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We have developed a next-generation hybrid event-by-event three-fluid hydrodynamic model, suitable for
simulations of heavy-ion collisions in the energy range from few up to tens of GeV per colliding NN pair. At
such energies the interpenetration time of the nuclei is of the same order as the lifetime of the system, however,
this model treats the initial phase hydrodynamically. Thanks to that it is more sensitive to the equation of state
than one-fluid models with initial states being parametrized or generated by transport approach. Hence, our
model is well designed for simulations at collision energies, at which matter in the vicinity of the quantum
chromodynamics critical endpoint is expected. The construction of the model is explained and basic observables
like hadron spectra in rapidity and transverse momentum, as well as elliptic flow are calculated.
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I. INTRODUCTION

Ultrarelativistic heavy-ion collisions provide such condi-
tions that nucleons melt into strongly interacting quark-gluon
plasma (QGP). Since its properties cannot be measured di-
rectly, we have to design phenomenological models to extract
them by comparing the results of the model with the measured
experimental data.

While the CERN Large Hadron Collider (LHC) focuses
on collisions at energies of few TeV, the energy range from
few to few tens of GeV is no less interesting to study, espe-
cially because the critical endpoint is assumed to be probed
in collisions at these energies. This energy range is currently
being studied by the Beam Energy Scan (BES) program at
the BNL Relativistic Heavy Ion Collider (RHIC) and the
NA61/SHINE experiment at CERN, and two other facilities,
NICA at the Joint Institute for Nuclear Research (JINR) and
FAIR at GSI, are under construction.

The hydrodynamic approach has been one of the stan-
dard ways to simulate heavy-ion collisions since Landau
and Bjorken [1,2]. Today, pure hydrodynamic models have
evolved into hybrid models, which combine the hydrody-
namic approach for the hot and dense stages of the collision
evolution with a transport approach for final-state interactions.

Hydrodynamic modeling at RHIC BES energies is more
challenging than at the top RHIC or LHC energies. The
Lorentz contraction of colliding nuclei is much weaker. There-
fore, the time of the interpenetration is of the same order
as the lifetime of the hydrodynamic stage. This means that
while some parts of the fireball are already in the hydrody-
namic stage, in other parts nucleons are still approaching the
collision zone. The picture of “thin pancakes” is no longer ap-
plicable, so one cannot assume a boost-invariant longitudinal

expansion. It is also necessary to assume a finite baryon den-
sity of the produced medium. A hybrid model designed for top
RHIC or LHC energies would not address these challenges
and would not be suitable for energies lower than 20 GeV.

The assumption of boost invariance has been relaxed and
the finite baryon density included in several models in the
literature. Studies of collisions at RHIC BES energies have
been carried out using parametrized initial conditions [3–5],
initial state from a transport model [6–8], or so-called dynam-
ical initialization [9,10] to take into account the complicated
initial state geometry. However, when the initial state was
modeled with a transport model, the hydrodynamic picture
is applied after the complete passage of the incoming nuclei
through each other, which means that a significant part of the
evolution is modeled using hadronic degrees of freedom no
matter how high the density. In the case of parametrized initial
conditions, the starting time for the fluid stage was increased
with the decrease of collision energy. When the initial time
is large, there is reason to expect the transverse expansion to
have started, but especially in an event-by-event calculation
it is difficult to provide physical constraints for parametrized
transverse flow field.

The dynamical initialization/fluidization approach avoids
these caveats by treating each primary collision as a source
term to the fluid, which can start evolving while the primary
collisions are still going on. In this respect a similar ap-
proach is the so-called multifluid dynamics also known as the
three-fluid dynamics. In this approach, the incoming nuclei
are represented by two droplets of cold nuclear fluid, called
projectile and target fluids. The process of heavy-ion collision
is thus modeled as mutual interpenetration of the projectile
and target fluids. The phenomenon of baryon stopping is mod-
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eled as friction between the projectile and target fluids. The
kinetic energy lost to friction is channeled into the creation
of a third fluid, which represents particles produced in the
reaction. Such concept of three-fluid dynamics relies on fluid
dynamical description of the heavy-ion collision from the
very beginning. Assuming that even if the system is not close
enough to local equilibrium for an equation of state (EoS)
to be applicable, each one of these three subsystems—three
fluids—this allows to model the compression stage of the
reaction using fluid dynamics, and to probe its sensitivity to
the EoS of dense nuclear matter.

Multifluid dynamical modeling of relativistic heavy-ion
collisions has a long history, which can be rooted back to
the two-fluid model of the Los Alamos group [11] and the
later layout of a three-fluid formulation [12]. In the 1990s
and 2000s, a three-fluid hydrodynamic model was developed
by Mishustin, Russkikh, and Satarov [13] and subsequently
improved by Ivanov, Russkikh, and Toneev [14].

The three-fluid dynamical model has been used to describe
various observables, including transverse momentum spectra
of various hadron species [15], directed flow [16], elliptic
flow [17], light nuclei production [18], or global � polar-
ization [19]. In the studies above, hadron distributions were
evaluated via direct computation of Cooper-Frye integrals,
and the hadronic phase was described using fluid dynamics,
not hadron cascade. Later, three-fluid hydrodynamics was
extended with ultrarelativistic quantum molecular dynamics
(UrQMD) for final-state interactions, creating a hybrid model
called THESEUS [20]. However, this model has several short-
comings:

(i) it lacks viscous corrections,
(ii) hydrodynamic grid is defined in Cartesian coordi-

nates, which is computationally inefficient in the
presence of strong longitudinal expansion pertinent to
collision energies

√
sNN > 20 GeV,

(iii) it lacks fluctuations of the initial state,
(iv) EoS is hard-coded.

