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Modeling fission dynamics at the barrier in a discrete-basis formalism
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A configuration-interaction model is presented for the barrier region of induced fission. The configuration
space is composed of seniority-zero configurations constructed from self-consistent mean-field wave functions.
The Hamiltonian matrix elements between configurations include diabatic and pairing interactions between
particles. Other aspects of the Hamiltonian are treated statistically, guided by phenomenological input of
compound-nucleus transmission coefficients. In this exploratory study the configuration space is restricted to
neutron excitations only. A key observable calculated in the model is the fission-to-capture branching ratio.
We find that both pairing and diabatic interactions are important for achieving large branching to the fission
channels. In accordance with the transition-state theory of fission, the calculated branching ratio is found to be
quite insensitive to the fission decay widths of the pre-scission configurations. However, the barrier-top dynamics
appear to be quite different from transition-state theory in that the transport is distributed over many excited

configurations at the barrier top.

DOLI: 10.1103/PhysRevC.107.044615

I. INTRODUCTION

The theory of fission at barrier top energies has been one
of the few topics in low-energy nuclear physics that has
been beyond the purview of the configuration-interaction (CI)
framework of modern nuclear theory. In that framework one
builds a matrix Hamiltonian in a space of Slater determinants
composed of nucleon orbitals, with matrix elements derived
from nucleon-nucleon interactions. In this work we construct
a CI model of fission dynamics with parameters guided by
our present knowledge of the nuclear Hamiltonian. From a
computational point of view, this formulation has some of the
ingredients of the generator coordinate method (GCM) which
has also been applied to fission theory [1]. However, the GCM
method treats the dynamics as a Schrodinger equation of a few
collective coordinates rather than as a discrete-basis matrix
Hamiltonian equation.

The present CI model is too simplified to provide a quan-
titative theory, but hopefully it is sufficiently realistic to allow
qualitative conclusions about the fission dynamics at the bar-
rier. See Refs. [2-5] for our previous simplified models to that
end. While the model is realistic in that the configurations
are built from well-documented energy-density functionals,’'
that space is severely truncated, allowing only neutron excita-
tions in seniority-zero configurations. There are two types of
residual interactions that are active in a seniority-zero basis,
namely the pairing interaction and an interaction associated
with diabatic evolution of the wave function.

'We ignore the conceptual differences between an energy func-
tional and a Hamiltonian.
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In order to make a complete theory of reaction cross sec-
tions, the Hamiltonian bridge across the barrier must also be
augmented with statistical reservoirs. That includes the con-
figurations that make up the compound nucleus and those that
link the bridge states to the final fission channels. They will be
treated in a statistical way based on the Gaussian orthogonal
ensemble (GOE).

The basic physical quantities to be computed are the
S -mazltrix reaction probabilities 7i, « to capture or fission chan-
nels,

Tk = Y _ |Sin ;1. (1
jek

Here, “in” is the neutron entrance channel, and k = “cap” or
“” is the set of exit channels of a given type. The present
model is not detailed enough to calculate the absolute reaction
probabilities, but we believe it has enough microscopic input
to treat the energy dependence of T, ; and some aspects of the
branching ratio, defined experimentally as

_1_ JAE Tus(E)
[ dE Tacap(E)’

where the integral is taken over some experimentally defined
energy interval.

In the next three sections below, we present the reaction
theory formalism, the construction of the bridge Hamiltonian
Hyyrigge, and the results of calculations with a full Hamiltonian

@)

>These are to be distinguished from the transmission factors T
between channels and the compound nucleus. We will use both in
the present work.
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that links an entrance channel to a set of exit channels. In this
paper, we only discuss the barrier-top fission of 2*U, but the
formalism is general and can be applied to other nuclei as
well.

II. REACTION THEORY FORMALISM

There are several ways to formulate reaction theory in a CI
framework. The ones that we have employed are the S-matrix
theory leading to the Datta formula [6], the K-matrix formula
[71,® and the direct solution for the wave function. The meth-
ods are algebraically equivalent [8,9]. The theory requires two
matrices, one for the Hamiltonian of the internal states and
one for its couplings to the various continuum channels. The
Hamiltonian H is a real matrix of dimension N,,, where N, is
the number of configurations in the fused system. The other
matrix is W, a real matrix of dimension N,, x Ny, composed
of reduced-width amplitudes W,, ; coupling configuration . to
channel i. Here, N, is the number of channels. The partial
width to decay from the state . through the channel i is

Tpi=2W;,. ®3)

In case the channel couples to more than one state, one needs
to consider the full decay matrix associated with the channel,

Fu,;/.’,i = ZW;L,iVV/L/,i- (4)

The basis states constructed by the GCM are not necessarily
orthogonal and one also needs the matrix of overlaps S be-
tween configurations.

In this work we do not need the S matrix itself, but only re-
action probabilities 7; ; between one channel i and another j,
as given in Eq. (1) above. They can be conveniently calculated
by the trace formula,*

Tij(E) = Tr (I,G(E)T,G(E)), &)

where G(E) is the Greens’ function®

-1
G(E) = (H-iZF,ﬁ—SE) ) (6)
k

III. CI MODEL SPACE AND HAMILTONIAN MATRIX
ELEMENTS

The space of internal states is composed of three sets:
those of the compound nucleus, those of the bridge config-
urations, and those beyond the bridge that ultimately lead
to fission. Their Hamiltonian connections are schematically
shown in Fig. 1. The dots identify individual configurations
at the borders of different sets of states. The circle a denotes
the compound-nucleus Hamiltonian as defined by the GOE.
We also treat the configurations beyond the barrier (circle b)

3The K-matrix formalism is close to the R-matrix formalism; the
latter is commonly used to fit resonance data.

