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Laboratory electron screening in nuclear resonance reactions
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Both nonresonant and resonance reaction data are subject to laboratory electron screening effects. For
nonresonant reactions, such effects are well documented and the measured cross sections can be corrected to
find the unscreened ones. Frequently, the procedure and expression to calculate laboratory electron screening
factors for nonresonant reactions are also applied to isolated narrow resonances, without much theoretical
support or experimental evidence. A simple model is applied to estimate electron screening factors, lengths,
and potentials for narrow resonances. The corrections to the measured data result in an enhancement of the
unscreened resonance strengths by less than 0.2%, contrary to published narrow-resonance screening correction
factors, which predict a reduction of the unscreened strengths by up to 25%. Unless it can be proven otherwise, it
is recommended that measured strengths of isolated narrow resonances not be corrected for laboratory electron
screening. The prospects of investigating laboratory electron screening effects by measuring almost negligible
differences in resonance strengths are not promising. Instead, the difference of the resonance energy for the
unscreened and screened situation may be measurable. As an example, the case of the Er = 956-keV resonance
in the 27Al(p, γ ) 28Si reaction is discussed. It is also demonstrated that the claim of a previously reported
detection of a resonance near 800 keV in the 176Lu(p, n) 176Hf reaction is incorrect.
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I. INTRODUCTION

Nonresonant charged-particle nuclear reaction measure-
ments at low bombarding energies are impacted by the
presence of electrons in the vicinity of the interacting nuclei.
These electrons, either bound to individual target or projectile
atoms or freely moving in the conduction band in the case
of a metal, give rise to an attractive potential that effectively
reduces the width of the overall potential barrier to be pene-
trated by the projectile. Therefore, the astrophysical S factor
extracted from a nonresonant cross section measured in the
laboratory is expected to be larger compared to the S factor
that would have been obtained in the absence of electrons,
especially at the lowest bombarding energies. This effect has
been observed in several experiments (see, e.g., Ref. [1]). It
is important to correct the measured cross section for such
laboratory electron screening effects and, thereby, determine
the cross section applicable to bare interacting nuclei. The
latter quantity can then be used, together with a prescription of
stellar electron screening, to calculate thermonuclear reaction
rates, which are an essential ingredient for models of stellar
evolution and explosion. The electron screening correction
factors differ for the laboratory and stellar environment. The
focus of the present work is on the former. The latter have
been calculated, e.g., by Refs. [2,3].

Many authors (see, e.g., Refs. [4,5] and references therein)
have pointed out that the magnitude of the laboratory electron
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screening corrections extracted from low-energy nonresonant
cross-section data are larger than what is predicted from the-
ory. Sophisticated theoretical models have been applied to the
problem, but significant inconsistencies between theory and
experiment remain (for a review, see Ref. [5]).

The aim of the present work is not to provide more accurate
predictions for the nonresonant laboratory electron screening
corrections but to investigate the correction pertaining to iso-
lated narrow resonances. Assenbaum et al. [6] were first to
suggest that the electron screening correction factors obtained
for nonresonant reactions can be applied equally to narrow
resonances. They also predicted that electron screening effects
would result in a shift of the resonance energy compared to
the case of unscreened nuclei. As will be discussed below,
their first claim turns out to be incorrect, while the second
one is confirmed in the present work. Measuring such shifts
of the resonance energy may allow for a detailed study of the
interplay between atomic and nuclear processes.

The effects of atomic electrons on nuclear resonance scat-
tering have been studied many times before [7–10]. However,
a review of such effects in nuclear resonance reactions has
not been given in any detail. For this reason, in the literature,
the correction factors obtained for nonresonant reactions are
also applied to narrow resonances (see, e.g., Refs. [11–14]).
Such corrections always result in a bare (unscreened) reso-
nance strength that is lower, by up to 25%, depending on the
reaction, compared to the measured (screened) strength. How-
ever, it is neither obvious why the same laboratory screening
correction factors should be applied to both nonresonant
and narrow-resonance reaction data, nor whether there are
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compelling reasons to correct the latter data for laboratory
screening effects at all.

In Secs. II and III, laboratory electron screening effects for
nonresonant reactions and narrow resonances, respectively,
will be reviewed. Screening energies and lengths are presented
in Sec. IV. Results are provided in Sec. V and future mea-
surements are discussed in Sec. VI. A concluding summary is
given in Sec. VII.