In this paper, we present MUFFIN1: a next-generation
event-by-event three-fluid dynamic model based on the vH-
LLE code [21]. MUFFIN is meant to be coupled to a
final-state hadronic cascade. We use SMASH for this pur-
pose [22] forming MUFFIN-SMASH hybrid, which addresses
three out of the four above-mentioned issues and therefore is
an ideal tool to simulate heavy-ion collisions. The present ver-
sion of MUFFIN still relies on the perfect-fluid assumption,
but we plan to include viscosity in near future. The technical
description of the individual parts of MUFFIN is presented
in Sec. II. Some general aspects of multifluid evolution are
studied in Sec. III while the first results of our model are
shown in Sec. IV.

II. THE MODEL

The multifluid evolution in hyperbolic coordinates

τ =
√

t2 − z2, η = 1

2
ln

t + z

t − z

1MUlti Fluid simulation for Fast IoN collisions.

is solved using a modified vHLLE code [21]. An advan-
tage of hyperbolic coordinates is that a fixed range in η

represents a volume which expands with the evolution time
τ , and one can simulate nucleus-nucleus collision at any√

sNN with a hydrodynamic grid with fixed η range. The
precollision states of projectile and target fluids are con-
structed from randomly sampled coordinates of individual
nucleons in the incoming nuclei. Thus, the initial states are
fluctuating event by event. The hadrons are sampled at the
hypersurface of particle-to-fluid transition, or particlization,
using SMASH-hadron-sampler [23], and final-state interac-
tions simulated using the transport model SMASH [22]. We
describe the details of the model in the following.

A. Initial state

To account for event-by-event fluctuations, we construct
the initial states of the projectile and target fluids by sampling
the coordinates of individual nucleons inside the incoming
nuclei, instead of assuming an average initial nuclear energy
density. Local energy, momentum, baryon, and electric charge
densities of the fluids are then computed by smearing the
point-like energies, momenta, and charges of the nucleons in
coordinate space using a smearing kernel. In this fashion, the
evolution of the fireball is treated hydrodynamically from the
very beginning.

We start by sampling the Cartesian coordinates of the
nucleons inside the nuclei according to the Woods-Saxon
formula [24]

ρ(x, y, z) = ρ0

1 + exp
(√

x2+y2+z2−R
a

) , (1)

where a = 0.459 fm is a diffuseness and

R = (1.1A1/3 − 0.656A−1/3) fm (2)

is the nuclear radius and A is mass number of the nucleus.
Next, since the fluid-dynamical evolution proceeds in hyper-
bolic coordinates, we have to set the incoming nuclei along
the τ = τ0 = const hyperbola into a position before their first
touch.

(i) First, the generated positions of nucleons in z coor-
dinates are contracted (i.e., divided) by the γ factor
of the incoming nuclei γ = √

sNN /2mN = cosh yp,
where yp is the projectile rapidity.

(ii) Then, the projectile (target) is moved to negative (pos-
itive) z by ζR/γ . Here, ζ is a numerical factor chosen
such that the nuclei do not overlap in the initial state.
Its values are 2 for energies

√
sNN = 7.7 GeV and

higher, but we also made runs at
√

sNN = 3 GeV and
used ζ = 1.1 there. The time coordinate t of each
nucleon is set to τ0 at this point. Thus the collision
technically starts at global time t = τ0 instead of t =
0. We can do this because setting the clock is a matter
of convention.

(iii) In the next step, all nucleons are free-propagated with
the projectile (target) velocity (−)tanh yp onto the
τ = τ0 hyperbola. Note that they do not encounter the
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other nucleus along this move, hence free propagation
is adequate.

(iv) The longitudinal positions of individual nucleons
are distinguished by different values of η, as z =
τ0 sinh η. The η coordinates of the nucleons are cal-
culated as

ηs,target = asinh

(
z

τ0
cosh yp + sinh yp

)
− yp, (3a)

ηs,projectile = asinh

(
z

τ0
cosh yp − sinh yp

)
+ yp, (3b)

where z is the original Cartesian coordinate and yp is the
projectile rapidity. Finally, the nuclei are shifted along the
x direction by half of the impact parameter, to represent a
noncentral nucleus-nucleus collision.

Since the geometry of the system is neither based on
two thin “pancakes” colliding, nor does the system depict
the scaling flow vz = z/t , we can freely choose the initial
time τ0. As known, in hyperbolic coordinates even conser-
vative algorithms tend to violate conservation laws [21,25].
We have tested that varying τ0 from 0.75 to 5 fm/c causes
maximally 3% change in total energy conservation with no
visible change in other variables. The larger the τ0 the better
the conservation laws are obeyed, and therefore we chose to
use the value τ0 = 5 fm/c which provides good conservation
of energy (less than 1% violation) and still allows most of the
longitudinal expansion be captured by the expanding coordi-
nate system.

Once the coordinates of the nucleons have been generated,
they are transformed into fluids. To smoothly deposit energies,
momenta, baryon, and electric charges of the incoming nucle-
ons into hydrodynamic cells, we use a smoothing kernel from
[26]:

K (�x,�y,�ηs)

= A exp

(
−�x2 + �y2 + �η2

s τ
2 cosh2 ηs cosh2 yp

2σ 2

)
,

where �x,�y,�ηs represent the distance between a given
nucleon and the center of a given fluid cell the energy is
deposited into; A is a numerically computed normalization
constant so that the total energy, the baryon number, and the
electric charge are conserved in the procedure. The energy-
momentum densities as well as the zeroth component of
baryon and electric charge currents in each fluid cell are
therefore summed up as follows:

T 0μ(xcell, ycell, ηcell ) =
∑

i∈nucleons

pμ
i K (�x,�y,�ηs),

N0
b (xcell, ycell, ηcell ) =

∑
i∈nucleons

BiK (�x,�y,�ηs),

N0
q (xcell, ycell, ηcell ) =

∑
i∈nucleons

QiK (�x,�y,�ηs),

where pμ is momentum of a hadron i, Bi, and Qi are its
baryon and electric charges, respectively. Each hadron has
the same longitudinal momentum with p0

i = √
sNN /2. At this

stage we neglect the Fermi motion and set the transverse mo-
mentum of each hadron to zero. When decomposing the initial
energy-momentum tensor and charge currents into densities
and velocities, we assume no dissipative currents, and take
pressure, temperature, and chemical potentials according to
the EoS.

