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Image processing of isotope yield in neutron-induced fission
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Background: Due to the complex multidimensional dependence, the prediction and evaluation of independent
fission yield distributions have always been a challenge.
Purpose: Considering the complex multidimensional dependence and high missing rate of independent yield
data, this study applies the tensor decomposition algorithm to the prediction of independent fission yields.
Methods: Tensor decomposition algorithm is a type of machine-learning algorithm with strong multidimensional
structural dependencies capture ability, which is often used in the imputation of missing data in sparse tensors
and has achieved great success in fields such as image processing and data mining. After constructing yield
tensors with three dimensions for 851 fission products and filling the tensors with the independent yield data
from the ENDF/B-VIII.0 database, the tensor decomposition algorithm is applied to predict the independent
isotope yield in fission, which results the fission yield tensor decomposition (FYTD) model.
Results: The fission yields of 235U and 239Pu are set as missing values and then predicted. The mass distribution
of 235U fissions yield predicted by the FYTD model agrees well with the prediction of BNN + TALYS model and
ENDF/B-VIII.0 data. Furthermore, the isotope yields in the fissions are also predicted. For fast neutron-induced
fission of 239Pu, 98% predictions of the isotope yields by the FYTD model agree with the ENDF/B-VIII.0 data
within one order of magnitude. The fission yields of 238Np, 243Am, and 236Np that do not exist in the ENDF/B-
VIII.0 database are predicted and compared with those in the JEFF-3.3 database, as well as the experimental data.
Good agreement demonstrates the predictive ability of the FYTD model for the target nucleus dependence. The
scalability of the FYTD model over the incident neutron energy degrees of freedom is examined. After adding a
set of 2 MeV neutron-induced 239Pu fission yield data into the yield tensor, the 2 MeV neutron-induced fission
yields of 235U and 229Th are predicted and consistent with the prediction of the GEF model and experimental
data. Finally, the yields of the ratio of isomeric states and neutron excess of the products as a function of product
charge number are also predicted and verified.
Conclusions: The FYTD model can capture the multidimensional dependence of the fission yield data and make
reasonable predictions. This study proves the effectiveness of tensor decomposition algorithm in fission product
yield study, and provides new ideas and tools for the evaluation and prediction of fission product yield data.
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I. INTRODUCTION

The splitting of a heavy nucleus into two or more
intermediate-mass nuclei is called fission. Although it has
been more than 80 years since its discovery [1,2], the research
on the fission is still a hot topic and challenge. On the one
hand, the nuclear fission is an extremely complex process,
which is the movement of the quantum multibody system
composed of all nucleons in the nucleus in the multidimen-
sional space. The exploration of its mechanism is very helpful
to the development of nuclear physics fields such as nuclear
structure, nuclear reaction and superheavy nuclear research
[3–6].The nuclear fission also attracts attention in astrophysics
and particle physics because it plays an important role in the
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formation of elements in the rapid neutron capture process
(r-process) of nucleosynthesis and the production of reactor
neutrinos [7,8]. On the other hand, the nuclear fission is also
significant application fields. The huge energy released in the
fission process makes fission play an important role in both
energy and military fields. Neutrons and various radioisotopes
produced by fission are used in various fields such as biol-
ogy, chemistry, and medicine. Therefore, in order to make
scientific use of fission, the research on the nuclear fission
is widely concerned in the field of nuclear engineering and
technology [9].

The fission product yield (FPY) is an important observ-
able in the nuclear fission. Generally speaking, the nuclear
fission is followed by the β decay of the unstable fragments.
The FPY is divided into the independent and cumulative
cases, which are distinguished by counting the products be-
fore and after the β decay. The independent fission product
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yield (IFPY) can reflect the information of fission process
from the macro- and microperspectives, providing impor-
tant observations for the research and modeling of fission
processes [10]. However, experimental measurements of the
IFPY are difficult and hence the available data are generally
incomplete and have large uncertainties [11]. In major nu-
clear data libraries, such as ENDF/B [12], JEFF [13], and
JENDL [14], complete evaluations of IFPY are not available
for some certain actinides and only available for three neutron
incident energy points (0.0253 eV, 0.5 MeV, and 14 MeV).
Therefore, theoretical predictions of the IFPY are still
necessary.

