
PHYSICAL REVIEW C 107, 044910 (2023)

Impact of hadronic interactions and conservation laws on cumulants of conserved
charges in a dynamical model

Jan Hammelmann1,2 and Hannah Elfner 3,2,1,4

1Frankfurt Institute for Advanced Studies, Ruth-Moufang-Strasse 1, 60438 Frankfurt am Main, Germany
2Institute for Theoretical Physics, Goethe University, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany

3GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany
4Helmholtz Research Academy Hesse for FAIR (HFHF), GSI Helmholtz Center, Campus Frankfurt,

Max-von-Laue-Straße 12, 60438 Frankfurt am Main, Germany

(Received 23 June 2022; accepted 3 March 2023; published 25 April 2023)

Understanding the phase diagram of QCD by measuring fluctuations of conserved charges in heavy-ion
collision is one of the main goals of the beam energy scan program at the BNL Relativistic Heavy Ion Collider
(RHIC). Within this work, we calculate the role of hadronic interactions and momentum cuts on cumulants of
conserved charges up to fourth order in a system in equilibrium within a hadronic transport approach (SMASH). In
our model the net baryon, net charge, and net strangeness are perfectly conserved on an event-by-event basis and
the cumulants are calculated as a function of subvolume sizes and compared to analytic expectations. We find a
modification of the kurtosis due to charge annihilation processes in systems with simplified degrees of freedom.
Furthermore the result of the full SMASH hadron gas for the net baryon and net proton number fluctuations is
presented for systems with zero and finite values of baryon chemical potential. Additionally we find that due
to dynamical correlations the cumulants of the net baryon number cannot easily be recovered from the net
protons. Finally the influence of deuteron cluster formation on the net proton and net baryon fluctuations in a
simplified system is shown. This analysis is important to better understand the relation between measurements of
fluctuations in heavy-ion collisions and theoretical calculations which are often performed in a grand canonical
ensemble.
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I. INTRODUCTION

One of the biggest goals in the field of high energy physics
is to study the properties of QCD matter at various tempera-
tures and baryon chemical potentials by exploring the QCD
phase diagram. Experimentally this can be achieved by per-
forming heavy-ion collisions at different energies. One way
of studying the equation of state of QCD matter are fluctua-
tions of conserved charges [1]. Fluctuations or more precisely
cumulants are interesting as they can be related to the grand
canonical partition function ZGCE of the underlying theory.
It has been pointed out that fluctuations of the net proton
number are sensitive to the possible existence of a critical end
point [2,3].

From the theoretical side, lattice QCD calculations are the
most fundamental calculations and allow one to assess ther-
modynamic properties of QCD matter [4,5]. However, they
are limited to low chemical potentials and therefore are not
suitable for studying fluctuations at large chemical potentials,
where a possible critical point is expected [6]. As a result, one
is limited to effective models of QCD in the regions of high
baryon densities.

On the experimental side, the beam energy scan (BES) pro-
gram is aimed at measuring various observables as a function
of the colliding energy

√
s [7] and measurements of fluctua-

tions of the net proton number were recently published [8,9].

Due to technical reasons only the net proton number can be
measured in these experiments, though these are thought to
serve as a proxy of the net baryon number [3]. In comparison
to the net baryon number, however, the net proton number is
not strictly conserved in QCD. In the future the Compressed
Baryonic Matter (CBM) experiment will investigate fluctua-
tion observables at even lower beam energies at FAIR (Facility
for Antiproton and Ion Research).

Charge conservation changes the cumulants because the
fluctuations do not originate from an infinitely large heat
bath as in the case of grand canonical ensemble [10]. A way
of limiting the effect of charge conservation in a heavy-ion
collision is by minimizing the window of acceptance in which
the cumulants are measured [11]. On the other hand, when
reducing it below the size of the correlations the fluctuations
go to the Poissonian limit [12].

In [13] analytic expressions of cumulants up to sixth or-
der including perfect charge conservation were derived as a
function of subvolume. In [14], a direct relation between the
grand-canonical susceptibilities of any theory and the fluctua-
tions of a conserved charge in subvolumes of that theory was
derived. However in these calculations [13,14] no dynamical
effects are accessible. Within [15], a baseline calculation of
fluctuations including conservation laws as a function of beam
energy was provided employing the UrQMD (ultrarelativistic
quantum molecular dynamics) hadronic transport approach.
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Recently a model including critical dynamics was employed
to study the scaled variance [16]. In [17] a calculation was
performed using the SMASH (Simulating Many Accelerated
Strongly-interacting Hadrons) approach within a box filled
with hadronic matter. The effect of the net charge conservation
was studied in a simplified interacting hadronic gas.

It is the purpose of this work to extend the calculation
in [17] to the baryon number and more realistic interacting
hadron gases. It is important to understand the effects of
charge conservation on fluctuations in a controlled environ-
ment first. Once these are properly understood one can with
more confidence grasp the fluctuations in full scale dynam-
ical simulations of heavy-ion collisions. We use a hadronic
transport approach (SMASH) and directly calculate fluctua-
tions of conserved charges as a function of subvolumes of
gases containing different sets of particles and interactions.
In addition, we want to address the question of the relation
between the net proton and net baryon number fluctuations.
A relation between the two quantities was derived in [18]
based on isospin diffusion in rapidity. These relations are
important as in heavy-ion experiments only the net proton
number fluctuations can be measured. Finally, the role of
deuteron cluster formation is investigated and its impact on
the net proton cumulants are calculated, as this was pointed
out as an important effect in [19].