An averaged initial state can also be constructed by gen-
erating a sample of initial states and taking averages of the
energy-momentum tensor and the densities over the sample.

B. Hydrodynamic evolution

The projectile, target, and fireball fluids coexist and
partially overlap in the same coordinate space. The hydrody-
namic evolution of individual fluids is computed in parallel
using a modified vHLLE code [21]. Although vHLLE has
bulk and shear viscous corrections included, we keep them
disabled in this work and leave viscous corrections in the
multifluid picture for a future study.

1. Interaction between fluids

Local interaction between the fluids takes place as soon as
more than one fluid is present in a given cell. Here, we follow
the description by Ivanov et al. [14]: The energy-momentum
exchange between the fluids is given by friction terms

∂μT μν
p (x) = −F ν

p (x) + F ν
fp(x), (4a)

∂μT μν
t (x) = −F ν

t (x) + F ν
ft (x), (4b)

∂μT μν
f (x) = F ν

p (x) + F ν
t (x) − F ν

fp(x) − F ν
ft (x), (4c)

and there is no charge exchange between the fluids. In the
friction terms, the subscript denotes the fluid (p stands for
projectile, t for target, and f for fireball). The F ν

p (x) and
F ν

t (x) are friction terms which correspond to projectile-target
fluid friction and act upon the projectile and the target fluids,
respectively. The F ν

f p(x) and F ν
f t (x) are friction terms which

correspond to projectile-fireball and target-fireball friction.
The friction terms for the fireball fluid are minus the sum of
the friction terms for the projectile and target fluids, so that
the total energy and momentum of the projectile, target, and
fireball fluids combined is conserved:

∂μ

[
T μν

p (x) + T μν
t (x) + T μν

f (x)
] = 0. (5)

The friction between the projectile and the target fluids is
parametrized as follows:

F ν
α = ϑ2ρξ

pρ
ξ
t mNV pt

rel

[(
uν

α − uν
α

)
σP(spt ) + (

uν
p + uν

t

)
σE (spt )

]
,

(6)

where mN is the mass of the nucleon, uν
α and uν

α are the four-
velocities of the fluids, with α index being α = p or t , and
the bar over the index means p = t and t = p. The relative
velocity of baryon-rich fluids V pt

rel is defined as

V pt
rel =

√
spt

(
spt − 4m2

N

)
2m2

N

, (7)

where

spt = m2
N

(
uν

p + uν
t

)2
(8)
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is the square of the mean invariant energy of the underly-
ing colliding nucleons. Furthermore, ϑ is the overall factor
depending on relative velocity, associated with the unification
of the projectile and the target fluids when their relative veloc-
ity approach 0. It suppresses the friction exponentially

ϑ = 1 − exp
[−(

V pt
rel

/
�V

)4]
, (9)

such that when the relative velocities of the fluids become
small enough, the friction between them vanishes. Here, �V
is the typical thermal velocity of particles within the fluid.

Other ingredients of Eq. (6) warrant a more thorough
explanation:

� Scalars ρξ
α represent effective densities of constituents

of the projectile and target fluids in their respective rest
frames. When the energy density of a fluid corresponds to
hadronic phase, the fluid is dominated by baryons, therefore
we equate ρξ

α to net baryon density. When the energy density
of a fluid corresponds to the quark-gluon phase, we associate
the density with the sum densities of quarks, antiquarks, and
gluons. Furthermore, the sum is multiplied by a factor 1/3
to take into account that quarks and gluons have smaller
cross-sections than nucleons, as predicted by the additive
quark model [27]. This leads to the following formula for the
effective density:

ρξ
α (spt ) =

{
ρb

αξh(spt ) εα < 0.7 GeV/fm3,

1
3

(
ρ

q
α + ρ

g
α

)
ξq(spt ) εα > 0.7 GeV/fm3.

(10)

Here, ρb
α , ρ

q
α , and ρ

g
α are densities of net baryons, quarks,

and gluons, respectively. Furthermore, we add scaling param-
eters (functions) ξh and ξq, which will be discussed later in
Sec. IV A. Note that the effective densities appear only in the
friction terms, introduced below, and thus the spt dependence
can be actually attributed to the latter. The quark and gluon
densities are not evolved in the hydrodynamic code, there-
fore we reconstruct them using local temperature and baryon
chemical potential in the limit of massless quarks and gluons
[28]:

ρq
α = 18ζ (3)

π2
T 3 + 2μ3

q, (11a)

ρg
α = 16ζ (3)

π2
T 3, (11b)

where the light-quark chemical potential is μq = μB/3.
� σP/E are cross sections defined as

σP(spt ) =
∫

θcm<π/2
dσ NN→NX

(
1 − cos θcm

pout

pin

)
, (12a)

σE (spt ) =
∫

θcm<π/2
dσ NN→NX

(
1 − Eout

Ein

)
. (12b)

In this way, σP and σE correspond to longitudinal momentum
transport and energy transport, respectively.

The friction between baryon-rich and fireball fluid is given
by

F ν
f α = ρb

αξ f α (s f α )V f α
rel

T 0ν
f (eq)

u0
f

σ Nπ→R
tot (s f α ), (13)

where ξ f α (s f α ) is the tuning parameter,

s f α = (mπu f + mN uα )2, (14)

and V f α
rel is the mean invariant relative velocity between

baryon-rich and fireball fluids defined as

V f α
rel =

√(
s f α − m2

N − m2
π

)2 − 4m2
N m2

π

2mN mπ

. (15)

C. Equation of state

An advantage of MUFFIN, inherited from the basic vH-
LLE code, lies in the possibility of changing the equation of
state. Thanks to that, the model can be used to study the
sensitivity of various observables to the EoS. However in this
paper, for the general benchmark of the model we use only
one EoS based on an effective chiral hadron-quark model [29]
that qualitatively matches to lattice QCD results at μB = 0 and
to hadron-resonance gas with excluded volume corrections at
low temperatures. This EoS has an advantage of being defined
in the whole T − μB plane, and is used for the evolution of all
fluids; however, its low-temperature limit quantitatively dif-
fers from the effective hadron-resonance gas EoS in SMASH;
therefore, following a recipe from [30], for the computation
of flow velocity, temperature, and chemical potentials at the
particlization hypersurface from energy-momentum density at
it, we use hadron-resonance gas EoS from SMASH [31]. This
ensures that the energy, momentum, and quantum numbers are
conserved in the particlization process.