Due to the complexity of the quantum many-body prob-
lem and the nuclear force problem, the deep understanding
and simulation of the fission process is still one of the
most challenging tasks in nuclear physics [3,4]. Nowa-
days, the microscopic nuclear fission models, such as the
time-dependent Hartree-Fock-Bogoliubov method [15] and
the time-dependent generator coordinate method [16,17],
have made important progress. The fission process can be
regarded as a movement of Brownian particles walking
on the multidimensional potential-energy surface. Various
macroscopic-microscopic models based on the multidimen-
sional potential-energy surface are also widely used in the
calculation of the fission yield [18–21]. Some phenomeno-
logical methods, such as the multi-Gaussian semi-empirical
formula [10,22], the Brosa model [23] and the GEF (general
description of fission observables) model [24] are widely used
and have achieved considerable success in evaluating fission
yield data. The prediction of the GEF model is also referenced
in the JEFF database to further improve the fission yield data
in the database.

The traditional phenomenological models mainly rely on
the least-squares adjustment of various parameters. They can
describe the existing data in some regions well. But as fission
modes evolve, the prediction capability of this type of models
may be insufficient when the available experimental data are
very sparse [25,26]. Recently, thanks to the powerful ability to
learn from existing data and make predictions, the machine-
learning algorithms have been used in various studies in the
nuclear physics community. For example, the Bayesian neu-
ral network (BNN) algorithm has achieved certain success
in prediction of nuclear mass [27,28], nuclear charge radius
[29], spallation reaction product cross section [30,31], neu-
tron and proton drip lines [32,33], etc. Likewise, various
machine-learning algorithms have been applied to the study
and prediction of fission yields. Lovell et al. used mixture
density networks to learn parameters of Gaussian functions
to predict fission product yields [34]. Tong et al. predicted the
mass distribution of fission yield by combining KNN and GEF
models [35]. Wang et al. predicted the mass distribution of
fission yield by combining BNN and TALYS models and gave
the confidence interval of the predicted value [26]. On the
basis of this success, BNN model has been further developed
and its accuracy has been further improved [36]. The charge
distribution and isotopic distribution of fission yield can also
be predicted by BNN model [37,38].

The tensor decomposition algorithm is a standard tech-
nique to capture the multidimensional structural dependence.

Compared with the traditional interpolation and fitting meth-
ods, the tensor decomposition algorithm has a strong ability
to extract the information hidden in the original data, mak-
ing it possible to impute the sparse tensor, which makes it
widely used in image processing, data mining, and other
fields [39–41]. Considering the complex multidimensional
dependence and high missing rate of independent yield data,
this study applies the tensor decomposition algorithm to the
prediction of independent fission yields, and establishes the
fission yield tensor decomposition (FYTD) model. The paper
is organized as follows: In Sec. II, the establishment of FYTD
model is described. In Sec. III, FYTD model will be applied
to multiple yield prediction for verification. Finally, Sec. IV
presents conclusions and perspectives for future studies.

II. THEORETICAL FRAMEWORK

A. Tensorization of fission product yield

The neutron-induced fission is briefly introduced by taking
a typical 235U(n, f ) reaction as an example:

235
92 U + n −→236

92 U∗ −→92
36 Kr +141

56 Ba + 3n. (1)

A specific target nucleus, such as 235U, can be represented
by its number of protons Zt and number of neutrons Nt . The
target nucleus forms an excited composite nucleus after the
neutron incident with energy En. After fission of compos-
ite nucleus, two primary fission products, one light and one
heavy, are produced and several prompt neutrons are released.
Thus, the neutron-induced fission yield of a given isotope with
number of protons Zp and number of neutrons Np depends on
the neutron incident energy and target nuclei. In addition, a
considerable part of the fission products are not in the ground
state but in the isomeric state. To distinguish these products,
the fission product state (FPS) needs to be considered.

Therefore, when tensorizing the neutron-induced fission
product yield data, six dimensions can be considered, includ-
ing En, Zt , Nt , Zp, Np, and FPS. Among six dimensions, the
dimensions related to the target nucleus and product are dis-
crete, and only the neutron incident energy En is continuous.
Therefore, En is discretized into thermal neutron (0.0253 eV),
fast neutron (0.5 MeV), and high-energy neutron (14 MeV).