“An equivalent formula has also been used in nuclear reaction
theory [10,11].

SHere, we have neglected level shifts due to the channel couplings.

FIG. 1. Connectivity of the Hamiltonian for calculating reaction
transmission factors. The large circles represent states of the com-
pound nucleus (a) and of the post-barrier configurations (b), both
modeled by Hamiltonians of the GOE. The rectangular box contains
the bridge configurations modeled by an explicit microscopic Hamil-
tonian. The black dots represent states that connect the different
domains of the full Hamiltonian. There is a single entrance channel
but multiple exit channels to bound states of the compound nucleus
and to states that decay by fission. Couplings to the entrance, capture,
and fission channels have associated decay widths given by I'j;, Ieqp,
and I'y, respectively.

statistically in the same way. Specific details on their defini-
tion and properties are given in Appendix A. The rectangular
block represents the bridge states that cross the barrier. They
are composed of configurations constructed by a constrained
minimization procedure, as is done in the first steps of the
GCM. The configurations are linked by parametrized nucleon-
nucleon interaction matrix elements. Details are described in
the next section below.

The reaction theory also requires decay-width matrices for
the entrance channel, the capture channels, and the fission
channels. They are depicted in Fig. 1 as I'yy, 'cap, and T'y. For
the present model, we have good information about the first
two widths but no quantitative information about the fission
widths on the end.®

A. Bridge Hamiltonian

We wish to construct the bridge Hamiltonian Hyigee as
realistically as possible, recognizing that the large dimen-
sions and the number of configuration-interaction matrix
elements require severe compromises. The general scheme
is easy to describe. The first step is to define a set of refer-
ence states along an assumed fission path. These are Slater
determinants of nucleon orbitals calculated by constrained
density-functional theory. Next one builds a configuration
space of particle-hole excitations on each reference state. We
call that space a Q block. Finally one computes matrix ele-
ments. It should be emphasized that the Slater-determinant
basis, also called a Hartree-Fock (HF) basis, is fundamental
to the CI approach. It has a certain advantage with respect to
quasiparticle bases (called HFB) which require projections to
treat specific nuclei.

The bridge Hamiltonian Hyigge can be written as

Hbridge = ZHq + Z qu’- @)
q

q97q’

6See Ref. [12] for a computational framework to estimate these
decay widths.
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Here, H, is the full Hamiltonian within a Q block and V,, is
the interaction Hamiltonian between configurations in differ-
ent Q blocks. Notice that H, contains both the Hartree-Fock
Hamiltonian and residual interactions. The next section dis-
cusses the selection of reference states g. The construction of
the H, configuration space with its diagonal and off-diagonal
matrix elements is given in the sections following that.

The needed computational tools for the diagonal elements
of H, are available for several energy density functionals
(EDF’s), notably the code SKYAX for Skyrme functionals
[13] and the code HFBAXIAL for Gogny functionals [14]. In
building the reference states, the single-particle potential is
assumed to be axially symmetric with good parity. This allows
the orbitals as well as the configurations to be classified by
quantum numbers for angular momentum about the symmetry
axis and parity, K™ [15]. To determine the diagonal energies in
the Hamiltonian we separate the tasks of setting the absolute
energies E, of the reference states and setting the excitation
energies Eex (g 1) for configurations p within a Q block,

(qulHylg u) = E; + Eex(q 1). (®

For the present model of H,, we use the Skyrme energy
functional UNEDF1 [16] in the SKYAX code. Notice that the
effective mass for this interaction is close to unity. The choice
is motivated by the need to reproduce physical level densities
as accurately as possible.

1. Fission path and reference states

The reference states are placed along a fission path {q}
defined by some set of constraints, as in the usual GCM. The
obvious choice is a single constraint on the elongation of the
nucleus; we use the mass quadrupole operator’

Q = r’Py(cos0) = 2* — (x> +y7)/2. ®)

The reference states and associated Q blocks will be labeled
by an integer g set by the expectation value (Q) in units
of barns. The energy as a function of the constraint is the
so-called potential energy surface (PES). Figure 2 shows a
few PES plots for the nucleus 2**U. In our CI approach we
only have discrete points E, on the PES. In the graph the
deformation ranges from g ~ 14 at the ground state minimum
to ¢ ~ 40 near the second minimum, with the points spaced
by roughly A(Q) ~ 1 b. The black and blue points were
calculated with the Skyrme UNEDF1 and Gogny D1S EDF’s,
respectively. The minimizations were carried out in HF and
HFB spaces for the circles and squares, respectively. Note
that HF PES is far from smooth. There are numerous orbital
crossings along the fission path and they are responsible for
abrupt changes in slope for both the Gogny and Skyrme
EDF, although the locations of the crossings differ. Both HF
barriers are much higher than the accepted value between 5
and 6 MeV [18]. As is well known, the calculated barrier
height is significantly lowered when the pairing interaction

"In principle, this definition can fail if the path crosses transverse
ridges [17].