D. Fluid-to-particle transition and final-state interactions

In hybrid models for top RHIC or LHC energies, one
typically assumes that the fluid-to-particle transition, or par-
ticlization, takes place at a fixed temperature, which should
be low enough so that the medium is locally in hadronic
phase, and in the range where the fluid-dynamical and trans-
port descriptions are both valid. At lower collision energies,
where the effects of baryon density become non-negligible,
the phase transition temperature decreases, and the use of
the same particlization temperature as at high energies is not
advisable. To avoid adjusting the particlization temperature
for each collision energy, it is practical to use constant energy
density as particlization criterion.

With more than one fluid in the picture, a proper parti-
clization criterion is more ambiguous. If each fluid particlizes
individually, space-time regions will appear with a mixture
of fluid and particles, which complicates the modeling. To
avoid such complications, we choose to particlize all fluids
at the same hypersurface in space-time. For the particlization
criterion, we choose a fixed “combined” energy density of
εsw = 0.5 GeV/fm3. To compute the latter, at each space-time
cell, we take the combined energy-momentum tensor of all
fluids, T μν

p (x) + T μν
t (x) + T μν

f (x), and diagonalize it to ex-
tract such combined energy density as its first eigenvalue.
With a field of combined energy-density in space-time, a Cor-
nelius subroutine [32] is used to construct the particlization
hypersurface. The constructed hypersurface is composed of
many small segments.
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FIG. 1. ηs − τ sections of particlization hypersurface at rT = 0,
constructed in simulations of central Au-Au collisions for different
collision energies with averaged initial state.

In conventional one-fluid calculations, most of the sys-
tem at the initial time of fluid-dynamic evolution, τ0, is hot
and within the particlization hypersurface. The initial state
of multifluid calculation consists of cold nuclear matter, and
therefore no part of the system is initially within the particliza-
tion hypersurface. Consequently the constant energy density
hypersurface forms an enclosed surface as demonstrated in
Fig. 1.

As per Gauss’ theorem, the net energy and momentum
flows through enclosed surface must be zero,∫

d�μT 0μ = 0,

and consequently there are regions on the hypersurface where
energy and momentum flows through the surface are negative,
i.e., directed inwards. These are the regions where the initial
state matter is flowing inwards, towards the hot and dense
interaction region, and must therefore be excluded from the
calculation of final state particles at particlization hypersur-
face. We filter out such hypersurface segments based on the
following criteria:

d�μd�μ > 0 and d�0 < 0, (16a)

d�μd�μ < 0 and d�μT μ0 < 0, (16b)

where d�μ is the normal vector of the hypersurface and
d�μT μ0 is the energy flow through the hypersurface. In nu-
merical calculations the requirement that the net energy flow
through enclosed surface is zero can be used to check the
accuracy of the calculations. We have checked that in our
calculations the net flow of energy is less than 5% of the total
outflow of energy through the constant density hypersurface.

It is known that if the hypersurface is spacelike, the
Cooper-Frye procedure allows negative contributions to the
particle distributions. Even after removing the segments of
the hypersurface where the energy flow is directed inwards,
significant part of the surface is spacelike, cf. Fig. 1. To
check whether negative Cooper-Frye contributions might be

FIG. 2. Positive and positive + negative Cooper-Frye contribu-
tions to the thermal pion yield at midrapidity as a function of pion
transverse momentum (top panel) and the ratio of minus negative to
positive contributions (bottom panel) as a function of pion transverse
momentum, computed in a multi-fluid simulation of central Au-Au
collision at

√
sNN = 7.7 GeV.

a problem in our model, we show in Fig. 2 positive, positive
+ negative contributions, and the ratio of negative to posi-
tive contributions to the pT spectrum of thermal pions at the
particlization surface in a multifluid simulation of a central
Au-Au collision at

√
sNN = 7.7 GeV with an averaged initial

state. The contributions were computed by a direct numerical
integration of the Cooper-Frye formula (see below). One can
see that the negative Cooper-Frye contribution is relatively
small at very low pT , and becomes negligible as the pT in-
creases.

In hybrid MUFFIN-SMASH calculations, hadrons are
sampled at the particlization hypersurface according to the
Cooper-Frye formula [33]

N =
∫

d3 p

Ep

∫
d�μ(x)pμ f (p, T (x), μi(x)). (17)

The sampling process is carried out using the
SMASH-hadron-sampler [23], with the details of sampling
algorithm described in [7]. The sampling algorithm includes
viscous corrections to hadron distribution functions, however
for the present study they are not relevant as viscosity is
switched off in the hydrostage. The final-state interactions are
then simulated with the microscopic transport model SMASH
[22], which includes resonance decays, two-particle inelastic
and elastic scatterings, and resonance excitations.
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FIG. 3. Distributions of combined energy density of the fluids in x − ηs plane at y = 0. Three different stages of evolution of a Au + Au
collision at

√
sNN = 7.7 GeV are displayed. The text labels show τ − τ0, time after the beginning of interpenetration of the fluids.

III. GENERAL PROPERTIES OF MULTIFLUID
EVOLUTION

We start by examining the basic properties of the multi-
fluid evolution at different BES energies. For that purpose,
the simulations were conducted with averaged initial states,
i.e., when the initial energy and charge distributions in the
projectile and target fluids were averaged from many sampled
distributions of the projectile and target nucleons.