Nowadays, due to the difficulty of IFPY experimental mea-
surement and the lack of existing data, this yield tensor will
have a very high degree of missingness. Imputation of such
sparse tensors has always been a challenge. Similar scenes
also appear in image processing in the computer field. A
color image can be thought of as a multidimensional tensor
containing information about the pixel location dimension, as
well as the pixel color dimension. To deal with color images
with high missing rate and high signal-to-noise ratio, tensor
decomposition algorithms are widely used [39–41]. Taking
the left image in Fig. 1 as an example, 70% of the pixels in this
image are missing. We tensorized the image and applied the
BGCP algorithm to capture the multidimensional information
of the remaining pixels. Finally, as shown in the middle image
of Fig. 1, tensor decomposition can effectively impute the
missing pixels. From the naked eye, the details of the image
are not well restored compared with the original image, but
the overall trend of the images are consistent.
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FIG. 1. Image imputation by tensor decomposition algorithm.

The tensor decomposition algorithm for image process-
ing is helpful for predicting the fission yield. However, six
dimensions are included when tensorizing the fission yields,
including En, Zt , Nt , Zp, Np, and FPS. In the ENDF/B-VIII.0
database, 851 products are concerned, containing 710 fission
products at the ground state, 133 kinds of M1 isomeric state
and 8 kinds of M2 isomeric state. The three-dimensional
(3D) yield tensors with dimensions Zt , Nt − Zt , and En are
constructed for each product nuclide. Then, there are 851 3D
tensors. The range of the 3D tensors is chosen as Zt = 90–96,
Nt − Zt = 47–54, and En = 0.0253 eV, 0.5 MeV, 14 MeV.
By filling these 3D tensors with the ENDF/B-VIII.0 data
of 45 fission reactions for 24 target nuclei of 227,229,232Th,
231Pa, 232,233,234,236,237,238U, 237,238Np, 238–242Pu, 241,243Am,
and 242–246Cm, the missing rate of the tensor is about 73%,
which is similar to that of the missing image showing in Fig. 1.

Now, let Y p
i jk represent the yield of fission product p, where

i, j, k represents Zt , Nt − Zt , and En respectively. For example,
Y I135

3,5,1 is entry with i = 3(Zt = 92), j = 5(Nt − Zt = 51) and
k = 1 (En = 0.0253 eV), which represents the 135I yield in
0.0253 eV neutron-induced fission of 235U. For data existing
in the ENDF/B-VIII.0 database, the value of Y p

i jk is filled
with ENDF/B-VIII.0 data. For reactions not found in the
ENDF/B-VIII.0 database, the value is missing. The magni-
tude of the independent yield is very small, even up to 10−18.
Therefore, it is necessary to fill the tensor with the natural
logarithm of the yield, in case this data are too small for
numerical calculation. This approach works well for products
with big variation, allowing the algorithm to capture magni-
tude changes in yield well. But for products with small yield
variation, the difference is even smaller after logarithmization,
and it is difficult for the algorithm to capture their difference.
Therefore, to solve this problem, we analyzed the degree of
dispersion of 851 product yield data under different fission
reactions. In this study the degree of dispersion is defined as
the standard deviation of the natural logarithm values of the
existing yield data:

σ
p

yield =
√√√√ I∑

i=1

J∑
j=1

K∑
k=1

bi jk

[
ln

(
Y p

i jk

) − ln (Y p)
]2

∑I
i=1

∑J
j=1

∑K
k=1 bi jk

, (2)

where bi jk is one for the existing yield data and zero for the
missing yield data, ln(Y p) is the average of natural logarithms
of all existing ENDF/B-VIII.0 data. If σ

p
yield > 1, its magni-

tude varies greatly, and the yield value is logarithmized during
filling; otherwise, the yield value remains linear.

At this point, we obtain 851 3D tensors, in which about
73% of the elements are unmeasured. With the help of the ten-
sor decomposition algorithm [40], the values of unmeasured
elements in each tensor are completed, so as to obtain a yield
tensor without missing values. Since the tensor decomposition
of each product is independent of each other, the superscript
p representing the fission product is omitted in the following
derivation.