(MeV)

Eq

T
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Q (b)

FIG. 2. The potential energy surface (PES) for the fission path
in 20U as calculated in the HF and HFB frameworks, shown as solid
and dashed lines, respectively. The energy functionals are the Skyrme
UNEDF1 functional (black circles and triangles) and the Gogny D1S
functional (blue circles and triangles).

is taken into account.® Black squares show the Skyrme PES
with neutron pairing included as described in Sec. III A 3
below. The lowering is not sufficient to bring the barrier close
to the empirical value, and the PES remains bumpy. One sees
a stronger decrease in barrier height for the Gogny EDF in the
HFB treatment, but it is still insufficient to be realistic.

Since the barrier is unacceptably high we shall rescale the
reference state energies E, " to bring the PES closer to the
empirical. The rescaled energies are given by

Ey = foesEy " (10)

Here, E;°F is the reference energy calculated as the difference
of energies of the reference state and the ground state at (Q) ~
14 b. The scaling parameter fpes is set to fpes = 0.37 in the
Hyyrigge baseline model.

In the following, the reference state at point ¢, denoted as
|g ref), is the constrained Hartree-Fock solution at this point.
The basis of states in a GCM model need not be orthogonal.
This does not impose any conceptual difficulties for the theory
but it does add complications. If the reference states are too
close together, the wave functions will have large overlaps
and the CI calculational framework becomes unstable. On the
other hand, the reference states need to be close enough to
adequately represent the wave function at all points along the
path. A useful measure [19,20] for setting the spacing of the
reference states |g ref) is the quantity ¢ defined for a chain of
N states as

N-1
{ = ZAg_n,nJrlv (11)
n=0
Atyq = (= In|(gref|q ref)])!/2. (12)

8Triaxial deformations may also lower the barrier [21,22] but they
are beyond the scope of the present model.
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FIG. 3. Overlap distances of Q blocks along the fission path as
defined by Eq. (11). Black dots: a chain of 21 Q blocks separated
by roughly AQ ~ 1 b. Red dots: the chain of the six Q blocks used
to construct Hygee. Blue dots: an alternative set of six Q blocks
covering about the same range of deformation.

This assumes that the K™ occupancy of the orbitals is the same
all along the chain. It has been shown in a simplified model
[2] that spacing the states along the chain by A¢ &~ 1 gives
a fairly good approximation to the reaction probabilities. It
requires only five to six reference states along the 230U fission
path from ¢ = 18 to ¢ = 36, and it is large enough to neglect
interactions between Q blocks that are not nearest neighbors.

The definition Eq. (12) fails when the occupation numbers
of K™ -partitioned orbitals are different in the two configura-
tions, in which case A¢ = 0. This is true for many of the
links between reference states. For example, we found that
five orbital pair jumps are needed to connect the reference
states at each end. One can still keep ¢ as a rough measure of
distance by extending the configuration space to include the
particle-hole excitations in the Q blocks. If the spaces are large
enough, all reference states will have a partner in the neighbor-
ing Q blocks. To determine the linking, we examine overlaps
of the occupied orbitals in the reference state with all orbitals
of the same K™ in the other Q block. The desired configuration
in the second Q block is the Slater determinant of orbitals with
the highest overlaps. We call that configuration the diabatic
partner of the reference state. Of course the derived A¢ for
other configurations would vary, but for rough studies the
difference should not be important. Figure 3 shows the ¢
distance function across the barrier for the UNEDF1 functional
with several choices for the reference states, taking the ground
state of the left-hand configuration and the diabatic link for the
right-hand configuration. Note that the distance between the
endpoint configurations is somewhat smaller with the coarser
mesh. This is to be expected since the finer mesh path gives
more sensitivity to fluctuations in other degrees of freedom.
In fact, the adiabatic prescription for defining the path is not
optimal for sub-barrier fission [5,23].

For the present model, we build the Q blocks on a set of six
reference states at deformations ¢ = (18, 22, 26, 29, 33, 37).
The configurations beyond those on either side are assumed

to be in the statistical reservoirs. We call this the Q6 model. In
it, we assume that the diabatic links between the neighboring
0 blocks have the overlap e~(29)" with the overlap distance of
A¢ = 1. The overlaps between other configurations, except
for those between the same configurations, are simply set to
be zero.

2. Q-block spectrum

The spectrum of excited configurations in a Q block is
generated in the independent-particle approximation using the
orbital energies &, extracted from the same computer code
that produced the reference states. With the single-particle
operators a; and a:f associated with the reference state at g,
the excitation energy is calculated as

Eo(qu) =) eu({q nlajailg n) — (greflaja;lgref)) (13)

1

in an obvious notation.

Normally the occupied orbitals in the reference state are the
lowest ones in the orbital energy spectrum, in which case E
is always positive. In a few cases the HF minimization fails
because the occupation numbers change from one iteration to
the next. This is avoided by freezing the K™ partition after
1500 iterations. In such cases the converged reference state
may have one or more empty orbitals below the energy of the
highest occupied orbital. Then Eq. (13) gives an unphysical
negative energy. This might be corrected by introducing the
particle-hole interaction in the Hamiltonian. Rather than com-
plicating the theory this way, we simply ignore the sign in
Eq. (13), keeping few with negative energy. This is equivalent
to redefining the reference state in the PES as the one with the
lowest energy in Eq. (13).