Figure 3 shows distributions of the combined energy den-
sity of the fluids, which is obtained after the diagonalization of
the combined energy-momentum tensor T μν

p (x) + T μν
t (x) +

T μν

f (x). The left panel represents an early stage of collision,
1 fm/c after the initialization of the nuclei, where one can see
the fireball fluid starting to form in the middle. The central
panel shows the most dense stage of evolution, with the com-
bined energy density raising up to several GeV/fm3. The right
panel shows the late stage of evolution, with parts of projectile
and target fluids flying away, and fireball fluid expanding and
cooling down.

Figure 4 shows time evolution of the energy density in the
central (x = y = ηs = 0) cell of the fireball fluid. The first
observation from this plot is that the cell starts to heat up later
as the collision energy decreases. Even at the lowest collision

FIG. 4. Time evolution of the energy density in the central cell
(x = y = ηs = 0) of the fireball fluid, in the simulations of central
Au-Au collisions at different collision energies in the BES range.

energy
√

sNN = 7.7 GeV the incoming fluids move with rel-
ativistic velocities. Nevertheless, due to the weaker Lorentz
contraction of the fluids, it takes longer for the fluids to reach
the state of maximal overlap, when the friction is strongest. At
the highest collision energy, a double-peaked structure starts
to develop in the time evolution of the energy density. The
latter happens due to fireball-projectile and fireball-target fric-
tion, which starts to act later than the projectile-target friction,
and draws energy from the hotter fireball fluid back to less hot
projectile/target fluids.

The maximal energy density of the central cell decreases
dramatically with decreasing

√
sNN , however, the lifetime of

the dense (QGP) phase of matter, which we define as ε >

0.5 GeV/fm3, somewhat increases in the central cell. The
longer lifetime of the dense phase is a consequence of a longer
interpenetration phase of the projectile and target fluids, and
less violent expansion dynamics. We define the fraction of the
QGP phase at a given time as a fraction of the total energy
of the system carried by fluid cells with local energy density
ε > 0.5 GeV/fm3:

εQGP

εtot
=

∑
i=p,t, f

∫
dη d2r⊥ T 00

i θ (εi − εsw )∑
i=p,t, f

∫
dη d2r⊥ T 00

i

, (18)

FIG. 5. Time evolution of the fraction of medium in the QGP
phase, in the simulations of central Au-Au collisions at different
collision energies in the BES range.
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where εsw = 0.5 GeV/fm3. As seen in Fig. 5, the maximum
value of the QGP fraction slightly decreases with decreasing√

sNN but stays quite high even for the lowest collision energy
simulated,

√
sNN = 7.7 GeV. This is also confirmed in the mid-

dle panel of Fig. 3. The large QGP fraction at all considered
collision energies is a result of the friction, which relatively
easily converts the kinetic energy of the projectile and target
into the internal energy of the fireball fluid.

Note that the evolution of the QGP energy fraction
εQGP/εtot has also been calculated within the PHSD2 model
[34]. While in our simulations the system always passes
through a state where the ratio is at least 0.8, PHSD predicts
that the maximum value drops from 0.9 at

√
sNN = 200 GeV

down to about 0.25 at
√

sNN = 7.7 GeV. We attribute the
discrepancy with QGP fraction in PHSD in part to a different
method to count the fraction, which is computed in PHSD as
a ratio of the mean energy of partons over the sum of mean
energies of partons, baryons, and mesons at midrapidity [35].

IV. RESULTS

In this section, we present the first results from MUFFIN-
SMASH, the developed three-fluid hybrid model with event-
by-event fluctuating initial conditions. We simulated Au + Au
collisions at six RHIC BES energies:

√
sNN = 7.7, 11.5, 19.6,

27, 39, and 62.4 GeV. For each energy, we have run 3000
hydrodynamic simulations. To increase the statistics, we over-
sampled hadrons and produced 500 final-state events from
each of the 3000 hydrodynamic configurations.

A. Fine-tuning

The friction terms represent the biggest unknown in the
model. As there is no rigorous derivation of the friction terms
from the underlying kinetic theory, Eqs. (6) and (13) can be
considered as reasonable assumptions about the functional
form, and the dependence of the friction on the relative ve-
locity. As such, there is certain freedom with both the shape
and the strength of the friction terms, and we treat those terms
essentially as fitting parameters, fixing them from model-to-
data comparison.

The strength of the friction terms is regulated using the
scaling parameters ξh, ξq, and ξ f α . The parameters control
the strength of baryon stopping and the amount of energy-
momentum transferred from the baryon-rich fluids to the
fireball fluid. The model was tuned on transverse momentum
spectra and rapidity distributions of net-protons at available
collision energies. We found that to optimally reproduce the
observables at different collision energies, the scaling param-
eters had to change with

√
sNN . However, as the fluid cells do

not know about the global colliding energy, we chose the fric-
tion scaling to depend on the invariant energy of the colliding
fluid elements. We tried several polynomial dependencies on
the invariant energy and found that the experimental data for
all studied energies were reproduced best with the following

2Parton-Hadron-String Dynamics

parameter values, which were used for the calculations pre-
sented in this paper:

ξh = 1.8

√
2mN√

spt
, (19a)

ξq = 30

√
2mN√

spt
, (19b)

ξ f α = 0.15
m2

N

s f α
, (19c)

where spt was defined in Eq. (8) and s f α was defined in
Eq. (14).

B. Centrality determination

In this paper, we mostly use data from the STAR exper-
iment. They use pseudorapidity density of charged hadrons
dNch/dη at midrapidity as a measure of centrality3, see.
e.g., [36]. Following the same definition in our studies is
not straightforward—most importantly, to our knowledge,
STAR does not publish exact ranges in dNch/dη for the
different centrality classes. Therefore, to follow the STAR
definition we would need to simulate minimum-bias events in
MUFFIN-SMASH, make sure that the multiplicity distribu-
tion is compatible with the experiment, then bin the generated
events into different centrality classes using dNch/dη. How-
ever, application of the fluid-dynamical approach to peripheral
heavy-ion collisions is challenging, and we do not expect the
multifluid model to reproduce the experimental data well in
that regime. Nevertheless, we prefer to avoid using proxy
measures such as ranges in impact parameter or number of
participants, and conducted the following procedure for cen-
trality selection.