II. ELECTRON SCREENING
IN NONRESONANT REACTIONS

The nonresonant cross section, σ (E ), at a center-of-mass
energy, E , can be parameterized as [15]

σ (E ) ≡ 1

E
S(E )e−2πη(E ), (1)

where the astrophysical S factor is frequently a function that
varies slowly with energy; η(E ) denotes the Sommerfeld pa-
rameter, η ≡ (Z0Z1e2/h̄)

√
μ/(2E ); and Z0, Z1, e, and μ are

the charges of the interacting nuclei, elementary charge, and
reduced mass, respectively. The energy-dependent Gamow
factor, e−2πη, describes the s-wave transmission through the
Coulomb barrier.

The situation is depicted in Fig. 1. The unscreened
Coulomb barrier, VC (r), is shown as the blue curve. A negative
screening potential, Ue, is represented by the green line. It
is depicted here as a constant potential, which is the usual
assumption made in the literature for nonresonant reactions.
The magnitude of Ue is highly exaggerated for illustrative
purposes. The screened Coulomb potential, VC (r) + Ue, i.e.,
the sum of the blue and green lines, is shown as the red
curve. When a particle is incident on the unscreened barrier
at a center-of-mass energy, E (gray arrow at right), it needs
to tunnel through a distance Ru − Rn to initiate the reaction,
where Ru and Rn denote the classical turning point for the
unscreened barrier and the nuclear radius, respectively. A
particle of energy E incident on the screened barrier will
tunnel through a shorter distance of Rs − Rn, where Rs is the
classical turning point of the screened barrier. The increase
in the measured nonresonant cross section is described by
the ratio of transmission probabilities, T ′ and T , through the
screened and unscreened barriers, respectively, at energy, E ,

fnr ≡ σscreen

σunscreen
= T ′(E )

T (E )
. (2)

The transmission coefficient in the Wentzel-Kramers-
Brillouin (WKB) approximation for the unscreened Coulomb
barrier is given by [16]

T (E ) ≈ exp

[
−

√
8μ

h̄

∫ Ru

Rn

√
VC (r) − E dr

]
, (3)

where μ is the reduced mass and VC (r) is the (unscreened)
Coulomb potential. The outer turning point is given by Ru =
Z0Z1e2/(4πε0E ), with ε0 denoting the vacuum permittivity.
For a particle approaching the screened barrier at energy E ,
one can write

T ′(E ) ≈ exp

[
−

√
8μ

h̄

∫ Ru

Rn

√
VC (r) + Ue − E dr

]
. (4)

FIG. 1. Schematic representation (not to scale) of electron
screening for a nonresonant charged-particle nuclear reaction in the
laboratory, showing the unscreened Coulomb potential (blue curve);
constant negative screening potential, Ue (green line); screened
Coulomb potential (red curve); total energy, E (gray arrows); and
effective energy, Eeff = E + |Ue| (blue arrow); Rn, Rs, and Ru

denote the nuclear radius, and the classical turning points at energy
E for the screened and unscreened barrier, respectively. The actual
reaction in the laboratory is represented by the second gray arrow
(on the left) extending to the red curve. Notice that Rs is also equal
to the classical turning point for the unscreened barrier (blue curve)
at the effective energy, Eeff (blue arrow). No screening potential is
shown inside the nucleus, because it is irrelevant for the derivation of
fnr in Eq. (5).

It can be seen that Eq. (4) is equivalent to the transmission of
the unscreened barrier at an energy of Eeff = E + |Ue|, i.e.,
T ′(E ) = T (Eeff ), as indicated by the blue arrow in Fig. 1.
This is why usually the transmission coefficients, T ′(E ) and
T (E ), are not computed numerically. Instead, they are approx-
imated by the Gamow factors, T (E ) ≈ exp[−2πη(E )] and
T ′(E ) ≈ exp[−2πη(Eeff )], so that the nonresonant electron
screening correction factor becomes

fnr ≈ e−2πη(Eeff )

e−2πη(E )
≈ eπη(E ) |Ue |

E . (5)

In the last step, it is assumed that the energy of the incident
particle is large compared to the screening energy, i.e., E �
|Ue|. The electron screening potential, Ue, is assumed to be
independent of energy. The factor, fnr, amounts to unity at
higher energies, where E � |Ue|, and increases as the energy
decreases. Therefore, its magnitude is fnr � 1.

Equation (5) has been applied in Refs. [6,17] and is the
commonly adopted formalism for nonresonant cross sections.
As can be seen from the above derivation, the incident particle
does not actually gain total energy, as is sometimes stated.
Instead, the energy shift, from E to Eeff , facilitates the con-
venient calculation of fnr by using the Gamow factors at
these two energies (see also Ref. [18]), without the need of
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computing the ratio of transmission coefficients at energy E
numerically. Also, sometimes a prefactor containing the ratio
of energies and S factors at E and Eeff is included in Eq. (5).
This is incorrect since the reaction takes place at energy E ,
not at Eeff .