To keep the dimensions manageable, we include only neu-
tron excitation in the Q block spaces. Beyond that, we only
allow seniority-zero configurations in the neutron spectrum.
The occupation numbers are thus the same for both orbitals of
a Kramers’ pair. We also restrict the dimension of the space
keeping only configurations below an energy Epax,

Eex(git) < Epax- (14)

Here, and in the construction of the full Hamiltonian in
Sec. III B below we set Ep.x = 4 MeV.

Table I presents some characteristics of the Q blocks con-
structed in this way. The largest block has a dimension N, =
153 and total dimension of the bridge configurations is 514.
These are small enough for calculations on laptop computers.
Notice that the largest dimensions are in the middle region of
the barrier. This is consistent with the common understanding
that the single-particle density of states at the Fermi level
is higher on top of the barrier than elsewhere.The diagonal
spectrum of Hyigge 1S shown in Fig. 4. We use these matrix
elements in the full Hamiltonian model treated in Sec. III B
below.

3. Interactions

Except for the very lightest systems, microscopic Hamil-
tonians rely on a reduction of the interaction terms to an
effective two-body nucleon-nucleon interaction, see, e.g.,
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TABLE 1. Dimension N; of Q blocks on the fission barrier of
236 based on the UNEDF1 energy functional and an excitation energy
cutoff E¢, =4 MeV. The column N, shows the number of upper
off-diagonal pairing matrix elements in each Q block. Column 4
shows the number of pairing matrix elements between one Q block
and the next. Similarly column 5 shows the number of diabatic matrix
elements.

0 |

Q (b) Nk Np N;;d NdbOd
18 42 253 416 17
22 97 718 1183 40
26 153 1391 1930 77
29 125 1046 1109 48
33 65 434 322 16
37 32 159

sum 514

Ref. [24]. In this work, we will use simplified interactions
whose overall strengths are guided by previous experience.
There are two kinds of interaction that can mix configurations
in the seniority-zero configuration space. The first is the pair-
ing interaction, which is crucial for promoting spontaneous
fission [25]. It is implicit in the Bardeen-Cooper-Schriefer
(BCS) and HFB approximations, but must be explicitly in-
cluded as a residual interaction in a HF-based configuration
space. Following common practice, we parametrize it as the
Fock-space operator

f)pairing = _qu’ Z aj'a;a;aj. (15)
i#j

Here, i and i are time-reversed partner orbitals.
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FIG. 4. Energies of configurations in the 06 model of Hyigge- The
baseline has been shifted by 1 MeV to take into account the pairing
energy in the Q = 14 Q block. Blue line: the scaled PES E,; blue
dots: diagonal configuration energies (g w|H,|g u) including V, and
the excitation energies E.x of the excited particle-hole configurations;
red dots: Q-block eigenenergies with pairing interaction included
in Hy; red line: scaled PES with pairing. The cut-off energy of the
particle-hole excitation spectrum is En,, =4 MeV and the pairing
strength in the Q-block Hamiltonians is G = 0.2 MeV.

0.1 0.15 0.2 0.25 0.3
G (MeV)

FIG. 5. Excitation energy of the first K™ = 0" excited state in the
spectrum generated from the ground-state reference state at Q = 14 b
as a function of the pairing strength G. Other parameters are the same
as used in Hygge-

We next determine the interaction strength G = G, within
the Q blocks. The effective strength depends on the size of
the configuration space; see Ref. [26] for numerical studies of
that dependence. A typical BCS calculation might be carried
out in a full major shell; the observables such as the odd-even
binding energy differences can be fitted with a pairing strength
G ~ 25/A MeV. This gives G =~ 0.1 MeV in the actinide re-
gion. However, for our much more limited space the strength
should be larger. We choose to set the strength to reproduce
the excitation of the first excited O state in the seniority-zero
configuration space of 230U, E. (1) = 0.92 MeV. This yields
G ~ 0.17 MeV as may be seen in Fig. 5. This is close to the
value G = 0.2 MeV that we use within the Q blocks in the full
Hamiltonian.

The pairing strength has to be modified for matrix el-
ements between configurations in different Q blocks. The
general formula [27] for calculating two-body matrix ele-
ments in a nonorthogonal CI basis could be used, but it is very
time-consuming to carry out. Another formula based on the
generalized Wick’s theorem [28] is fast. However, it requires
the two configurations to have a nonzero overlap which is
hardly the case for the pairing interaction. In our present
model, we will simply assume that overlaps of the configu-
rations attenuate all matrix elements by the same factor,

Gy = cG. (16)
Here, ¢ and ¢’ are neighboring Q blocks and ¢ = e~ ! is a
constant set by the target overlap distance A¢ = 1.

The second kind of interaction matrix element is the cou-
pling to diabatic partner configurations. The diabatic matrix
elements are nonzero only for configurations that have large
overlaps, so the generalized Wick’s theorem can be applied to
calculate them. However, we would still like to make simpli-
fying approximations that make the model calculations more
transparent. A convenient functional form for parametrizing
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the interaction is [3]
(\yqu|ﬁdb|\pq’u>
= (qulq' w) (3 (Equ + Equ) — ha(Q)(AL)),  (17)

where Q0 = (¢ + ¢')/2 and E,, is the energy of the configu-
ration including the modified PES. For the present study we
will assume a fixed value for the interaction strength, 7, = 1.5
MeV. The motivation for the functional form of Eq. (17) and
the choice of the strength parameter /4, are discussed in Ap-
pendix B. The formula is implemented in the 06 model with
(qu|q' ) = e~ for neighboring Q blocks and (gu|g'1) =0
when ¢ and ¢’ are farther away from each other.

