluation of the baryon propagator in the quark-diquark approximation is made through the quark-diquark polarization
function:

�
f ,d
B (p) = i

∫
d4k

(2π )4
S f (p + k)�d (k), (D1)

where �d is the propagator of the diquark d , given by Td (p) in Eq. (10). Assuming the baryon at rest (p = 0), we follow the
decomposition suggested in Appendix F of Ref. [29] and obtain

�
f ,d
B (p0) = −g2

d→qq

8π2
[J+

F (p0) + J−
F (p0) + J+

B (p0) + J−
B (p0)], (D2)

where the functions J±
F/B can be expressed analytically:

J±
F (p0) = ± 1

2p0
m2

f

[
I
(√

1 + �2

m2
f

,±m2
d − m2

f − p2
0

2p0m f

)
∓ γ0I ′

(√
1 + �2

m2
f

,±m2
d − m2

f − p2
0

2p0m f

)]
, (D3)

J±
B (p0) = 1

2p0
md

[
±(m f + γ0 p0)I

(√
1 + �2

m2
d

,±m2
f − m2

d − p2
0

2p0md

)
+ γ0mdI ′

(√
1 + �2

m2
d

,±m2
f − m2

d − p2
0

2p0md

)]
, (D4)

where the function I is shown in Eq. (B7), while the function I ′ is given by

I ′(M, e0) =
∫ M

1
de e

√
e2 − 1

e − e0
= 1

2
�(M − 1)

((
2e2

0 + M
)√

M2 − 1 + (
2e2

0 − 1
)

ln(M +
√

M2 − 1)

+

⎧⎪⎪⎨
⎪⎪⎩

2e0

√
e2

0 − 1 ln
(∣∣∣ M−e0

−1+Me0+
√

(M2−1)
(

e2
0−1

) ∣∣∣) if |e0| � 1,

−2e0

√
1 − e2

0 arccos
(

1−Me0
M−e0

)
if |e0| < 1

+ iπe0

√
e2

0 − 1�[(e0 − 1)(M − e0)]

)
. (D5)

APPENDIX E: SUMMARY OF THE RESULTS

To summarize our results, we provide in Table IV the first two moments of the posterior distributions with the weight W3
for the parameters and observables investigated in this work. The former can be interpreted as a good estimate of an optimal
parametrization of the NJL model accounting for the constraints imposed by W3. We indicate in addition the minimum and
maximal values obtained within our prior exploration for each quantity.
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