The electron screening potential for nonresonant reactions
can be estimated with a suitable model representing the elec-
tronic configuration of the target and projectile. For example,
for gaseous targets and low bombarding energies, the adia-
batic (limit) approximation is frequently used [6]. It assumes
that the electron velocities are much larger than the relative
motion between the target and projectile nuclei. This implies
that the electron cloud instantly adjusts to the ground state of a
molecule-like system consisting of the two approaching nuclei
with respective charges of Z0 and Z1. The (negative) screening
potential, Uad, can then be approximated by the difference in
electron binding energies,

Uad ≈ Be(Z0) + Be(Z1) − Be(Z0 + Z1), (6)

where Be(Z0), Be(Z1), and Be(Z0 + Z1) denote the (positive)
total electron binding energies in the atoms with charges of
Z0, Z1, and Z0 + Z1, respectively (see Eq. (5) in Ref. [6]).

As pointed out in Sec. I, the values of |Ue| extracted from
low-energy cross-section data are, in most cases, significantly
larger than those calculated using the adiabatic approxima-
tion, |Uad|, by about a factor of two. A tabulated comparison
between values can be found, e.g., in Ref. [4].

III. ELECTRON SCREENING
FOR NARROW RESONANCES

For an isolated narrow resonance, what is usually measured
is not directly the cross section, but the integrated cross sec-
tion over the energy region of the resonance. This quantity is
referred to as the resonance strength and can be extracted in
the laboratory from the measured thick-target resonance yield
curve [15]. The resonance strength, ωγ , is defined by

ωγ ≡ ω
�a�b

�
, (7)

where �a, �b, and � = �a + �b + . . . denote the energy-
dependent partial widths of the incoming channel and the
outgoing channel, respectively, and the total resonance width;
ω ≡ (2J + 1)/[(2 jp + 1)(2 jt + 1)] is the statistical spin fac-
tor, with J , jp, and jt representing the spins of the resonance,
projectile, and target, respectively. The general form of the
resonance electron screening correction factor can then be
written as

fr ≡ ωγscreen

ωγunscreen
= �′

a

�a

�′
b

�b

�

�′ , (8)

where the primed and unprimed quantities refer to the
screened and unscreened widths, respectively. The meaning
of a “narrow resonance” in the present context will be defined
at the end of this section.

In resonant charged-particle reactions at sufficiently low
bombarding energies, which are of main interest in nuclear as-
trophysics measurements, the entrance channel width is much
smaller than the exit channel width, i.e., �a � �b. In this

case, Eq. (8) reduces to

fr = �′
a

�a
= P′

P
≈ T ′

T
. (9)

Here it is assumed that the main energy dependence of the
particle partial width, �a, arises from the penetration factor,
P	 (see, e.g., Ref. [15]), and the latter quantity is approximated
by the barrier transmission coefficient, T .1

In the opposite case, �a � �b, the resonance electron
screening correction factor reduces to fr ≈ �′

b/�b. If such
a resonance decays by emission of a γ ray or neutron, then
electron screening will only impact the value of fr through the
weak energy dependence of �b, with the result that fr ≈ 1. If
the emitted particle is charged (e.g., a proton or α particle),
then its transmission through the screened barrier must be
considered in addition [see Eq. (8)].

Figure 2 presents the situation for a resonance with �a �
�b, which is of primary interest in the present work. The
unscreened Coulomb barrier is shown as the blue curve. The
outer turning point for a particle approaching this barrier at
the resonance energy, Er , corresponding to a resonance level
(blue horizontal line) inside the nucleus at the same energy,
is denoted by Ru. The energy Er is a property of the com-
pound nucleus only. Although outside the nuclear radius a
constant screening potential was assumed for the discussion
in Sec. II and Fig. 1, this restriction will now be relaxed by
adopting a negative screening potential, Vscreen(r), that varies
with distance (depicted in green in Fig. 2). At large radial
distances, r → ∞, the screening potential will approach zero,
Vscreen(r) → 0 (see also Sec. IV). Furthermore, inside the nu-
cleus, the screening potential, Ue, is assumed to be constant
(green horizontal line).2

A laboratory measurement of an isolated narrow resonance
is impacted by electron screening in two ways: (i) outside
the nucleus, the sum of the unscreened Coulomb potential
(blue line) and screening potential (green line) gives rise to
the screened Coulomb potential, shown in red; (ii) the at-
tractive screening potential performs work on the projectile
approaching the target atom, and, therefore, the energy at
which the narrow resonance will be excited in the laboratory
becomes E ′

r = Er − |Ue|, where E ′
r < Er (see the gray arrow

in Fig. 2). Or, expressed differently, the virtual level inside
the compound nucleus (red horizontal line) is lowered by an
amount of |Ue|.