B. The full Hamiltonian

It remains to add the two GOE reservoirs to complete the
Hamiltonian depicted in Fig. 1. With the two GOE reservoirs,
the full Hamiltonian then reads

H((}‘SE v, 0
H=| vl Hyige v |- (18)
(b)
0 vy Hgop

As discussed in Appendix A we have a certain freedom
to set the dimension of a GOE reservoir provided the decay
widths are modified to keep the transmission factors Eq. (A2)
fixed. The relevant properties of the entrance and capture
channels are well-known experimentally, and we set the trans-
mission coefficients accordingly. Somewhat arbitrarily, we set
the dimension of the reservoirs to Ngog = 100 and the internal
interaction strengths in the GOE Hamiltonian to v = 0.1 MeV.
This produces a level density of py =31.8 MeV~! in the
middle of the spectrum. With T'j, = 10 keV, the resulting
transmission factor for an s-wave neutron entrance channel
at E, =1 keV is T;, = 0.02. The scaled capture width of
the GOE states is I', = 1.25 keV. As discussed Appendix B,
the fission reaction probability Ti, s is rather insensitive to
the partial widths in reservoir b; we have chosen the value
I’y = 15 keV. This is close to the plateau region when i, ¢
is plotted as a function of I'y (see also Table II and Fig. 10
below).

Two sets of interaction matrix elements are still needed
to have a complete Hamiltonian, namely those between the
GOE reservoirs and Hyrigee- These are placed as depicted in
Fig. 1. We parametrize these as Gaussian-distributed random
variables with rms strengths v, and v,. Each set connects all
of the states in the reservoir to all of the configurations in the
adjacent Q block. Unfortunately, the strength of these interac-
tions cannot be calculated from microscopic nucleon-nucleon
Hamiltonians without a better understanding of the structure
of the reservoir states. Thus the overall magnitude of the
fission branch is beyond the scope of the model. Nevertheless,
the model can still shed light on aspects of the barrier-top
dynamics. One aspect is the energy dependence of the reaction
probabilities, and another is the importance of the diabatic
interaction in the bridge dynamics. These are discussed in
the next section. For a baseline model we take v, = 0.02 and
v, = 0.03 MeV. With these parameters the branching ratio

a~! can approach the order of magnitude seen experimentally.

TABLE II. Branching ratios calculated with Eqgs. (2) and (5) for
several sets of energy parameters. Units are MeV. The base param-
eters are given in the top line. For the other cases only the changes
from base are shown in the table. In the calculations, Eq. (2) was
evaluated by averaging over an interval from 4.25 to 4.75 MeV. The
column shows the mean branching ratio obtained with 400 samples
of the compound-nucleus GOE. The resulting in uncertainty limits
are about +0.02.

Model r. Ff vp hy Vg Up a”!

0.00125 0.015 02 15 0.02 0.03 0.95
0.0025 0.55
0.03 1.14

0.045 1.23

0.15 1.65

3.0 1.10

0.0 0.13

0.1 0.37

0.01 0.59

0.04 1.29

0.015  0.60

0.06 1.20

AoCm@maTmmoQwe» g
3

Figure 6 shows the reaction probabilities for the Hamiltonian
in a small interval of energy. The entrance transmission factor
is small enough to show individual compound-nucleus reso-
nances.

IV. REACTION PROBABILITIES

A. Energy dependence

In this work, we are mainly interested in average reaction
probabilities. The averages are obtained by integrating over
some interval of energy that includes multiple resonances, and
then averaging over the random GOE samples in the Hamil-
tonian. Figure 7 shows the reaction probabilities for capture
and fission calculated this way. The points were obtained by

o
U
)

©
N

©
w
)

©
(N
X

Reaction probability
o

©
o
.

354 356 358 3.60

E (MeV)

FIG. 6. Resonances of the full Hamiltonian at V, =4 and E
around 4.5 MeV. The black and red points show reaction probabilities
for Tin . and Tj, ¢, respectively.

350 3.52
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0.00501
0.0025 1
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1
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1.75
1.501
1.25]
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0.75]
0.50]
0.25]
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2 3 4 5 6
E (MeV)

0.00
1

FIG. 7. Average reaction probabilities for capture (black circles)
and fission (red circles) as a function of energy E are displayed in the
upper panel. The branching ration o~ is shown in the lower panel.
In the calculation, the two GOE reservoir Hamiltonians are centered
at E with fixed decay widths to isolate the energy dependence of
transmittance through Hyygee. The blue dashed line shows the HF
barrier top.

integrating over an interval of 0.5 MeV and averaging over
400 GOE samples. Notice that the total reaction probability
remains fairly constant at 7 = Tiyc + Tin,r & 0.02 over the
entire range plotted. This is required of compound nucleus
theory when the entrance channel transmission factor is small
compared to the others. Notice also that the fission probability
does not increase smoothly at sub-barrier energies. This goes
against the Hill-Wheeler barrier-penetration formula. There
are small windows well below the barrier for transmission that
are probably due to the paired Q-block ground states.