B. Bayesian Gaussian CANDECOMP/PARAFAC
tensor decomposition

A detailed introduction to the Bayesian Gaussian
CANDECOMP/PARAFAC (BGCP) algorithm can be found
in Ref. [40]. Here is a brief introduction to the application of
BGCP in this study. In the derivation, bold symbols represent
tensors, matrices or vectors, while nonbold symbols represent
numbers. It is assumed that the uncertainty of each existing
yield data Yi jk follows an independent Gaussian distribution,

Yi jk ∼ N (
Ŷi jk, τ

−1
ε

)
, (3)

where τε is the precision, which is a universal parameter for all
elements. As described in Ref. [40], in order to improve the ro-
bustness of the model, a flexible conjugate � prior is used for
the precision instead of a fixed value, and its distribution will
be updated with the training process. In this study, the original
uncertainty of the training data is not considered. In the further
study, the ability to consider the original error may be realized
by improving the distribution of τε . In real-world applica-
tions the expectation of yield Ŷi jk is unknown and replaced
with the estimated yield, which is the entry of the estimated
tensor Ŷ . The CP decomposition is applied to calculate the
estimation Ŷ :

Ŷ =
r∑

n=1

z(n) ◦ d (n) ◦ e(n), (4)
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where z(n) ∈ RI , d (n) ∈ RJ , and e(n) ∈ RK are respectively
the n-th column vector of the factor matrices Z ∈ RI×r , D ∈
RJ×r , and E ∈ RK×r . In the tensor decomposition algorithm,
a three-dimensional tensor will be decomposed into three
two-dimensional matrices. Z, D, and E are these three two-
dimensional matrices, which contain information in three
dimensions. For example, Z contains the characteristic in-
formation of fission yield changing with the target charge
number.

The symbol ◦ represents the outer product, and thus z(n) ◦
d (n) ◦ e(n) is a rank-one tensor. With this formulation, the CP
decomposition of a tensor can be considered as sum of r rank-
one component tensors, and r is called the CP rank of tensor
Ŷ . The larger the CP rank, the more information the factor
matrix can contain, and the stronger the learning ability of the
algorithm, but it is also more likely to lead to over-fitting. To
prevent the over-fitting, r = 5 is used in this study.

The ith row vector of the factor matrix Z is denoted zi ∈
Rr . Similarly, d j ∈ Rr and ek ∈ Rr are respectively the jth
row vector of D and the kth row vector of E. The prior
distribution of row vector is the multivariate Gaussian:

zi ∼ N [
μ

(z)
i ,

(
�

(z)
i

)−1]
, (5)

where the hyper-parameter μ(z) ∈ Rr expresses the expecta-
tion, and �(z) ∈ Rr×r indicates the width of the distribution.
The likelihood function can be written as

L(Yi jk | zi, d j, ek, τε ) ∝ exp

{
−τε

2
[Yi jk − (zi )

T (d j � ek )]2

}
,

(6)
where � is the Hadamard product.

Then, according to Bayesian theorem, the posterior distri-
bution of zi after observing Yi jk is

L(zi | Yi jk, d j, ek, τε )

∝ L(Yi jk | zi, d j, ek, τε ) Pr (zi )

∝ exp

{
−τε

2
[Yi jk − (zi )

T (d j � ek )]2

}

× N [
μ

(z)
i ,

(
�

(z)
i

)−1]
. (7)

Then the posterior values of the hyper-parameters μ(z) and
�(z) are given as

�̂
(z)
i = �

(z)
i + ��

(z)
i , ��

(z)
i = τε(d j � ek )(d j � ek )T ,

μ̂
(z)
i = μ

(z)
i + �μ

(z)
i , �μ

(z)
i

= (
�̂

(z)
i

)−1(
d j � ek

)
τε

[
Yi jk − (

d j � ek
)T

μ
(z)
i

]
. (8)

The contributions to the hyper-parameter of each existing
yield data are equivalent to each other, and the likelihood
function of all existing yield data is

L(Y | Z, D, E, τε )

∝
I∏

i=1

J∏
j=1

K∏
k=1

(τε )1/2 exp

[
−τε

2
bi jk (Yi jk − Ŷi jk )2

]
, (9)

where bi jk is one for the existing yield data and zero for
the missing yield data. Placing a conjugate � prior to the

precision τε ,

τε ∼ �(a0, b0). (10)

The posterior values of the hyperparameters a0 and b0 are
given as

â0 = 1

2

I∑
i=1

J∑
j=1

K∑
k=1

bi jk + a0,

b̂0 = 1

2

I∑
i=1

J∑
j=1

K∑
k=1

(Yi jk − Ŷi jk )2 + b0. (11)

Based on Eq. (11), each existing yield data contributes to the
increase of 1

2 in â0, and 1
2 (Yi jk − Ŷi jk )2 in b̂0.