1The definition of the transmission coefficient usually contains the
ratio of wave numbers to the left and right of the barrier, whereas the
penetration factor does not [19,20]. However, the wave numbers are
implicitly included in the WKB wave function normalizations [16].
Therefore, the energy dependencies of the transmission coefficient
and the penetration factor for the same value of the orbital angular
momentum should be nearly equal.

2If one simplifies the problem and assumes that the K-shell elec-
trons (see Sec. V) form a uniformly charged sphere surrounding the
target nucleus, then the screening potential will be nearly constant
over the much smaller nuclear region. A constant screening potential
inside the nucleus was also assumed, e.g., in Refs. [21,22].
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FIG. 2. Schematic representation (not to scale) of electron
screening for a resonance in the laboratory, showing the unscreened
Coulomb potential (blue curve); negative screening potential, Vscreen

(green); screened Coulomb potential (red curve); resonance energy,
Er (blue arrow); and shifted energy, E ′

r = Er − |Ue| (gray arrow);
Rn denotes the nuclear radius, Ru is the classical turning point at
energy Er for the unscreened barrier, and Rs is the turning point at
energy Er − |Ue| for the screened barrier. The actual reaction in the
laboratory is represented by the gray arrow and the red curve. Notice
that the tunneling distance, Rs − Rn, through the screened barrier
at energy Er − |Ue| is larger than the distance Ru − Rn through the
unscreened barrier at Er . If the screening potential, Vscreen(r), would
be constant, then the tunneling distances would be the same and no
change in either the transmission coefficient or resonance strength
would be expected.

The transmission coefficent for the unscreened barrier is
given by Eq. (3), where the center-of-mass resonance energy,
Er , replaces the energy, E . But, unlike the nonresonant case
in Sec. II, the transmission coefficient in the presence of
electrons is given by

T ′ ≈ exp

[
−

√
8μ

h̄

∫ Rs

Rn

√
VC (r) + Vscreen(r) − (Er + Ue) dr

]
,

(10)

where the outer turning point for the screened case, Rs, is ob-
tained from VC (Rs) + Vscreen(Rs) = Er + Ue. It can be seen
that, for the special case of a constant screening potential over
the region of the outer turning point, i.e., Vscreen(r) = Ue =
const, the two effects discussed above, (i) and (ii), cancel
each other exactly. Consequently, the two turning points for
the screened and unscreened case, Rs and Ru, would coincide
and Eq. (10) reduces to Eq. (3). In other words, the electron
screening correction factor, fr , would become unity. This also
means, contrary to the claim in Ref. [6], that it is incorrect
to apply the screening factor for nonresonant reactions, fnr

in Eq. (2), to the measured strength of an isolated narrow
resonance, because this procedure disregards the shift down

in resonance energy from Er to Er − |Ue| in the calculation of
the transmission coefficient. The possibility of measuring this
resonance energy shift will be addressed in Sec. VI.

When Vscreen(r) is not constant, but declines outside the
nuclear radius toward zero, the transmission coefficient for
the screened Coulomb barrier is, in fact, smaller than the
transmission through the unscreened barrier. This can be seen
in Fig. 2, where the distance the particle needs to tunnel
through the screened barrier, Rs − Rn, at Er − |Ue| is larger
than the distance for tunneling through the unscreened barrier,
Ru − Rn, at the energy Er . Therefore, the unscreened reso-
nance strength is generally larger than the screened value,
which is the opposite of the assumption generally made in the
literature for the laboratory screening correction for a narrow
resonance (see Sec. I). In other words, unlike the correction
factor for nonresonant cross sections, fnr � 1, the magnitude
of the narrow-resonance correction factor is fr � 1, as long as
the screening potential, Vscreen(r), is negative. It is assumed
here that the screening potential, Ue, is constant inside the
nucleus and can simply be subtracted from the unscreened
resonance energy. It follows from the above discussion that the
important quantity in this context is not only the magnitude of
the electron screening potential but also its rate of decline over
the tunneling region.

Arguments similar to the above had been presented earlier
in connection with electron screening in α-particle radioac-
tivity [21,23] and screening effects for narrow resonances
in astrophysical plasmas [3,22]. The shift in the energy
of the virtual resonance level, caused by electron screen-
ing, is frequently disregarded in the literature (see, e.g.,
Refs. [17,24,25]), leading to incorrect predictions.

In the present context, a “narrow resonance” is defined by
� � |Ue|, i.e., its total width must be small compared to
the shift in the resonance energy, Ue = E ′

r − Er , caused
by electron screening. As discussed above, for this condition
the reaction occurs at the screened energy, E ′

r , instead of the
unscreened one, Er . For a broad resonance, i.e., � � |Ue|,
the reaction can proceed over an extended range of incident
energies, including the unscreened resonance energy, and the
electron screening correction factor must be computed numer-
ically from an expression more complicated than Eq. (9).