Throughout this work, fluctuations are calculated in coor-
dinate space, even though experiments perform measurements
in momentum space. At energies available at the BNL Rela-
tivisitic Heavy Ion Collider (RHIC) and at the CERN Large
Hadron Collider (LHC), however, it is assumed that there
is a strong correlation between longitudinal momentum and
coordinate space. For the sake of completeness, we extend our
calculation to finite baryon chemical potential.

The rest of the paper is organized as follows: First the main
ingredients of the transport approach SMASH are introduced
in Sec. II. Then in Sec. III the methodology to extract the
fluctuations of conserved charges is described. In Sec. IV the
net charge fluctuations of a simplified system containing pions
and rho mesons are analyzed. In Sec. V the impact of a baryon
annihilation is presented for a simplified hadron gas. In Sec. V
the baryon and proton number cumulants of the full SMASH

hadron gas are presented. In Sec. VI the relation between
the baryon and proton number fluctuations is discussed, and
finally in Sec. VII the impact of deuteron cluster formation is
shown in a simplified hadron gas.

II. SMASH TRANSPORT APPROACH

The fluctuations of conserved charges and impact of
hadronic interactions are calculated within the hadronic trans-
port approach SMASH [20,21]. The specific version of the
code which we used is SMASH-2.0 [22]. Hadronic trans-
port approaches are successful in describing the evolution of
heavy-ion collisions at low beam energies or the late stages
of ultrarelativistic heavy-ion collisions. SMASH was applied to
various collision energies [23–25], as well as being used to
explore equilibrium properties of interacting hadronic matter
by employing a box with periodic boundary conditions to

simulate an infinite matter scenario [26–28]. This is what we
are interested in for this study concerning fluctuations.

At initialization, the particles are uniformly distributed
inside the box. The momenta are sampled from the equi-
librium Boltzmann distribution at a given temperature. The
incorporated interactions between the particles are resonance
formations and binary scatterings. String excitations are not
used within our calculations as they would break detailed
balance. Resonances are modeled via relativistic Breit-Wigner
distributions with a peak around the pole mass and widths
depending on the mass [29]. The resonance lifetime is propor-
tional to the inverse of the total width of the distribution. In the
calculations presented here, no test particles were employed.

In this work, the geometric collision criterion is applied. It
allows for a collision between two particles if the following
relation d⊥ <

√
σtot/π between the transverse distance and

the total cross section of the reaction is fulfilled. SMASH con-
tains all particles of the Particle Data Group up to masses of
≈2.3 GeV [30]. Within the model, one can easily modify the
particle content of the system and their interactions. We start
therefore with a simplified system and study the impact of
specific interactions before moving to the full set of particles,
provided by SMASH.

III. FLUCTUATIONS IN SUBVOLUMES

For our calculations, we employ a box with peri-
odic boundary conditions representing infinite matter within
SMASH. For each event, the box is initialized with the same
number of particles. As a result, e.g., the net baryon number
is conserved on an event-by-event basis. The initial number
of each particle species is determined by taking one fully
equilibrated event and plugging the resulting final multiplic-
ities into each event, if no other initial numbers of particles
are specified. Besides thermal and chemical equilibrium, it is
necessary that the density is distributed isotropically inside
the box. Otherwise the result would depend on the definition
of the subvolumes.

Figure 1 shows the normalized hadron density inside the
full SMASH box for μB ≈ 0. The density is shown in bins in
the xy plane. The z axis is not taken into account. It shows
that the density is distributed isotropically and no local spots
of increased density appear. This a necessary prerequisite to
study the higher moments of the distributions.

Similarly, Fig. 2 shows in the case of the full SMASH hadron
gas that the proton and baryon numbers are distributed equally
in each bin. There exists a numerical artifact that has to be
treated with care to avoid increased particle densities at the
walls of the box. Within SMASH, interactions through the
wall are searched for on a time-step basis, whereas collisions
within the box are performed from action to action which
in principle does not require a time step. If one chooses too
large time steps, the code does not search for interactions
through the wall and as a result more particles accumulate at
the edges of the system and the density increases. To obtain
reliable results with high statistics in this work, the choice of
the time-step size has to be small enough to keep this artifact
under control and the computing time on a reasonable level. It
was found that the time-step size should be tstep < 0.05 fm.
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FIG. 1. Normalized particle density in the xy plane in the box
containing the full set of particles in SMASH. The mean value of the
hadron density is 〈ρ〉 = 0.253 fm−3. The volume of the box is V =
(20 fm)3 and the density is computed after t = 150 fm.