In Fig. 2, the above method is illustrated and an example
is given. In brief, for a specific fission product, we denote its
yields in different fission reactions by Ŷ . According to the CP
decomposition, the tensor Ŷ is expressed as sum of r rank-
one component tensors. The rank-one component tensors are
the outer products of the column vector of factor matrices
Z, D, and E. The prior distributions of the factor matrices
are assumed to be multivariate Gaussians. With the existing
observed yield data, the posterior values of the factor matrices
and their distributions can be calculated using Bayesian infer-
ence and iteration. Taking the prediction of 236Np fission yield
induced by 0.5 MeV neutrons as an example, the information
captured by the algorithm comes from the existing data on
the same dimension, the same Zt data (237Np and 238Np data),
the same Nt − Zt data (234U and 238Pu yield data), and all
yield data at the same energy (0.5 MeV). Finally, the predicted
fission yield is reconstituted with the sum of rank-one compo-
nent tensors.

Without considering ternary fission, two fragments are pro-
duced in each fission event, so the sum of all fission product
yields should also be two. However, after tensor reconstruc-
tion, the sum of the yields obtained is not strictly two due
to the precision of numerical calculation, and the yield of
completion is always slightly smaller, such as 1.96, 1.98, etc.
Therefore, it is necessary to perform a certain physical correc-
tion on the value. If a detailed normalization work is carried
out, a variety of constraints and conservations should be con-
sidered. There are other important normalization methods that
conserve charge, mass, and charge parity [42]. In this paper,
this complex normalization method is not fully realized. We
refer to this method and make some simplification. The mass
of the compound nucleus minus the number of prompt neu-
trons is divided by two, and this value is used as the standard
to judge whether the fission products belong to light nuclei or
heavy nuclei, and the yields of light nuclei and heavy nuclei
are normalized to one, respectively. After normalization, the
predicted yield data are finally obtained.

III. RESULTS AND DISCUSSIONS

To quantitatively evaluate the prediction of the FYTD
model, the root mean square error (RMSE) and χ2

N are
used to measure the deviation between prediction and the
ENDF/B-VIII.0 data. For the convenience of presentation,
ENDF/B-VIII.0 is abbreviated as ENDF/B in the following
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FIG. 2. Model framework presentation and example.

text and figures. For a fission reaction, the RMSE is calculated
by evaluating the deviation of the predicted results of its
851 products from the ENDF/B:

RMSE =
√√√√ 1

N

N∑
p=1

[log10(Ŷ p) − log10 (Y p)]2, (12)

where N = 851, Ŷ p represents the FYTD model prediction of
the yield of the pth product, and Y p represents the correspond-
ing ENDF/B data.

Considering most current fission yield prediction studies
and experimental measurements mainly focus on the mass
distribution of the product, in order to compare with other
models and data, as defined in Ref. [26], use χ2

N to measure
the deviation of the predicted value of the mass distribution
from the ENDF/B data:

χ2
N = 1

N

N∑
p=1

(Ŷ p − Y p)2. (13)

Here N = 107, which means the range of statistics is A =
66–172 for a total of 107 mass points.

The evaluation of RMSE and χ2
N have different emphases.

In calculation of RMSE, the magnitude difference between
the predicted value of each product and the ENDF/B data
is considered, which can globally evaluate the accuracy of
magnitude prediction. Therefore it does not ignore the contri-
bution of some products with small yield values. In contrast,
χ2

N focuses more on evaluating the accuracy of peak area
predictions.