IV. SCREENING LENGTHS
AND SCREENING POTENTIALS

A simple model is used in this work to estimate numerical
values for the screening effects on the measured strength of a
narrow resonance. The resonance screening factor, fr , is found
by numerically integrating Eqs. (3) and (10). A Yukawa-type
expression is adopted for the screened Coulomb potential
outside the nuclear radius,

VC (r) + Vscreen(r) = e2

4πε0

Z0Z1

r
e−r/L , r � Rn, (11)

where L represents the electron screening length scale. The
exponential factor damps the overall potential to nearly zero
after a few screening lengths. For r � L, and keeping only
the linear term in the expansion of the exponential factor,
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Eq. (11) reduces to

VC (r) + Vscreen(r) ≈ e2

4πε0

Z0Z1

r
− e2

4πε0

Z0Z1

L
, r � L.

(12)

Therefore, and following Refs. [21,22], the constant screening
potential inside the nucleus, Ue, can be approximated by

Ue = − e2

4πε0

Z0Z1

L
. (13)

For the nuclear radius, a value of

Rn = 1.2
(
A1/3

0 + A1/3
1

)
fm (14)

will be assumed, where A0 and A1 are the integer mass num-
bers of the projectile and target, respectively.

The last task before the electron screening factor for narrow
resonances, fr , can be computed numerically is to specify the
electron screening length, L. The smaller the screening length
scale, the larger the screening energy inside the nucleus, Ue,
and its rate of decline outside the nuclear radius, and the larger
the screening correction factor, fr , will become. The screening
length will depend on the atoms under consideration and the
environment in which the nuclear reaction takes place.

A dominant contribution to the electron screening is pro-
vided by the (inner) core electrons, especially the K electrons.
Their contribution will be estimated by approximating their
screening length with the radius of the K shell,

LKS = rK . (15)

The latter values were calculated by Ref. [26] using the elec-
tron localization function, together with Hartree-Fock wave
functions of the neutral atoms. Typical values of rK range from
0.58a0 for carbon to 0.094a0 for iron, where a0 = 5.29 × 104

fm denotes the Bohr radius.
When the target atoms either form a metal lattice or are

embedded in a metal backing, the screening effect of the (free)
conduction-band electrons must be considered in addition. An
approximation of their screening length can be obtained from
the Thomas-Fermi model of a metal [27], which predicts3

LTF =
√

2ε0EF

3ρe2
= 6.1 × 104

√
EF (eV)

ρ (1022 cm−3)
fm, (16)

where EF denotes the Fermi energy and ρ is the electron
density. Typical values for metals are EF ≈ 10 eV and
ρ ≈ 10 × 1022 cm−3 [27], giving a shielding length of
LTF ≈ 6.10 × 104 fm.

A number of authors (see, e.g., Refs. [25,28,29]) have
computed screening lengths using the Debye-Hückel model,
which yields4

LDH =
√

ε0kBT

ρe2
= 6.9 × 102

√
T (K)

ρ (1022 cm−3)
fm, (17)

3The numerical value of 3.7 × 10−10 provided in Eq. (3) of
Ref. [21] is incorrect and should be replaced by 6.1 × 10−9.

4The numerical value of 2.18 × 10−8 provided in Eq. (4) of
Ref. [21] is incorrect and should be replaced by 2.18 × 10−11.

where kB and T denote the Boltzmann constant and tempera-
ture, respectively. This model gives much smaller screening
lengths, resulting in a stronger electron screening effect.
Equation (17) is useful for a plasma [2], but this formulation
does not apply to metals at room temperature, as pointed
out, e.g., by Refs. [18,30]. For doped semiconductors or
electrolytes, the Debye-Hückel model results in modified ex-
pressions [27] compared to Eq. (17).

Here, only the dominant contributions to the electron
screening, according to Eqs. (15) and (16), are considered. For
a metal target and low bombarding energies, the velocity of
the incident projectile is much smaller than the Fermi velocity
of the electrons, and, therefore, the electron screening effect
is caused by the static polarization of both the surrounding
bound and conduction electrons. When applicable, the ef-
fects of K-shell and conduction electrons will be combined
by adopting a shielding length of L−1 = r−1

K + L−1
TF , which

assumes that the total screening potential is given by the
sum of the individual contributions. Numerical results will be
presented in the next section.