After initializing the box with a given set of multiplicities,
the temperature and baryon chemical potential are calculated
in order to ensure that the system has reached thermal and
chemical equilibrium. Both T and μB are calculated by as-
suming that the system follows the Boltzmann-statistics,

dN

d p
≈ e−

√
m2+p2−μB

T . (1)

In Fig. 3, the temperature and baryon chemical potential are
shown for each system after it has fully equilibrated. Even
though the boxes are initialized at the same temperature T
and baryon chemical potential μB, the final values of T and
μB differ from the initial values due to the fact that we have
to initialize with integer numbers of particles and therefore
the box only equilibrates subsequently via inelastic scatter-
ings to slightly different values of temperature and chemical
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FIG. 2. Positive and negative proton and baryon number distribu-
tion in each bin in the system with full SMASH hadron gas available.
The proton number (orange) and baryon number (purple) are shown
for both positive (circles) and negative (triangles) particles.
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FIG. 3. The final values of the temperature and baryon chemical
potential for each of the systems that are presented throughout this
work. The detailed degrees of freedom and interactions of each
system are explained in Appendix A.

potential. Especially in the full SMASH, hadron gas inter-
actions reduce the temperature compared to how it was
initialized . Even though there are deviations in the final
temperatures of the systems, in [17] it was found that the
cumulants show no large dependence on T . At initialization
of the systems T and μB were chosen from the freeze-out
parametrization used in [31] for

√
s = 2760 GeV and for√

s = 15 GeV. The cumulants are presented in two groups,
μB ≈ 0 and μB ≈ 250 MeV.

After the system equilibrates, the distribution of the net
or total charge number Nnet/tot

Q = NQ+ ∓ NQ− is obtained in
subvolumes of the box. We define the subvolumes in the same
way for each event by considering one coordinate of a particle
(e.g., zi) and check if the condition zi < xLbox is fulfilled
with x being the fraction V/V0. Finally from each distribution
the cumulants are computed as a function of the size of the
subvolume x = V/V0, where V0 is the original volume of the
system. The cumulants of, e.g., the net baryon number are
calculated as

Cnet
1 = 〈

Nnet
B

〉
, (2)

Cnet
2 = 〈(

δNnet
B

)2〉
, (3)

Cnet
3 = 〈(

δNnet
B

)3〉
, (4)

Cnet
4 = 〈(

δNnet
B

)4〉
c = 〈(

δNnet
B

)4〉 − 3
〈(
δNnet

B

)2〉2
. (5)

Here, the angle brackets 〈·〉 denote the sample average, and
δNi = Ni − 〈Ni〉. Since the cumulants are proportional to the
susceptibilities, one usually presents ratios in order to cancel
additional factors in volume and temperature. Those are de-
fined as

ω = Cnet
2 /Ctot

1 , (6)

Sσ = Cnet
3 /Cnet

2 , (7)

κσ 2 = Cnet
4 /Cnet

2 . (8)

The errors of the cumulants are calculated according to [32].
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Experimentally, only a limited set of particles (e.g., the
net proton number) can be measured. In addition, restric-
tions in rapidity η and transverse momentum pT [33] limit
the measurements even more. Since in SMASH the full phase
space information of each particle is available, we additionally
study the impact of cuts in transverse momentum pT on the
fluctuations of conserved charges by imposing

0.4 < pT =
√

p2
x + p2

y < 2 GeV. (9)

The value x = (V/V0) can be interpreted as the acceptance
window [10]. The number of events for all presented calcu-
lations are in the order of 5 × 106 events.

It is also possible to compare the results from our sim-
ulations to analytic calculations of cumulants of conserved
charges as a function of the size of the subvolume. For com-
parison, we used the expressions derived in [34] which are
denoted as

Ctot
1 = x(〈N+〉 + 〈N−〉), (10)

Cnet
2 = ξ2(〈N+〉 + 〈N−〉), (11)

Cnet
3 = ξ3(〈N+〉 − 〈N−〉), (12)

Cnet
4 = ξ4(〈N+〉 + 〈N−〉) + 3ξ 2

2 C2[Nch]. (13)

Here, ξ2 = x(1 − x), ξ3 = ξ2(1 − 2x) and ξ4 = ξ2(1 − 6ξ2).
N± are the respective number of positive and negative charges
in full phase space and C2[Nch] is the variance of the total
charge number in full phase space. We neglect terms with the
quantity 
x = x+ − x− which reflects differences for accept-
ing a positive or negative charged particle with probability
x±. The influence of the variance of Nch fluctuations becomes
important to describe the fourth cumulant. Especially for an
interacting hadron gas where the total charge number is not
conserved, fluctuations of Nch have to be taken account to
describe the results.

IV. NET ELECTRIC CHARGE FLUCTUATIONS

To validate our methodology, the calculations in [17] are
reproduced first. The considered system is the following: A
box is filled with a fixed number of pions with initial momenta
sampled according to the Boltzmann distribution, Eq. (1), at
T = 160 MeV. Their interaction is described by the formation
of a ρ meson (ππ ↔ ρ; see system 1 in Appendix A) with an
energy dependent cross section. After equilibrating the system
both thermally and chemically, the fluctuations of the net
charge number are calculated in the subvolumes of the box.

In the case of only elastic interactions between the pions,
the resulting fluctuations follow perfectly the equations de-
rived in [13], which was also found in [17]. The analytic
expressions are derived from taking two distinct Skellam dis-
tributions for each subvolume connected with a delta fixing
the net charge number in the total volume (see Eq. (5) in [13]).
In the case of inelastic interactions, two different box volumes
[V = (10 fm)3, V = (20 fm)3] and two different initial num-
bers of particles (Nstart = 100π±, Nstart = 200π±) were used.
Since only equal numbers of positive and negative charged
particles are incorporated, the odd number cumulants are zero
and therefore Sσ is not shown.

Figure 4 shows the charge number cumulants as a function
of the size of the subvolume. The scaled variance within the
full phase space follows mainly the line (1 − x). In the case
of V = (10 fm)3 small deviations of the GCE value of 1 for
small values of x appear. It was checked that in the limit x →
0 the scaled variance goes to 1, which is referred to as the
Poissonian limit.