We generated events with impact parameters in the range
0–12 fm, which approximately corresponds to 0–50% cen-
trality. Then, we simulated the multiplicity distribution in
minimum-bias scenario using a two-component model [37].
In this model, the multiplicity in nuclear collisions has con-
tributions from the “soft” part, which is proportional to the
mean number of participants 〈Npart〉, and from the “hard” part,
which is proportional to the mean number of binary collisions
〈Ncoll〉,

dNch

dη
= npp

[
(1 − x)

〈Npart〉
2

+ x〈Ncoll〉
]
. (20)

Here, npp is the average multiplicity in minimum-bias p + p
collisions, and x is the fraction of the hard component. In our
procedure, we first simulated event-by-event Npart and Ncoll

using the Monte Carlo Glauber (MCG) model [38]. With those
numbers we determined

M =
[

(1 − x)
Npart

2
+ xNcoll

]

3Technically, a so-called raw multiplicity dN raw
ch /dη is used, which

does not include corrections for trigger, acceptance, and detector
inefficiencies
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TABLE I. Parameters of the two-component MCG model-
inelastic nucleon-nucleon cross-section σNN , and the average mul-
tiplicity in minimum-biased p + p collisions npp, for BES energies.

√
sNN [GeV] σNN [mb] npp

7.7 30.6 0.89
11.5 31.28 0.99
19.6 32.3 1.11
27 33.1 1.16
39 34.2 1.23
62.4 35.9 1.36

which was then rounded to become integer. Here, x = 0.11
was chosen [39]. In the next step, we convoluted M times the
negative binomial distribution (NBD)

PNBD(npp, k; n) = �(n + k)

�(n + 1)�(k)

(npp/k)n

(npp/k + 1)n+k
(21)

to produce the final multiplicity as a sum of n’s from the
individual NBDs. The value k = 2.1 was used, following [39].
The value of npp was obtained by fitting the multiplicity dis-
tribution from the three-fluid model (see Table I).

Finally, we scaled the multiplicity distribution from our
model with the ratio of the number of events with Nch > 50
obtained from the MCG simulation to the same obtained from
our model. This results in very well-reproduced multiplicity
distributions (see Fig. 6), which we used to obtain the mul-
tiplicity ranges for the determination of the centrality. These
ranges are listed in Table II, and for

√
sNN = 62.4 GeV they

are consistent with the mean multiplicities for the different
centrality classes published by the STAR Collaboration [40].

The impact parameter, Npart, and Ncoll in Table II are just
informative and do not play any role in determining the cen-
trality bins in our model. However, an interesting finding is
that the impact parameter ranges obtained from our model
differ from those obtained from the MCG model. This is
illustrated in Fig. 7. The MCG model assumes smaller values
of the impact parameters for the same Nch as compared to our
model. This means that if we had used the impact parame-
ter ranges from the MCG model to define centrality classes,
we would have overestimated the multiplicities of hadrons.
This discrepancy is rooted in the Glauber model, which is
a purely geometrical model where the nucleons propagate
along straight lines even after interacting, and there is a sharp
separation between participant and spectator nucleons. How-
ever, when the Lorentz contraction of the projectile and the
target is weak, and the interpenetration takes a relatively long
time, the produced fireball, as well as participant parts of the
projectile and target, start to expand when the spectators are
still around the interaction region. Therefore, the spectators,
as defined by the Glauber model, can and do interact with
the heated projectile/target and the produced fireball. As a
result, a larger number of nucleons participate in the reaction
in MUFFIN-SMASH as compared to MCG, at the same value
of the impact parameter. This discrepancy becomes smaller
with increasing collision energy as the interpenetration pro-

FIG. 6. Multiplicity distributions for BES energies
√

sNN = 7.7,
11.5, 19.6, 27, 39, and 62.4 GeV obtained from the hybrid three-
fluid model MUFFIN-SMASH (dashed black curves) compared with
MCG model (solid red curves). This comparison is used to determine
centrality classes in our model, and they are illustrated with gray and
white areas.

FIG. 7. Histogram of impact parameters for various centralities
in Au + Au collisions at

√
sNN = 7.7 GeV obtained from MCG

model (solid lines) and hybrid three-fluid model MUFFIN-SMASH
(dash-dotted lines). The solid black line is the histogram of the
impact parameter in minimum-biased MCG simulations.
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TABLE II. Limits of multiplicities Nch within |η| < 0.5 used
for centrality determination, and impact parameter range, 〈Npart〉,
and 〈Ncoll〉 extracted from the MCG model for BES energies and
centralities 0 − 50%.

Centrality dNch/dη b [fm] 〈Npart〉 〈Ncoll〉
Au+Au 7.7 GeV

0–5% �172 0.00–3.17 336.7 774.7
5–10% 142–171 3.17–4.54 287.8 626.6
10–20% 97–141 4.54–6.46 223.9 450.1
20–30% 65–96 6.46–7.93 157.9 283.1
30–40% 42–64 7.93–9.16 108.6 171.5
40–50% 25–41 9.16–10.31 70.6 96.5

Au+Au 11.5 GeV
0–5% �214 0.00–3.20 338.2 793.6
5–10% 177–213 3.20–4.56 288.3 638.6
10–20% 121–176 4.56–6.47 224.6 458.9
20–30% 81–120 6.47–7.94 158.4 288.0
30–40% 52–80 7.94–9.19 108.7 173.6
40–50% 32–51 9.19–10.26 71.5 99.0

Au+Au 19.6 GeV
0 − 5% �273 0.00–3.20 340.3 821.7
5–10% 226–272 3.20–4.57 290.1 660.1
10–20% 154–225 4.57–6.48 225.9 473.2
20–30% 103–153 6.48–7.95 159.2 296.0
30–40% 66–102 7.95–9.20 109.1 177.6
40–50% 40–65 9.20–10.32 71.3 100.0