V. RESULTS AND DISCUSSION

Table I gives the main results, including a comparison with
values from the literature. Six narrow resonances are listed in
the reactions 17O(p, α) 14N, 18O(p, γ ) 19F, 22Ne(p, γ ) 23Na,
25Mg(p, γ ) 26Al, and 27Al(p, γ ) 28Si. All of these fulfill the
conditions �a � �b and � � 100 eV (see Sec. III).
The target compositions are given in column 4. They range
from wide-gap semiconductor material (Ta2O5), gas (22Ne), to
metal (Mg, Al). The screening lengths of the K-shell electrons
in the neutral target atoms, rK , which are listed in column
5, were assumed to be approximately equal to the K-shell
radii found in Table 1 of Ref. [26]. For the two metals, the
screening lengths, LTF, calculated from the Thomas-Fermi
model according to Eq. (16), are given in column 6. The outer
turning point radii, Rs, of the screened Coulomb potential,
calculated from Eq. (10), are listed in column 7. A comparison
of length scales indicates that the screening lengths, rK and
LTF, are much larger than the outer turning-point radii, Rs.
Consequently, any screening correction factors are expected to
be small. Column 8 provides values for the constant screening
potential, Ue [see Eq. (13)], inside the compound nucleus,
which are approximately equal to the energy difference be-
tween the unscreened resonance energy, Er , and the screened
one. Values of Ue range from −0.5 to −2.0 keV. They are sim-
ilar to the adiabatic approximation estimates obtained from
Eq. (6), which are given in column 9.

The present estimates of the screening correction factors
for narrow resonances, fr , calculated according to Eqs. (9)–
(16), are listed in column 10. As can be seen, the values
of fr are unity within 0.2%. Also, the results predict that
the screened resonance strengths are slightly smaller than the
unscreened ones, consistent with the discussion in Sec. III.

In comparison, screening “enhancement” factors for nar-
row resonances from the literature, fLit, calculated from
Eqs. (5) and (6), are given in column 11. These factors yield
screened resonance strengths that exceed the unscreened val-
ues by 7% to 25%, depending on the reaction. Again, it must
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TABLE I. Electron screening factors, fr , and related quantities, for reported measured narrow resonances.

Literature

Reaction Ec.m.
r (keV) � (eV) Target rK (fm)a LTF (fm)b Rs (fm)c Ue (keV)d Uad (keV)e fr

f fLit Ref.

17O(p, α) 14N 64.5 130 ± 5h Ta2O5
l 21160 178.6 −0.54 −0.68 0.9996 1.15 [12]

18O(p, γ ) 19F 90.0 121 ± 5i Ta2O5
l 21160 128.0 −0.54 −0.68 0.9998 1.10 [32]

18O(p, α) 15N 90.0 121 ± 5i Ta2O5
l 21160 128.0 −0.54 −0.68 0.9998 1.09 [33,34]

22Ne(p, γ ) 23Na 149.4 <60j Ne gas 15870 96.4 −0.91 −0.91 0.9998 1.07 [11]
25Mg(p, γ ) 26Al 92.2 <30j Mg metal 12484 55315 187.4 −1.7 −1.2 0.9976 1.25 [13]
27Al(p, γ ) 28Si 956 70 ± 14k Al metal 11310 49044 19.6 −2.0 −1.3 0.9999
176Lu(p, n) 176Hf 805g Lu metal [25]

aElectron screening length of K-shell electrons in the neutral target atom; see Table 1 of Ref. [26].
bElectron screening length of the Thomas-Fermi model for metals; see Eq. (16).
cOuter turning point of screened potential; see Eq. (10).
dConstant screening potential inside the compound nucleus, which is approximately equal to the energy shift down from the unscreened
resonance energy to the screened one; see Eq. (13).
eAdiabatic approximation estimate of the screening potential; see Eq. (6).
fPresent estimate of the screening correction factor for narrow resonances; see Eq. (9).
gThis resonance could not have been observed by Ref. [25] because its strength would be far below the present-day detection limit; see Sec. VI.
hFrom Refs. [35,36], using � ≈ �α .
iFrom R matrix fit of Ref. [33] (see their Table 4).
jUpper limit using � ≈ �γ , with �γ estimated using the Recommended Upper Limits [37] for the primary transitions observed by Refs. [11]
and [38] for 22Ne + p and 25Mg + p, respectively.
kFrom Ref. [39].
lWide-gap semiconductor.

be emphasized that it is not appropriate to calculate elec-
tron screening factors for narrow resonances using Eq. (5),
which applies to nonresonant cross sections and disregards
the shift in the resonance energy, as explained in Sec. III.
Notice that the (incorrect) literature “enhancement” factors
are significant, even when the measured resonance strength
uncertainties are taken into account.