Contrary to [17] (see Fig. 4 blue stars) the scaled variance
follows the conservation line even though the systems are
equal. The difference between the current calculation and the
prior work in [17] is the treatment of resonances in the last
time step. In the SMASH default calculations, all resonances
decay into stable particles after the evolution. The decay
products are then placed at the same position. This does not
change the variance of the system, since the net charge is not
affected if a positive and negative charged particle are at the
same position. Ctot

1 however is affected, since the total number
of charged particles increases. Therefore ω no longer follows
1 − x but has a smaller slope. In this work, the ρ meson is
not forced to decay after the evolution. When a momentum
cut is imposed, the scaled variance is increased and no longer
follows 1 − x; see Fig. 4 upper right. ω still goes to 1 for
x → 0 but no longer goes to 0 for x → 1. When only a subset
of all particles is taken, the charge conservation only has a
reduced effect on the cumulants.

The kurtosis of the net charge number in full phase space
is affected by the dynamical evolution and varies from the
perfect conservation case [1 − 6x(1 − x)]. For V = (10 fm)3

and Ninit = 200π+ + 200π− the kurtosis is shifted towards
κσ 2 ≈ 0 around x = 0.5. For the same number of particles in
the initial state but evolved in V = (20 fm)3 it is close to the
perfect conservation case. Generally, the shape of the kurtosis
matches with the calculation in [17]. The shift of the kurtosis
can be reproduced in a simplified model; see Appendix B.
Our finding is that when a large fraction of charged particles
form a resonance with charge 0, the ratio κσ 2 → 0.25 around
x = 0.5 where the conservation effect is the largest. This can
be understood with the analytic expressions for C4, Eq. (10).
If any amount of charges can be annihilated by the formation
of a resonance with charge zero, the total charge number is no
longer conserved and the variance C2[Nch] becomes nonzero.
This only affects C4 as derived in [34], with the effect being
the strongest at x = 0.5.

In the case of an applied momentum cut, all four curves
follow a similar trend towards κσ 2 = −0.5 for x → 1. Within
errors, no clear distinction between the four cases can be
made. For small subvolumes the slope with which the kurtosis
approaches the GCE value differs from the kurtosis within the
full phase space. The qualitative behavior of the kurtosis when
employing a momentum space cut is consistent with [35].

A more detailed view of this behavior is shown in Fig. 5,
where the cumulants divided by the respective volumes of
the systems are presented. The results are shown for the two
distinct cases V = (10 fm)3 and V = (20 fm)3 with the same
initial number of pions Ninit = 200π+200π−. In both cases
we find perfect agreement with, e.g., [13,34] for the cumu-
lants at initialization, when there are no correlations. And we
also find reasonable agreement after dynamically evolving the
system in V = (10 fm)3 and V = (20 fm)3.
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FIG. 4. Scaled variance (top row) and kurtosis (bottom row) of the net charge distribution as function of the size of the subvolume. The
full phase space (left column) and the restricted phase space (right column) are presented. The solid line displays the analytic expectation. The
results are shown for the volumes V = (10 fm)3 (circles) and V = (20 fm)3 (triangles). The initial number of particles are Ninit = 100π+ +
100π− (purple) and Ninit = 200π+ + 200π− (orange). Additionally the results from [17] Fig. 4 (Ninit = 200π+ + 200π−, V = (10 fm)3) for
the full phase space are presented (blue stars).

The main difference between the two cases is the charge
density (see Fig. 5 left) and therefore the effective number of
interactions of the charge annihilation process π±π∓ ↔ ρ0,
which annihilates a positive and negative charge. For V =
(10 fm)3 we find a charge density of ρ ≈ 0.25 fm−3 and
Ninteractions ≈ 80 fm−1. For V = (20 fm)3 the charge density
is ρ ≈ 0.05 fm−3 with ≈21 fm−1 interactions per unit time.
The increase in interaction rates and therefore the formation
of a ρ0 meson results is an enhancement of the variance of Nch

fluctuations in full phase space. As described above already,
this affects the fourth cumulant. The specific values of C2[Nch]
at x = 1 are ≈65 for V = (20 fm)3 and ≈134 in the case
of V = (10 fm)3. At initialization the variance is of course
zero as the total charge number conserved. As C4 is modified
towards positive values, the kurtosis becomes positive as well,
which explains the behavior seen in Fig. 4.

We finally conclude that the density and interaction rate
of producing charge 0 particles plays an important role when
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FIG. 5. Cumulants of the total charge number C1 (left), second cumulant C2 (center) and the fourth cumulant C4 (right) of the net charge
number divided by the volume of the system as a function of the size of the subvolume. The systems are initialized with the same number
of pions Ninit = 200π+ + 200π−. The results are presented for two distinct volumes V = (10 fm)3 (purple) and V = (20 fm)3 (orange). The
lines show analytic expectation of each cumulant and the points show the results from SMASH after dynamically evolving of the box.
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studying cumulants of the net charge number. Additionally we
find good agreement with [13] for a rather dilute system. In a
very dense system, where the fluctuations of the total charge
number becomes important, the cumulants can be described
reasonably well with the expressions derived in [34].