A. ENDF/B-VIII.0 data prediction

In this part, the ENDF/B yield data for each fission reac-
tion are sequentially removed and predicted by FYTD model
to systematically analyze the learning and prediction ability
of FYTD model. Table I shows the RMSE of the FYTD
model when predicting each fission reaction. In general, it
can be seen that, after removing the data to be predicted,
the more remaining data in the learning set with the same
dimension as the data to be predicted, the smaller the RMSE.
For example, the RMSE of the prediction data for U, Pu, and
Cm are mostly small, because even if the learning data of a
fission reaction is removed, there are still many existing data
in the same dimension that can capture information during
prediction. For 229Th and 232Th, after removing their data
from the learning set, there are few existing data that can be
referenced when predicting them, resulting in a high RMSE.
It can be found that the largest RMSE occurs at 227Th and
232U. This is because after the data of 227Th was removed, the
data of j = 1 (Nt − Zt = 47) does not exist in the learning set
at all. Therefore, when making predictions, it is completely
impossible to capture the information of this dimension, re-
sulting in unreliable predictions and extremely large RMSE.

This phenomenon reflects a shortcoming of the tensor de-
composition algorithm, which is caused by the characteristics
of tensors. Different from BNN and other models, variables
in FYTD model are not continuous, but discrete. The size
of these variables depends on their position in the tensor. It
should be noted that j = 1 is defined as Nt − Zt = 47 because
all data with Nt − Zt = 47 are placed in the position of j = 1.
If these data are removed, then j = 1 is no longer meaningful
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TABLE I. The RMSE of prediction by the FYTD model compar-
ing with the ENDF/B-VIII.0 data. The blank values mean there are
not evaluation data in the ENDF/B-VIII.0 database.

RMSE 0.0253 eV 0.5 MeV 14 MeV

227Th 2.034
229Th 1.095
232Th 0.942 0.866
231Pa 1.005
232U 1.874
233U 0.598 0.473 0.411
234U 0.659 0.244
235U 0.622 0.552 0.260
236U 0.391 0.271
237U 0.419
238U 0.712 0.683
237Np 0.466 0.612 0.622
238Np 0.607
238Pu 0.768
239Pu 0.429 0.281 0.390
240Pu 0.284 0.326 0.554
241Pu 0.652 0.424
242Pu 0.451 0.482 1.170
241Am 0.560 0.495 0.498
243Am 0.638
242Cm 0.839
243Cm 0.683 0.521
244Cm 0.443
245Cm 0.779
246Cm 0.637

and cannot represent any variable. Therefore, in imputation of
tensor decomposition algorithm, at least one datum is needed
on each dimension to make the dimension meaningful. Only
when this requirement is met can each dimension of the ten-
sor be well defined, and the tensor decomposition algorithm
can correctly capture the multidimensional dependence. Pre-
dictions lacking dimensional information are unreliable and
should be avoided when predicting using FYTD model. And
in all following predictions, all calculations will avoid this
problem.

B. 235U and 239Pu fission yield prediction

In this part, all 235U or 239Pu yield under the three energy
points are set as missing values, and the FYTD model is
used to reproduce the 235U or 239Pu yield data. The predic-
tions will be verified by comparing with ENDF/B-VIII.0 data
and the predictions of the TALYS model and the BNN +
TALYS model taken from Ref. [26]. The BNN + TALYS
model predictions are quite satisfactory regarding the distri-
bution positions and energy dependencies of fission yields.
The prediction can be improved by reinforcement learning.
In addition to giving the mean value of the prediction, BNN
models can also give the associated confidence interval of the
prediction value, which can reasonably estimate the evalua-
tion uncertainty. The uncertainty of the final prediction results
mainly comes from two parts, one is the uncertainty of the
original training data, and the other is the uncertainty given

FIG. 3. 235U fission yield mass distribution predicted by various
models and corresponding ENDF/B-VIII.0 data (red dot), at neutron
incident energies of (a) 14 MeV and (b) 0.5 MeV. The black solid
curves, blue dashed curves, and dash-dotted curves represent the pre-
dictions of FYTD, BNN + TALYS, and TALYS models, respectively.
BNN + TALYS and TALYS predictions are taken from Ref. [26].

by the algorithm. In Ref. [26], the uncertainty given by the
algorithm is considered in BNN model. In further study in
Ref. [38], the BNN model is improved and both the two kinds
of uncertainty can be considered. At present, the FYTD model
can only give the uncertainty of the algorithm, without consid-
ering the uncertainty of the original data, thus it is compared
with the results in Ref. [26]. In addition, JENDL-4.0 data
were used for model training in Ref. [26], and this paper uses
the ENDF/B-VIII.0 data. However, the fission yield data in
JENDL database actually refer to that in ENDF/B database,
the fission yield data in these two database are almost the
same. Both the prediction by the BNN + TALYS model and
the FYTD model are made when all 235U yield data in the
learning set are removed. Thus, it is suitable to compare with
the prediction by the FYTD model.
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TABLE II. The validation errors χ 2
N of various models. Errors for

TALYS, BNN-40, and BNN-40 + TALYS are taken from Ref. [26].