A number of tests were performed to investigate the sensi-
tivity of the present results to parameter variations. Changing
the nuclear radius parameter in Eq. (14) from 1.2 fm to either
0.5 or 2.0 fm did not impact the numerical values of fr notice-
ably. The inclusion of a centrifugal term, h̄2	(	 + 1)/(2μr2),
in Eqs. (3) and (10), and varying the orbital angular momen-
tum, 	, between 0 and 3, did not change any of the results
either. Increasing the screening lengths adopted here (i.e., the
values of rK and LTF listed in columns 5 and 6, respectively,
of Table I) will result in values of fr that are even closer to
unity. When the screening lengths are reduced by a factor of
two, the electron screening correction factors, fr , are unity
within 1%. These changes are negligibly small, contrary to
the correction factors reported in the literature for narrow
resonances (column 11).

The simple procedure for calculating narrow-resonance
screening factors presented here has a number of shortcom-
ings. A static, time-independent model has been adopted,
although a dynamical approach would be more appropri-
ate. A constant screening potential is assumed inside the
compound nucleus, see Eq. (13), which oversimplifies the
actual situation. Similar arguments apply to approximating
the screened potential by the damped, Yukawa-type, ex-
pression of Eq. (11). The numerical results are impacted
slightly by the adopted values of the screening lengths for the

K-shell and conduction electrons, for which rough estimates
have been employed here. It is worthwhile to address these
issues in the future using more sophisticated models, e.g.,
similar to those developed for the related case of α-particle
radioactivity [23,30,31].

VI. RESONANCE ENERGY SHIFTS CAUSED
BY ELECTRON SCREENING

Experimental studies of electron screening effects in reso-
nant reactions face a number of obstacles.

First, electron screening is expected to impact a resonance
strength in a charged-particle induced reaction only when the
entrance channel width is significantly smaller than the exit-
channel one, �a � �b

5 (see Sec. III). Second, even when the
condition �a � �b is fulfilled, the ratio of screened versus
unscreened resonance strengths, fr , will be close to unity (see
Table I) because the effects of the screened Coulomb potential
and the shift in the resonance energy compensate each other
largely (see Sec. IV). Consequently, electron screening will
not significantly impact the values of measured resonance
strengths, which are frequently extracted from the plateau
height of thick-target yield curves [15].

Because of these difficulties, it is worthwhile to consider,
instead, to measure the shift in the resonance energy, E ′

r −Er ,

5For the condition �a � �b (or ωγ ≈ ω�b), and assuming that
the resonance decays by emission of a neutron or γ ray, electron
screening will impact the exit channel width, �b, only through the
small change in the decay energy (Sec. III). In this case, the value of
fr will be close to unity for an exothermic reaction.
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caused by electron screening. Such a shift is expected to
occur, in principle, in a charged-particle resonance reaction
regardless of the relative magnitudes of the entrance and exit
channel partial widths (�a and �b).

A shift in resonance energy, presumably caused by electron
screening, had been reported by Kettner et al. [25]. They
measured the thick-target yield curve of a 176Lu(p, n) 176Hf
resonance at 805 keV (center-of-mass energy), using three
different target-backing combinations (Lu2O3 insulator, Lu
metal, and PdLu alloy). No other information on this reso-
nance is available in the literature. They observed an energy
difference in the leading edge of the yield curves between the
metal (and alloy) and the insulator target. By assuming that the
insulator target exhibits insignificant screening, the observed
energy shift down by −32 ± 2 keV (Table I) was interpreted
as the electron screening potential for the metal (and alloy)
target. Huke et al. [18] discussed the energy shift reported
by Ref. [25], but attributed it instead to differences in target
preparation and resulting stopping powers. The Wigner limit
for an s-wave proton partial width in the 176Lu(p, n) 176Hf
reaction at 805 keV in the center of mass corresponds to a
value of ≈10−16 eV, which is far below the present-day exper-
imental detection limit. Therefore, the claim of Ref. [25] to
have detected a resonance at 805 keV in the 176Lu(p, n) 176Hf
reaction, which is still being discussed in the recent literature
[40–42], is incorrect.

No unambiguous evidence has so far been published
demonstrating the existence of a shift in resonance energy
caused by laboratory electron screening. Such an energy shift
could be detected by comparing a resonance energy measured
in the laboratory with the corresponding unscreened value.
The latter corresponds to the resonance energy that would
be obtained in the absence of all electrons surrounding the
interacting nuclei. It can be determined from

Er = Ex − Qnu, (18)

where Er is the unscreened resonance energy in the center-
of-mass system (same as Sec. III), which is a property of
the compound nucleus only; Ex denotes the excitation energy
of the compound nucleus; and Qnu represents the Q value
computed from nuclear (as opposed to atomic) masses [43].
This value can be compared to the resonance energy that is
obtained from a laboratory measurement by using the rela-
tivistic expression