V. NET BARYON NUMBER FLUCTUATIONS

In this section, the influence of net baryon number con-
servation on the cumulants is studied. As a start, the impact
of a baryon annihilation process in a simplified hadronic
system is investigated. At higher beam energies annihilation
processes are important in the late stage hadronic rescattering
phase [36,37]. Since the geometric collision criterion is em-
ployed the representative baryon annihilation process BB̄ ↔
5π has to be modeled with binary interactions. In SMASH

default calculations, annihilation processes are performed via
string excitations, but as they break detailed balance this for-
malism cannot be used in the box. Another option would have
been to employ a recently implemented stochastic collision
criterion, which allows for multiparticle interactions [36,38].
However, as this more sophisticated multiparticle treatment
increases the runtime of the code, we stick to the geomet-
ric criterion in this work. With only binary scatterings, the
nucleon-nucleon annihilation process is modeled via an inter-
mediate resonance formation and decay. The corresponding
processes which result in an effective NN̄ → 5π reaction are

NN̄ ↔ h1(1170)ρ, h1(1170) ↔ ρπ, ρ ↔ ππ, (14)

as suggested in [39].

A Baryon annihilation

Let us now quantify the influence of baryon annihila-
tion on the baryon number cumulants. For this purpose the
fluctuations of a simplified hadron gas with and without
an annihilation process are calculated (see systems 2 and 3
in Appendix A). The process NN̄ ↔ 5π is performed via
the intermediate resonance process NN̄ ↔ h1(1170)ρ ↔ 5π .
System 2 contains the same baryon species; however, the
interactions are chosen such that only the 2 ↔ 1 reaction
happens (
 ↔ Nπ ). The interaction between N , π , and 


does not alter the baryon number; as a consequence and, in
contrast to system 3, system 2 conserves not only the net
baryon number but also the total baryon number.

The results of the baryon number fluctuations are shown
in Fig. 6 for two different values of baryon chemical poten-
tials. Both results are calculated in a box with V = (15 fm)3.
Additionally to the results of our simulations, analytic curves
[Eq. (10)] are plotted. Since we want to focus on the influence
of the annihilation process on the fluctuations, forced decays
into stable particles after the final time step are not performed
here. The scaled variance is the same for both systems and
independent of the chemical potential or type of interactions
following the line (1 − x). With an additional cut in momen-
tum space, ω is still influenced by the net baryon conservation.
But due to the phase-space limitations, it is no longer fully
conserved and does not reach 0 for the full volume.
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FIG. 6. Scaled variance (top), skewness (center), and kurtosis
(bottom) as a function of the size of the subvolume. The purple
points correspond to system 2 without NN̄ annihilation and the
orange points to system 3 with the NN̄ annihilation process. Both
calculations are shown for μB ≈ 0 (triangles) and for μB ≈ 250 MeV
(circles).

The skewness is influenced by the baryon chemical po-
tential, since it is sensitive to asymmetries of charges to
anticharges. In the limit of large μB it follows (1 − 2x),
whereas in the limit of small μB it is approximately zero.
Because system 2 evolves into a small but nonzero value
of baryon chemical potential within the dynamical evolution
(μB ≈ 0.05 GeV; see Fig. 3 blue circles), the skewness also
shows a small nonzero slope. However, there is no clear
influence of the baryon annihilation process visible on Sσ .
With an applied pT cut, similarly to the scaled variance, the
cumulants are not as strongly affected by the baryon number
conservation and follow a reduced slope towards full volume
x = 1.

Similarly to what we observed in Sec. IV, the kurtosis is
strongly influenced by the dynamical evolution of the system,
when a baryon annihilation process in form of the h1(1170)
meson is added. Here two can effects can be seen. First for
μB ≈ 0 the kurtosis is shifted towards positive values, and
second κσ 2 goes to −0.5 at x = 0.5 for large values of baryon
chemical potential. This was found by [14], where it was
calculated that the kurtosis is additionally influenced by C3/C2

(see Eq. (18) in [14]). At large values of baryon chemical
potential there are not enough antinucleons in the system to
perform the annihilation process in the first place. As a result
the variance of P(Nch ) is unaffected. For μB ≈ 0 we see a
similar behavior as was already discussed in the previous
section. The annihilation process increases the variance of Nch
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fluctuations which affects C4 such that the kurtosis goes to
zero around x = 0.5. With an additional cut on the transverse
momentum, there is still a clear distinction between the cases
with and without baryon annihilation. This means that even
when only a subset of particles is taken into account, where
the effect of the baryon number conservation is no longer as
strong, the process NN̄ → 5π has a strong influence on the
kurtosis. With the the input of 〈N±〉 and C2[Nch] the cumulants
in full phase space can be perfectly described by Eq. (10).
Compared to [37] we only see an effect of the annihilation
process on the level of the fourth cumulant.

B. Full SMASH calculation

In this section the result of the full SMASH hadron gas with
all of its interactions is presented (for more details see [21]).
For this purpose a box with V = (20 fm)3 is employed.
Experimentally only stable particles are measured since all
resonances decay into ground states. Therefore, for the results
in this section, after the final time step all resonances are
forced to decay until all decay products are stable. For techni-
cal reasons the decay products are placed at the same position
as the original resonance. This affects only the proton number
cumulants, since more protons appear from the decay chain.
The baryon number cumulants are not affected, because all
decays in SMASH conserve the baryon number. The cumulants
therefore can be viewed as the sum of the dynamical part
and final decay part, Cnet P

i = Cnet P, dynamic
i + Cnet P, decays

i . In
the previous section a focus was set on the baryon annihilation
process. In this section, the focus will be on the proton number
cumulants, since they are the ones that are actually measured
in experiment.