B. Branching ratio

The branching ratio o' [Eq. (2)] as a function of energy
E is displayed in the bottom panel of Fig. 7 as a function of
energy E. The ratio roughly tracks the same irregular increase
as that found in the reaction probability shown in the upper
panel. It reaches a level of «~! & 1 at the higher energies.

This is less than the experimental ratio of A3 in the fission of
235U by low-energy neutrons. Since the experimental order
of magnitude is achieved, the model should be useful for
qualitative insights into the transport mechanisms.

We next examine the dependence of the branching ratio on
the Hamiltonian parameters. Table II presents the results of
calculations with different sets of parameters. The calculation
for a baseline set of parameters is shown on the top line of
the table. It gives o~! ~ 1.00 £0.02 at 4.5 MeV which is
still well below the observed value o~! & 3 at the physical
neutron threshold at 6.5 MeV. One obvious reason is that
the excited states of the protons have been left out. Their
inclusion might increase the branching ratio. Also, the off-
diagonal neutron-proton matrix elements are not active due
to the zero-seniority structure of the configurations. However,
if no reasonable parameter sets can be found to reproduce
the experimental o~! in seniority-zero configuration space, it
would be indirect evidence that the space must be extended to
include the far more numerous broken-pair configurations.

The other entries in the table indicate the sensitivity of o~
to the Hamiltonian parameters. Lines A—D show the depen-
dence on the decay widths, I';. Entry A is a preliminary check
on the model to confirm that an increase in the capture branch
produces a corresponding decrease in the fission branch. This
is expected in compound nucleus theory where there are many
channels for each branch. We see from the B to D entries that
the branching ratio is insensitive to the fission branch over a
wide range of fission widths. The entries E-K test the depen-
dence on interaction parameters in the Hamiltonian. Entries E
and F show that the diabatic interaction cannot be ignored,
but the ratio is insensitive to an increase beyond the value
in the baseline Hamiltonian. One sees from entry G that an
error in the pairing strength is likely to propagate to a similar
relative error in the branching ratio. This may be contrasted
with spontaneous fission, where theoretical lifetimes are very
strongly dependent on the pairing strength [25]. Entries H-K
in the table show the effect of changing the matrix elements
between Hyigge and the GOE reservoirs. As expected, weaker
interactions produce smaller fission probability. Doubling v,
from its baseline value does not make a significant change
in @~!, as might be expected from the experience with the
fission decay widths. However, there is a substantial decrease
when v, is reduced, indicating that the baseline value is at the
beginning of a plateau.

V. CONCLUSION AND OUTLOOK

The model Hamiltonian in this work introduces for the first
time a CI computational framework to describe the many-
body dynamics at the fission barrier. A primary conclusion
of the study is that the transport appears not to be carried
by a small number of internal channels, but rather is diffuse
and spread over many barrier topic configurations. If so, it
invalidates the transition-state theory that has been accepted
uncritically since the earliest work on the subject. However,
the model may be deficient in a way that could alter that
conclusion. For example, the space of wave functions was
generated with time-even constraints which produce only
time-even paired wave functions. These have limited band
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TABLE III. Dimensions of extended spaces to include proton
configurations and all seniorities. The cutoff in the configura-
tion spaces is E,.x =4 MeV for both neutrons and protons. The
seniority-zero all-nucleon space thus extends up to 8 MeV.

Seniority zero Al K™ =07

q n only p only n+p n only n+p

18 42 23 966 738 3.2 x 10*
22 97 46 4462 3088 3.5 x 10°
26 153 25 3825 8232 3.1 x 10°
29 125 33 4125 5080 43 x 10°
33 65 18 1170 1455 1.7 x 10*
37 32 43 1419 409 3.9 x 10*
sum 514 188 15967 19002 1.1 x 10°

width to transport flux, as was demonstrated in Ref. [2]. If
one added time-odd configurations by constraining with a col-
lective momentum operator [29,30] as well, the bandwidths
would certainly increase.

On the other hand, increasing the space and the scope of
the Hamiltonian in other ways is not likely to bring the model
closer to the transition-state physics. The pairing interaction
acts independently in the neutron and proton subspaces, so
inclusion of seniority-zero proton configurations would not
make a qualitative change in the excitation function.

The off-diagonal proton-neutron interaction matrix ele-
ments may become dominant when broken-pair configura-
tions are included in the CI space [31], and they may work
against the collectivity promoted by the pairing interaction.
In the limit of large off-diagonal elements with random signs,
the dynamics would become diffusive. This probably happens
anyway at large excitation energy, but the question remains
open for barrier-top energies.

One conclusion points favorably toward future efforts to
build a microscopic theory of fission. One sees that the trans-
port properties are determined around the barrier as in the
transition-state theory. The branching ratios can thus be cal-
culated without detailed information about the post-barrier
Hamiltonian. We called this the “insensitivity property”. The
qualitative explanation is very simple: once the system gets
past the barrier, it can go so many directions in phase space
to get to a fission channel that one can neglect the possibility
that it may come back.

We also investigated the relative importance of pairing and
diabatic interactions. As expected, the branch ratio is quite
sensitive to the pairing interaction strength. In fact the nucleus
would not fission at barrier-top energies without pairing being
included in some way in the GCM or time-dependent HF
approximation [32,33]. In contrast, the diabatic interaction
is not essential for fission, but it substantially enhances the
fission branch at a physically relevant strength level.