E ′
r =

√
2m0c2E lab

r + [(m0 + m1)c2]2 − (m0 + m1)c2, (19)

where E ′
r and E lab

r denote the center-of-mass energy of the
resonance in the presence of electrons (same as in Sec. III),
and the measured resonance energy in the laboratory reference
frame, respectively; m0 and m1 represent the masses of the
target and projectile. The energy shift caused by electron
screening contributes to the measured difference, E ′

r − Er .
This procedure requires a careful assessment of all input

quantities. The candidate resonance needs to be narrow (i.e.,
� � 100 eV), and the target well characterized and free of
surface contamination. The energy spread of the incident
beam must be small (i.e., no more than a few hundreds of
electron volts). The excitation energy, Ex, in Eq. (18) needs

to be precisely measured, preferably by γ -ray spectrometry.
The laboratory resonance energy, E lab

r , in Eq. (19) must be
measured precisely using methods that do not depend on the
energies of other (calibration) resonances. Finally, additional
effects caused by the presence of atomic electrons in the target
need to be accounted for, e.g., the excitation and ionization of
bound electrons in the atom in which the nuclear reaction is
taking place [10,44], and the Lewis effect [45].

As an example, let us consider the resonance in the
27Al(p, γ ) 28Si reaction near a center-of-mass energy of 956-
keV (Jπ = 3+; � = 70 ± 14 eV [39]). The corresponding
excitation energy, which was determined from the measured
γ -ray energies of the primary decays, is reported as Ex =
12541.31 ± 0.14 keV [46]. The nuclear Q value amounts to
Qnu = 11583.63 ± 0.05 keV [47]. Consequently, this yields
an unscreened resonance energy of Er = 957.68 ± 0.15 keV,
according to Eq. (18). The laboratory value of the resonance
energy is reported as E lab

r = 991.756 ± 0.017 keV [48]. In
that experiment, an aluminum metal target was used and
the energy was determined relative to a Josephson-derived
1-V standard. Also, the reported value includes corrections
caused by the ionization of atomic electrons (corresponding
to an energy shift of 24 ± 12 eV). The above laboratory res-
onance energy results in a screened resonance energy in the
center-of-mass system of E ′

r = 956.032 ± 0.016 keV, ac-
cording to Eq. (19). The energy difference, E ′

r − Er , amounts
to −1.65 ± 0.15 keV. This result is near the screening energy
of Ue = −2.0 keV (Table I), which was estimated using the
simple model of the present work, based on a Yukawa-type
screening potential and screening lengths for electrons in the
K shell and the conduction band (Sec. IV). It is also close to
the value of Uad = −1.3 keV that is found from the adiabatic
approximation [see Eq. (6)]. Although these two estimates
of the screening potential roughly agree with the energy dif-
ference, E ′

r − Er , estimated above for the Er = 956-keV
resonance in the 27Al(p, γ ) 28Si reaction, further studies will
be needed to confirm this claim.

VII. SUMMARY

The present work addressed the estimation of laboratory
electron screening correction factors for isolated narrow res-
onances. Such corrections are frequently performed in the
literature with the same procedure and expression used to cor-
rect laboratory nonresonant cross sections. It was pointed out
that electron screening affects nonresonant cross sections and
resonance strengths differently and that it is not appropriate to
correct measured resonance strengths using the same proce-
dure and expression employed for the correction of measured
nonresonant cross sections. The reported literature screening
factors applied to narrow resonances result in unscreened res-
onance strengths that are smaller, by 7% to 25% depending
on the reaction, than the measured (screened) ones. On the
contrary, the present work demonstrated that unscreened res-
onance strengths are equal to the measured ones within 0.2%.
This small correction is of no practical importance. Unless
demonstrated otherwise, measured resonance strengths do not
need to be corrected for laboratory electron screening effects.
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Since electron screening has a negligible impact on the
strengths of narrow resonances, any attempts to study such
effects by measuring the thick-target yield are futile. Instead,
and regardless of the relative magnitudes of the entrance
and exit channel partial widths, it may be more promising
to detect the shift in the resonance energy down from the
unscreened value (i.e., obtained in the absence of any elec-
trons) to the screened one (i.e., measured in the laboratory).
Although no unambiguous evidence has been published so
far demonstrating such an energy shift, it is pointed out that
this effect is likely present in the data for the Er = 956-keV
resonance in the 27Al(p, γ ) 28Si reaction. It is also demon-

strated that the claim of a previously reported detection [25]
of a resonance in the 176Lu(p, n) 176Hf reaction is incor-
rect.
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[40] J. Gajević, A. Cvetinović, A. Likar, M. Lipoglavšek, P. Pelicon,
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