Au+Au 27 GeV
0–5% �301 0.00–3.21 341.3 842.2
5–10% 249–300 3.21–4.59 290.7 674.3
10–20% 170–248 4.59–6.49 226.7 483.9
20–30% 114–169 6.49–7.95 160.5 303.6
30–40% 73–113 7.95–9.20 110.0 182.0
40–50% 45–72 9.20–10.28 72.4 103.2

Au+Au 39 GeV
0–5% �343 0.00–3.22 342.8 870.6
5–10% 283–342 3.22–4.62 291.4 694.5
10–20% 194–282 4.62–6.49 227.7 498.0
20–30% 130–193 6.49–7.96 161.3 312.4
30–40% 83–129 7.96–9.22 110.7 187.1
40–50% 51–82 9.22–10.30 72.9 105.7

Au+Au 62.4 GeV
0–5% �429 0.00–3.23 344.9 915.1
5–10% 354–428 3.23–4.63 293.7 728.5
10–20% 241–353 4.63–6.53 229.1 520.4
20–30% 161–240 6.53–8.00 162.0 323.9
30–40% 103–160 8.00–9.25 111.4 193.8
40–50% 63–102 9.25–10.34 73.3 108.6

cess becomes faster, and it becomes negligible at the top RHIC
energy.

C. Rapidity distributions

Figures 8 and 9 show the pseudorapidity distributions of
charged hadrons obtained from the hybrid three-fluid model
MUFFIN-SMASH. At

√
sNN = 19.6 GeV, our model underes-

timates the multiplicity, mainly in the most central collisions.

FIG. 8. Pseudorapidity distributions of charged hadrons at√
sNN = 19.6 GeV Au + Au collisions for various centralities ob-

tained from hybrid three-fluid model MUFFIN-SMASH compared
to the experimental data from PHOBOS collaboration [41].

At
√

sNN = 62.4 GeV, our model shows a two-peak struc-
ture, which is not seen in the experimental data. However,
the midrapidity values of multiplicity are reproduced at this
energy. At this point, we note that the dNch/dη values at
midrapidity from the three-fluid simulations are well fitted
with the two-component MCG model, however our fitted
values of npp are slightly different from those used in the two-
component MCG fit to the experimentally measured dNch/dη.
For example, the values of npp in our fit are 0.89 and 0.99
for

√
sNN = 7.7 and 11.5 GeV, respectively, whereas STAR

reports npp = 1.12 for
√

sNN = 9.2 GeV.

FIG. 9. Same as Fig. 8, but for
√

sNN = 62.4 GeV Au + Au
collisions. The experimental data are from PHOBOS collaboration
[41].
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FIG. 10. Rapidity distribution of net-protons in 0–5% Au + Au
collisions at

√
sNN = 19.6 GeV obtained from hybrid three-fluid

model MUFFIN-SMASH compared to the experimental data of
Pb + Pb collisions at

√
sNN = 17.2 GeV from NA49 collaboration

[42].

Figures 10 and 11 show the rapidity distributions of
net-protons obtained from our model. Since there are no ex-
perimental data at

√
sNN = 19.6 GeV, we compare our results

with the experimental data for Pb + Pb collisions at
√

sNN =
17.2 GeV from the NA49 experiment. The slight difference
between MUFFIN-SMASH and the measured data is partly
caused by different nucleon numbers of collided nuclei. Al-
though there are only four experimental points at

√
sNN = 62.4

GeV, MUFFIN-SMASH reproduces the shape of the distri-
bution quite well. The consistency of the net-proton rapidity
distribution between our model and the experimental data
indicates that MUFFIN yields correct baryon stopping.

The pseudorapidity distributions of charged hadrons at
both energies indicate that there could be slightly stronger

FIG. 11. Same as Fig. 10, but for 0–10% Au + Au collisions
at

√
sNN = 62.4 GeV. The experimental data are from BRAHMS

collaboration [43].

FIG. 12. Transverse momentum spectra of positively charged
pions (upper left), kaons (upper right), protons (lower left), and
antiprotons (lower right) in Au + Au collisions at

√
sNN = 7.7 GeV

for various centralities obtained from the hybrid three-fluid model
MUFFIN-SMASH compared to the experimental data from STAR
collaboration [44].

FIG. 13. Same as Fig. 12, but for
√

sNN = 11.5 GeV Au + Au
collisions. The experimental data points are from STAR collabora-
tion [44].
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FIG. 14. Same as Fig. 12, but for
√

sNN = 19.6 GeV Au + Au
collisions. The experimental data points are from STAR collabora-
tion [44].

friction in the model, which would bring more energy to
midrapidity. However, that would also result in stronger trans-
verse expansion and stronger baryon stopping, bringing the
two peaks in net-proton rapidity distributions closer together,
which would worsen the reproduction of the experimentally
measured net-proton rapidity distribution.

D. Transverse momentum spectra

Next, we compute the transverse momentum spectra of π+,
K+, protons, and antiprotons. The spectra are calculated for
|y| < 0.1, weak decays are included in proton and antiproton
spectra, and excluded for pion spectra. In order to make the
plots more legible, the spectra for different centralities are
scaled by different factors.