The prospects for making the model more realistic de-
pend very much on the size of the configuration space in
Hyrigge- Some dimensions for extended spaces are shown in
Table III. The costliest numerical task in the reaction theory
is the matrix inversion in Eq. (5), but it can be speeded up
by taking advantage of its tridiagonal block structure [5,34].

Inclusion of proton excitations in the zero-seniority model
space requires only Q-block dimensions of the order of a few
thousands. This is certainly feasible, even with the limited
computational power of desktop computers.

Including all seniorities in the Q-block configuration space
is much more challenging. The last column in Table III shows
the resulting dimensions. The number of K™ = 0" config-
urations with En,x = 4 MeV is of the order 10°. With six
reference states in the bridge region the total dimension is 10°.
To put this in perspective, shell model diagonalizations have
been reported for configuration-space dimensions of the order
of 10'%-11 [35].

Instead of taking a brute-force approach to the large config-
uration spaces, it might be more productive to look for more
sophisticated schemes to truncate the active space of states.
The theory is already a statistical one due to the GOE reser-
voirs, but we have not been able to avoid the time-consuming
task of numerically sampling the GOE Hamiltonians. Finally,
we need a better understanding of statistical aspects of the in-
teraction matrix elements, since calculating them individually
is out of the question.

So far the model does not provide a crisp answer to the
question, “How many channels are active in barrier-top fis-
sion”? There are at least two ways that one could investigate
the question. One is to examine how the probability flux
between Q blocks is distributed over the linkages between
the block eigenstates: many active links imply many channels.
Another way is to examine the resonance width fluctuations in
the region of isolated resonances. The fission widths should
satisfy the formula [36]

_ory)?
BT ETE )

where v is the effective number of channels. We intend to
investigate this issue in a future publication.

The main codes used in the work are available in the
Supplementary Material [37].
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APPENDIX A: GOE MODEL OF THE STATISTICAL
RESERVOIRS

This Appendix reviews the basic properties of the GOE as
a model for the compound nucleus and other statistical reser-
voirs. It is characterized by two parameters, the dimension of
the space Ngog and the strength of the Gaussian-distributed
residual interaction (v%)!/2. We shall also refer to the level

044615-8



MODELING FISSION DYNAMICS AT THE BARRIER IN A ...

PHYSICAL REVIEW C 107, 044615 (2023)

density at the center of the distribution given by

po = N/ (v?)1/2. (A1)

For a model of a compound nucleus that can decay by y
emission (capture) or by fission, there are five additional pa-
rameters. They are the decay widths I'iy, I'cap, and I't, together
with the number’ of capture and fission channels, Neap and
Nt. Each channel is paired with a state u in the GOE space
and given the appropriate decay width £, — E,, —iI'/2. In
compound-nucleus phenomenology the couplings between
the channels and the reservoir are better parameterized by
transmission coefficients defined as

T, =27 pol;. (A2)

We will now set the GOE parameters for the compound-
nucleus treatment of the n + 2*>U — 2%U* reaction. The
transmission factor for the entrance channel is taken from the
optical model systematics; it is roughly parametrized as

T = 27S0E, ", (A3)

where Sy ~ 10~ is the strength function [[18], Fig. 10] and
E, is the neutron bombarding energy in eV units. For our
numerical studies below we take E,, = 10 keV which implies
T, = 0.063. The average gamma decay width of the states in
the reservoir is I'cyp & 0.04 eV. The empirical level density
associated with an entrance channel is py ~ 1 eV~!, giving

T, = 2w poleqp ~ 0.25. (A4)

We also know that there are many y decay channels, so
Neap > 1.

It is not as easy to specify the coupling to the fission
channels. For the moment we take the fission width to be
I't = 0.42 eV as in an example from Ref. [38]. From the em-
pirical data one can only extract qualitative information about
the number of exit channels. As a simple exercise to see how
the physical observables depend on the GOE parameters, we
take the above parameters plus (Ngog, Neap, Np) = (50, 10, 1)
as a baseline for numerical modeling.

A key attribute of the compound nucleus is that its decay
properties are independent of how it was formed, subject to
some well-known caveats. The independence is encapsulated
in the compound nucleus formula for 7

T;
7:[1,1 in Zi Tl .
If the entrance channel width is small compared to other decay
widths, the reaction probabilities should sum to Ti,:

Tin ~ E 7i-n,i-
i

Table IV shows how well this works for several treatments
of the dimensions Ngog, Neap, and N;. One sees that Eq. (A6)
is quite well satisfied and is independent of the dimensional
parameters, at least in the range we have computed.

(AS5)

(A6)

9The entrance channel is unique, i.e., Ny, = 1.

TABLE IV. Reaction probability and branching ratio Eq. (2)
for GOE models of the n + 2**U compound nucleus reactions. The
nominal transmission factors are (Tin, Teap, Tr) = (0.063, 0.25, 2.64).
The integration interval for calculating the branching ratio covers the
center third of the GOE eigenspectrum. Statistical errors associated
with the GOE sampling are about 1%.