Figure 7 shows the result of baryon and proton number
cumulants of the full SMASH hadron gas. The baryon number
cumulants (circles) in full phase space follow the conservation
lines and are influenced by the annihilation process similarly
to the simplified hadron gas discussed in the previous section.
However for μB ≈ 250 MeV the kurtosis has a much larger
error than in the case of μB ≈ 0, which is why it is hard to
draw any conclusions. There seems to be the trend observed
in the previous section that the annihilation process plays no
dominant role on the cumulants at large baryon chemical po-
tentials in the full SMASH hadron gas. The net baryon number
within a restricted phase space is again no longer conserved.
However there, still are correlations by the net baryon number
conservation and the resulting cumulants are not completely
thermal.

Similarly to the net baryon number in restricted momentum
space, the net proton number is not conserved and there-
fore the cumulants do not follow the conservation curves.
Nevertheless they are affected by the net baryon number
conservation. The scaled variance of the proton number cu-
mulants for both μB ≈ 0 and μB ≈ 250 MeV has a negative
slope in the full and restricted phase space. With the pT cut,
the slopes are even more reduced, since an even smaller subset
of the conserved charge is taken into account. The slopes of
the proton scaled variance are shown in Table I.

The values of the slope of the net proton scaled variance
in both full and restricted momentum space indicate that they
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FIG. 7. Scaled variance (top), skewness (center), and kurtosis
(bottom) as function of the size of the subvolume of the full SMASH

hadron gas. The results of the baryon number (circles) and proton
number cumulants (triangles) are shown for μB ≈ 0 (left) and μB ≈
250 MeV (right). The cumulants are presented for the full phase
space (purple) and restricted phase space (orange).

are also influenced by the annihilation process as they differ
between μB ≈ 0 and μB ≈ 250 MeV. Additionally, the cu-
mulants as a function of the size of the subvolume of the net
proton number deviate from the perfect conservation case. As
a result they will not follow these lines in an experimental
situation and the differences between the net protons and net
baryons have to be taken into account.

VI. NET BARYON VERSUS NET PROTON FLUCTUATIONS

In this section, the relation between the net proton and
the net baryon number fluctuations is investigated. For this
purpose, the expressions derived in [18] are tested. Since
experiments only have access to the net proton number and
not the full baryon number spectrum, the net proton number is
used as a proxy of the net baryon number. In most theoretical
calculations, however, the net baryon number is calculated
and the net proton number is not accessible. Therefore it is

TABLE I. Fits of the proton scaled variance as a function of the
size of the subvolume x.

ω(x) = Cnet P
2 /Ctot P

1 μB ≈ 0 μB ≈ 250 MeV

Full phase space 0.995 − 0.361x 1.001 − 0.412x
0.4 < pT < 2.0 GeV 0.998 − 0.219x 1.001 − 0.240x
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FIG. 8. Scaled variance as function of the size of the subvolume. The result are shown for μB = 0 (left column) and μB ≈ 250 MeV (right
column). Fluctuations of the full phase space are shown on the top row and restricted momentum space on the bottom row. The grey line is
the analytic expectation of perfect conservation. The black line is the result of the actual net baryon scaled variance. The orange points are
the result if one applies the mapping [18] onto the net proton number. The purple points show the result when mapping the fluctuations of an
artificial set of protons back onto the baryons.

important to know if a relation between the two quantities
exists.

It is argued by the authors of [18] that the mapping works if
the underlying system undergoes isospin randomization. This
process happens, e.g., through the 
 resonance and a pion
at large collision energies where many pions are produced.
At small collision energies, isospin randomization is expected
to break down, since there are not enough pions produced.
Generally, the mapping is derived via a binomial factorization
ansatz which maps a proton onto a baryon with a certain prob-
ability. The respective formulas for the first two cumulants are

〈
N tot

B

〉 = 〈
ξ−1

1 Np + ξ̄−1
1 Np̄

〉
, (15)

〈(
δNnet

B

)2〉 = 〈(
ξ−1

1 δNp − ξ̄−1
1 δNp̄

)2〉

− 〈
ξ2ξ

−3
1 δNp + ξ̄2ξ̄

−3
1 δNp̄

〉
. (16)

Here ξ1 = p and ξ2 = p(1 − p) with the probability p =
〈Np〉/〈NB〉, and similarly for the antiparticles ξ̄ . To have an
estimate of an error on the result, the probability is modified
by ±3% and presented in bands. We have checked that for
both small and large baryon chemical potentials the isospin
density α = 1

2 ( 〈Nn〉−〈Np〉
〈Nn〉+〈Np〉 ) 
 1.

Figure 8 shows the result of mapping the net proton num-
ber onto the net baryon number in the full SMASH hadron
gas after dynamically evolving the system and performing
final decays into all ground state particles. As the net baryon

number is conserved it follows (1 − x). To assess how well
the mapping proposed in [18] works, let us compare two
different situations. The purple points are obtained by gen-
erating an artificial set of protons by selecting event by event
a (anti)baryon as a (anti)proton with the given probability p
( p̄). The orange circles display the actual set of protons in
the SMASH calculation. Afterwards, Eq. (15) is applied with
the same probabilities to get the net baryon cumulants. As
shown in Fig. 8, when starting with the artificial proton set, the
mapping can reconstruct the scaled variance of the net baryon
number fluctuations.