At
√

sNN = 7.7 GeV (Fig. 12), MUFFIN-SMASH repro-
duces the pion and kaon spectra well, underestimates the
proton spectra in particular at mid-central collisions, and over-
shoots the antiproton spectra. This indicates some deficit of
baryon charge at mid-rapidity, and slightly stronger friction
would be needed to fix it; however, at higher energies, this
discrepancy disappears. At

√
sNN = 11.5 GeV (Fig. 13) the

results are similar to the lowest energy except for the antipro-
ton spectra, which are closer to the experimental data and
even reproduce the low-pT data for the most central colli-
sions. At

√
sNN = 19.6 GeV (Fig. 14) the pion spectra start to

be underestimated at high-pT . The antiproton spectra at this
energy are reproduced for pT > 1 GeV. At

√
sNN = 27 GeV

(Fig. 15), the trend with pion spectra continues. However,
antiproton spectra are closer to the data, and for midcentral
collisions, they are described perfectly. The results of simula-

FIG. 15. Same as Fig. 12, but for
√

sNN = 27 GeV Au + Au col-
lisions. The experimental data points are from STAR collaboration
[44].

tions at
√

sNN = 39 GeV (Fig. 16) show the same hierarchy
as at

√
sNN = 27 GeV. At

√
sNN = 62.4 GeV (Fig. 17), the

experimental data are available only at low-pT . In this range,
both pion and kaon spectra agree perfectly with the data, while
proton and antiproton spectra are quite underestimated. This,
however, cannot be adjusted with the tuning of the friction,
because the net-baryon number at midrapidity is correct.

Although not all spectra are reproduced perfectly, the
slopes of the spectra in our simulations generally agree with
the experimental data, which means that MUFFIN-SMASH
generates a correct strength of the collective transverse
flow.

E. Anisotropic flow

Finally, we present elliptic flow of charged hadrons, cal-
culated using two-particle cumulant method [45]. Figure 18
shows the pT -dependent elliptic flow for 20–30% Au + Au
collisions at all studied energies computed from the model
and compared to the experimental data from STAR [46]. It
is apparent that the v2 obtained from our model is extremely
overestimated at low energies. With increasing collision en-
ergy, our results are slowly approaching the experimental
data, and at

√
sNN = 39 GeV, there is a near agreement with

the experimental v2. Unfortunately, the experimental data at√
sNN = 62.4 GeV are not available. There is clearly room

for elliptic flow suppression by shear viscosity, which is not
included in this study. The amount of needed suppression
grows with decreasing collision energy, which is consistent
with an observation made in [7] that the effective ratio of
shear viscosity to entropy density of the medium should
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FIG. 16. Same as Fig. 12, but for
√

sNN = 39 GeV Au + Au col-
lisions. The experimental data points are from STAR collaboration
[44].

grow with decreasing collision energy. Here, we note that
in MUFFIN, certain nonequilibrium effects are taken into
account, as the medium when seen as a whole, is not in local

FIG. 17. Same as Fig. 12, but for
√

sNN = 62.4 GeV Au + Au
collisions. The experimental data points are from STAR collabora-
tion [40].

FIG. 18. Elliptic flow of charged hadrons as a function of
transverse momentum in 20–30% Au + Au collisions at energies√

sNN = 7.7–62.4 GeV obtained from the hybrid three-fluid model
MUFFIN-SMASH compared to the experimental data from STAR
collaboration [46].

equilibrium due to counterstreaming flows of the fluids. How-
ever, another kind of nonequilibrium due to finite mean free
path, is not present when the perfect-fluid approximation is
used.

A similar hierarchy can be seen in the centrality depen-
dence of elliptic flow integrated over 0.2 < pT < 2.0 GeV,
shown in Fig. 19. In this case, the experimental data at the
two largest studied energies are only slightly overestimated.
This is mainly because the hadron yields decrease with pT ,
and therefore this observable is not so sensitive to the high-pT

hadrons. We also note that the overestimation of the flow at
lower energies grows towards noncentral collisions, while the
flow in the most central collisions is relatively close to the
data.

The elliptic flow has been previously studied using three-
fluid hydrodynamic model in [17]. Like in this work, the
perfect-fluid approximation was employed there, nevertheless
the elliptic flow across BES energies was reproduced well
at 5–10% and 20–30% centralities, and even underestimated
in most central collisions. The most important reason for
this discrepancy is in different centrality selection: in [17]
fixed, integer values of impact parameter were used for each
centrality. As shown in Table III the values for midcentral col-
lisions are noticeably lower than the values used in the present
study. Hence, more central events were simulated effectively
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FIG. 19. pT -integrated elliptic flow of charged hadrons as a func-
tion of centrality in Au + Au collisions at energies

√
sNN = 7.7 −

62.4 GeV obtained from the hybrid three-fluid model MUFFIN-
SMASH compared to the experimental data from STAR collabora-
tion [46,47].

in [17], which results in a smaller elliptic flow. Moreover, in
most central collisions, the main contribution to the elliptic
flow is due to fluctuations of the initial state, which is miss-
ing in [17], and therefore again resulting in weaker elliptic
flow.

V. CONCLUSIONS

We developed a next-generation hybrid three-fluid model
for simulating heavy-ion collisions at energies from few to
few tens of GeV. This model is aimed for phenomenological
studies of heavy-ion collisions at BES energies at RHIC,
NA61/SHINE at CERN, and FAIR at GSI. The main features
of the model include:

(i) fluctuating initial conditions,
(ii) hyperbolic coordinate system,

(iii) Monte Carlo hadron sampling at particlization,

TABLE III. Comparison of impact parameter (ranges) for key
centrality classes between [17] and this work. The rightmost column
correspond to impact parameter ranges from Table II for

√
sNN =

19.6 GeV.

centrality b [fm] in [17] b [fm], this work

0–5% 2.0 0–3.2
5–10% 4.0 3.2–4.57
20–30% 6.0 6.48–7.95
30–40% 8.0 7.95–9.2

(iv) SMASH for hadronic rescatterings,
(v) EoS can be easily changed.

The friction terms between the fluids are parametrized in a
rather simplistic way following [14]. As a rigorous derivation
of the friction terms from the underlying kinetic theory is
lacking, the parametrizations are essentially educated guesses.
Therefore, we scaled the friction terms with factors which
depend on the center-of-mass energy of the interpenetrating
fluid elements, and thus regulated the strength of friction.
The scaling factors were then fitted to reproduce available
experimental data from RHIC BES for transverse momentum
spectra and rapidity distributions. We showed the first results
calculated using this model, including rapidity distributions,
transverse momentum spectra, and elliptic flow. The model
lacks viscous corrections, which results in an overestimation
of the elliptic flow. Adding viscosity to the model is among
our plans for future studies.
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