Model NGOE Ncap Ne Z,‘ En.i o
A 50 10 1 0.051 2.03
B 100 10 1 0.050 1.98
C 800 10 1 0.047 2.07
D 50 20 1 0.050 1.99
E 200 20 1 0.049 2.00
F 50 10 2 0.054 3.75
G 50 10 10 0.057 8.57

One of the most important physical observables is the
branching ratio. The calculated results for the GOE model
are shown in the last column of Table IV. The dimensions of
the GOE space Ngog are varied in the first three lines, which
gives one confidence that the enormous size of the physical
space is not an obstacle to constructing a practical model. The
branching ratio is also nearly independent of Nc,,, provided
that the number is large. However, models F and G show
that there is a strong dependence on N;. This is a well-known
phenomenon and is included in compound-nucleus theory as
the Moldauer correction factor [36,39].

APPENDIX B: INSENSITIVITY TO FISSION WIDTHS

The fission widths in the model are incorporated into the
GOE of the post-barrier reservoir. It would be difficult to
calculate those widths from a microscopic Hamiltonian. How-
ever, we expect that the dimension of the post-barrier reservoir
is largely independent of fission exit channels. In that situation
the effective decay width is controlled by the coupling to the
bridge states [4]. As an example, Fig. 8 shows the structure
of a simple GOE model to test the sensitivity to the final-state
decay widths. In it, the entrance channel is represented by a
chain of two states that couple to the GOE reservoir. In Fig. 9,
the reaction probability 7 is plotted as a function of energy

T Up
%Ff

FIG. 8. Hamiltonian structure to test the transmission properties
of the post-barrier reservoir. The Hamiltonian parameters used in
the calculations for Fig. 9 below are: diagonal energies E; = 0 for
the two states i in the entrance channel; + = 1 for the interaction
linking those states; v, = 0.6 for the interaction connecting the en-
trance channel to a state in the GOE matrix; (v?*)~'/?> = 0.1 for the
internal interaction strength in the GOE matrix; and Ngog = 100 and
N; = 100 for the dimension of the GOE Hamiltonian and the number
of fission channels.
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1.04
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E

FIG. 9. Transmission probability T, to decay channels in the
post-barrier GOE for a Hamiltonian with the connectivity shown in
the previous figure. The decay widths I' of the GOE states are: 0.05
(dotted red line); 0.2 (dashed blue line); and 0.4 (solid black line).
The other Hamiltonian parameters are given in the caption to Fig. 8.

for a range of final state widths. One sees that the average 7
remains the same over an eight-fold increase in I'y. In this
situation, the entrance transmission factor is approximately
given by

T = 27 po)*(v?), (BI)
where (v2)!/2 is the average interaction matrix element be-
tween the entry chain and the reservoir.

We have also made a test of the insensitivity property with
the full Hamiltonian. Figure 10 shows the branching ratio as
a function of the assumed fission width I"¢ of the post-barrier
reservoir states. One sees that the ! varies only by a factor
of 1.5 over variation of I'y by a factor of 20. In short, the

1.6 . . .
1.4
1.2
1
T 0.8
0.6
0.4
0.2

| | | | |
00 50 100

I (keV)

150

FIG. 10. Branching ratio o' for the full Hamiltonian as a func-
tion of fission width I";.

5
4 -— .
gy '\o
2 3 [
)
~ 2
L
11
0

0.4 0.6 0.8 1.0 1.2 1.4

AT

FIG. 11. The diabatic matrix element h, given by Eq. (17) for
several sets of (g;, ;) which satisfy (q; + g2)/2 = O =25 b. The
Gogny DI1S functional is employed. The quantity is plotted as a
function of A¢ for each set of (¢, ¢2).

branching ratio is largely determined by the probability to
cross the bridge, rather than the decay rates on the far side.

APPENDIX C: DIABATIC INTERACTION

In this Appendix we examine the diabatic interaction
along the Hyrgge chain to confirm its systematic proper-
ties and estimate its overall magnitude. They are calculated
with the code GCMAXIAL [14] which evaluates the matrix
elements by the Balian-Brezin formula [28]. The energy
functional employed here is the Gogny D1S functional; its
PES was displayed in Fig. 2. For our application, the PES
configurations were obtained by the HF minimization proce-
dure. We first demonstrate that Eq. (17) offers a reasonable
parametrization of the dependence on ¢, as was found in
an early study [19]. In Fig. 11 the diabatic matrix elements

5
4<
<y \
2 3 I
=
~ 2T
<
1<

0 : : : : :
0.4 0.6 0.8 1.0 1.2 1.4

AT

FIG. 12. The average and the variance of h,, evaluated by sam-
pling ten particle-hole configurations at each Q.
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between configurations at deformations (g; + ¢2)/2 = Q =
25 b are calculated as a function of q; — g». The plots show
the derived value of h, in Eq. (17) as a function of A¢.
One sees that it is rather insensitive to A¢. On the other
hand, h, has a considerable variation among the different
configurations.

In this exploratory study we did not attempt to calculate
these matrix elements individually for each diabatic link in

the Hyprigge chain. Instead, we evaluated them for a sample of
configurations and used the average for constructing Hygidge-
Figure 12 shows the results for samples at Q between 20 and
30 b, sampling ten particle-hole configurations at each point.
The dots show the averages at each Q with the variance shown
by the error bars. The overall average (i, |H|iz,) is about
1.5 MeV, and this is the value which we employed in the base
parameters shown in Table II.
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