However when applying the mapping on the actual SMASH

net proton fluctuations, the scaled variance of the net baryon
number cannot be fully reconstructed. At small values of x
the differences are not large. At large x when the conservation
of the net baryon number becomes important, the fluctuations
are underestimated. Even in restricted momentum space these
correlations are still present, as the scaled variance still cannot
be reconstructed. It was checked that this difference comes
mainly from the variance Cnet

2 and not from the mean Ctot
1 ,

which is perfectly reproduced. This is a result of dynamical
correlations within the set of protons. As in the case of the ar-
tificial proton set, all correlations are removed by the binomial
acceptance.

Figure 9 shows the ratio of the scaled variance of baryons
and protons when mapped onto the baryons for three differ-
ent systems. For all three systems the difference grows with
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FIG. 9. Ratio of the scaled variance of baryons and baryons when mapped from the protons, ωδB/ωδP→δB as a function of the size of the
subvolume. Three different systems with increasing number of degrees of freedom and interactions are shown. In black a system containing
πρN
 is used, where no annihilation process is implemented. In purple, the same system is used but with an annihilation process, and, in
orange, the full SMASH hadron gas is used.

increasing subvolume size where the effect of conservation
is the largest. In the case of the full SMASH hadron gas, the
difference becomes the largest as there are more dynamical
correlations within the system. From the two simplified sys-
tems one can see that the baryon annihilation process is not
the reason why the binomial unfolding cannot reconstruct
the scaled variance of the baryons. One can conclude that
for x < 0.2 the differences between the mapped and actual
fluctuations are not large and Eq. (15) can within an error
of 5% reconstruct the actual net baryon fluctuations. We
also calculated the mapping δB → δP and found that the
scaled variance ωnetP could be perfectly reconstructed from
the baryon number. Our findings can be summarized in the
following statement:

δPSMASH
not conserved

×−⇀↽−
�

δBSMASH
conserved, (17)

meaning the proton cumulants can be reconstructed from the
baryons but not vice versa.

VII. DEUTERON FORMATION

In this section, the influence of deuteron cluster formation
on conservation effects is calculated. For this, two different
sets of particles and interactions are employed, where the
only difference is the effective deuteron formation process
[see Eq. (18)]. The deuteron cluster formation is an important

process when studying fluctuations since they are produced
in the late stages of a heavy-ion collision. An analysis of
the influence of deuteron cluster formation on the net proton
number fluctuations can be found, e.g., in [40].

In this work we want to determine the effect of deuteron
formation on conservation effects of the proton and baryon
number cumulants. By comparing systems with and without
a deuteron cluster formation process the impact on the proton
number cumulant can be studied as a function of the size of the
subvolume. With a geometric collision criterion, limitations
are that only binary scatterings can be performed. The reaction
in which a deuteron is created is a 3 ↔ 2 reaction, namely
πnp ↔ dπ and Nnp ↔ Nd . To be able to perform these
interactions a fictional particle d ′ is introduced [41,42]. Note
that the deuteron in this microscopic description is treated as a
point particle. The individual reactions that model the 3 ↔ 2
interaction πnp ↔ dπ and Nnp ↔ Nd are

pn ↔ d ′, πd ′ ↔ πd, Nd ′ ↔ Nd. (18)

We now study the impact of deuteron clusters on conser-
vation curves of the proton and baryon cumulants. To do this
the cumulants as a function of x = (V/V0) are calculated for
a system with and without deuterons (see systems 3 and 4 in
Appendix A) in a box of V = (15 fm)3. For the calculation of
cumulants of deuterons, only the actual deuterons are counted
and not the fictional d ′ resonance.
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FIG. 10. Scaled variance (top), skewness (center), and kurtosis
(bottom) as a function of the size of the subvolume. Open circles
show the result of the box containing no deuterons whereas the
closed circles correspond to results with deuteron formation. The
results are presented for μB ≈ 0 (left column) and μB ≈ 250 MeV
(right column). Orange points show the deuteron number cumulants,
purple points the proton cumulants, and black points the baryon
number cumulants.

Figure 10 shows the cumulants as a function of the sub-
volume size. For both systems 3 and 4, the baryon number
cumulants follow the expected analytic conservation curves,
which were observed before. Interestingly, in the case where
deuterons are produced, the cumulants show no large depen-
dence on the size of the subvolume, meaning they are rarely
affected by baryon number conservation and are produced
thermally. In addition the proton number cumulants of sys-
tems 3 and 4 coincide with each other. This means that the
proton cumulants are not affected by the deuteron cluster
formation and deuterons are rarely affected by conservation
effects, since their yields are small and therefore they follow
the thermal expectation.

VIII. SUMMARY AND CONCLUSIONS

In this work, we have studied the effects of conserva-
tion laws on fluctuation observables. Within a microscopic
hadronic transport approach several hadronic systems were
evaluated in infinite matter calculations and different dynamic
interactions were investigated in detail. Resonance formation
has no big effect on the higher moments for electric charge
cumulants, as long as the density of particles is small enough.
The kinematic cuts have always the expected effects on the
cumulants of reducing the influence of charge conservation.

For the net baryon number, that is of great interest in the
context of identifying the critical end point in heavy-ion mea-
surements, we have shown that baryon annihilation plays a
bigger role at zero chemical potential and mainly affects the
kurtosis. Interestingly, the proposed binomial mapping from
net protons to net baryons suggested from isospin random-
ization cannot fully reconstruct the proper net baryon number
cumulants in large sizes of the subvolume and consistently
underestimates their fluctuations. While for an artificial set
of random protons the mapping works as expected, it does
not for the actual SMASH protons containing correlations from
the dynamical evolution. For x < 0.2 the mapping can be
applied within an approximate error of 5%. Last, the influence
of cluster formation was studied and the proton cumulants
are largely unaffected. The deuterons themselves follow a
thermal expectation unaffected by conservation laws. This is
of relevance for the comparison of experimental results for
fluctuation observables with theory calculations based on a
grand canonical ensemble. In the future, it will be interesting
to explore how the hadronic rescattering dynamics affects the
cumulants in an expanding system.
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APPENDIX A: PARTICLES AND INTERACTIONS
CONSIDERED

Here a more detailed description of the particle content and
interactions of the different calculations is presented:

System 1
Particles: π , ρ

Interactions: ρ ↔ ππ

System 2
Particles: π , ρ, N , 


Interactions: ρ ↔ ππ , 
 ↔ Nπ

System 3
Particles: π , ρ, N , 
, h1(1170)
Interactions: ρ ↔ ππ , 
 ↔ Nπ , NN̄ ↔ 5π

System 4
Particles: π , ρ, N , 
, h1(1170), d d ′
Interactions: ρ ↔ ππ , 
 ↔ Nπ , NN̄ ↔ 5π , Nnp ↔
Nd

System 5
Full SMASH particles plus interactions
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FIG. 11. Toy model to describe the influence of particle annihi-
lation on the fluctuation of the net charge number.

APPENDIX B: MONTE CARLO TOY MODEL

To better quantify the impact of charge annihilation on
the net charge fluctuations, a simplistic Monte Carlo model
is explored; see Fig. 11. On a one-dimensional grid, charged
particles can move between each grid cell with a given prob-
ability γ on a time-step basis. The probability is chosen to be
γ = 1/3. This model so far is inspired by the diffusion mas-
ter equation [43]. In addition, the grid is built with periodic
boundary conditions.

Besides the movement along the grid cells, a reaction is in-
corporated which annihilates a positive and negative charged
particle and creates a particle with charge 0. The probability
of creating such a particle is given by ψ1. Per time step,
in each bin and for one set of combinations of positive and
negative charged particles a particle of charge 0 is created
with the probability ψ1 and the two oppositely charged par-
ticles are removed from the bin. If such a particle has been
created, it can move between the bins and will eventually
decay after some time with a probability exp(−tstepψ2). As a
result, the net charge is conserved in the whole system and the
number of total charge is controllable by the two parameters
ψ1 and ψ2.

After the system is initialized, it is evolved in time until
it has reached chemical equilibrium. It is also checked that
detailed balance in the system is fulfilled. In the following,
the equilibrium properties and the results of the cumulants
of the described system are shown for three different sets of
parameters. The specific values are displayed in Table II.

The parameters are chosen such that the final equilibrated
value of N tot

Q is different for all three sets. In the initial state,
only an equal number of 25 positive and negative charged
particles are randomly placed in a grid of 10 bins.

Figure 12 shows the evolution of the total number of
charges in the system for the different sets of parameters ψ1

and ψ2. As can be seen, for the parameter set 1, there is a

TABLE II. Sets of parameters ψ1 and ψ2 used in this work.

ψ1 ψ2

Set 1 0.5 0.9
Set 2 0.1 0.95
Set 3 0.01 0.95
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FIG. 12. Evolution of the total number of charge as a function of
the time step.

larger amount of neutral charged particles produced compared
to the system with the parameter set 3. As a result, Qtot equili-
brates at a lower value compared to the parameter set 3, where
only a small amount of particles with charge 0 is produced,
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FIG. 13. Scaled variance (top) and kurtosis (bottom) as a func-
tion of x. The results for three different sets of parameter are shown
for a system with the number of binsbeing 10 and in total 50 charged
particles in the initial state.
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due to a reduced production probability. To calculate event-
by-event fluctuations in subvolumes by means of grid cells,
many different events are calculated and the fluctuations are
computed. Here, the content of each bin are used and summed
up. For example in the case of 10 bins in total, the fluctuations
of the net charge number is calculated from the sum of 9
of those bins. Figure 13 shows the scaled variance and the
kurtosis for the three different sets of parameters as a function
of x. Here, x corresponds to the sum of bins used to calculate
the fluctuations over the total number of bins.

Starting with the scaled variance, at lower values of x
the variance is reduced by a larger amount of charge 0 par-
ticles in the system. For x → 1, ω goes to zero, which is
expected, since the net charge is conserved in the system.

For the parameter set 1, where only a very small amount of
particles is annihilated, the fluctuations follow the expected
conservation curve 1 − x. For the kurtosis, the same effect
as presented in SMASH can be seen. For the parameter set 1,
which creates a larger amount of particles with charge zero,
the kurtosis is modified from the baseline of conservation
[1 − 6x(1 − x)] and a strong effect can be seen around x =
0.5 due to a nonzero total charge number fluctuation induced
by the formation of neutral charged resonance. This shows
that the effect observed in SMASH that an annihilation process
modifies the kurtosis can be reproduced in a more simplistic
model. This, however, is just a conceptual study. The results
from SMASH are more realistic in terms of, e.g., physical cross
sections.
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