Models Validation χ 2
N (10−5)

TALYS [43] 8.334
BNN-40 [26] 1.640
BNN-40 + TALYS [26] 1.134
FYTD 0.701

Figure 3 shows the predicted mass distribution of the prod-
ucts in 235U fission at 14 MeV and 0.5 MeV. The χ2

N of
predictions are shown in Table II. It can be seen from Fig. 3
that the TALYS model has a deviation from the ENDF/B data
at the heavy nucleus peak and did not predict the neutron
energy dependence of valley yields well. After combining
the trained BNN algorithm, the BNN + TALYS model can
correct these deviations. In general, predictions of BNN +
TALYS model and FYTD model are basically consistent with
the ENDF/B data, but both have some deviations in the valley.
This result proves that, when all 235U yield data in the learning
set are removed, the FYTD model can effectively capture
information from other heavy nucleus yield data and predict
the 235U yield data. At the same time, it can also capture
the neutron energy dependence information of yield data and
predict the variation trend of yield with neutron energy.

Figure 3 is the comparison of mean value predictions, the
uncertainty of predictions is not compared. The uncertainty
of the prediction of FYTD model is not shown in the fig-
ure because it is too small to be visible. This is understandable
to some extent, because the FYTD model can refer to many
existing data in this case. When there are less existing data
available for prediction, the FYTD model will give bigger
uncertainties, as shown in Fig. 7. Different from the relatively

similar mean value predictions, the uncertainty predictions of
BNN + TALYS model and FYTD model differ greatly. In
Ref. [26], BNN + TALYS model can give relatively large
uncertainty. Considering that neither model takes into account
the uncertainty of the original data, the reason for this dif-
ference is unknown. Therefore, we will further discuss this
issue when the original data uncertainty can be considered in
the FYTD model, and then the comparison with prediction in
Ref. [38] will be more meaningful.

Furthermore, the isotope yields in the fissions are also pre-
dicted. To more comprehensively show the difference between
the predicted isotopic yields and the ENDF/B-VIII.0 data
of 851 fission products, Fig. 4 shows the logarithmic error
distribution of the fast neutron-induced fission product yield
of 239Pu and the RMSE of the predicted results. A dotted line
with zero error is marked in the two figures. The closer the dot
is to the line, the smaller the error. The RMSE of the predic-
tion result at this time is 0.395, which is little higher than the
0.281 in Table I. This is understandable, because the learning
set of this prediction result removes all the data of all three
energy points of 239Pu, while the test in Table I only removes
the data of one energy point. It can be seen from Fig. 4(a)
that the greater the yield value of the product, the higher the
accuracy of the prediction. This confirms that the method of
constructing tensors with partial logarithmic and partial linear
coordinates can make nuclide prediction with large yield more
accurate. Figure 4(b) shows the count of errors of different
sizes. It can be seen that the logarithmic error of 98% isotopes
is within ±1. that is, the difference between the predicted yield
and ENDF/B data is within one order of magnitude. And for
88% nuclides, the difference between the predicted yield and
ENDF/B data is within 0.5 orders of magnitude. However,
it can be seen from Fig. 4(a) that 239Pu fast neutron-induced
fission yield data spans 16 orders of magnitude from 10−18

FIG. 4. Denary logarithm of the ratio of FYTD prediction to ENDF/B-VIII.0 data (logarithmic error) for 0.5 MeV neutron-induced 239Pu
fission. Panel (a) is the distribution of errors and panel (b) is the count of errors of different sizes. Each dot represents a product, the ordinate
is the prediction error of the product, and the abscissa is the yield of the product.
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FIG. 5. Fission yield mass distribution predicted by FYTD
model (black solid curves) and corresponding JEFF-3.3 data (red
dots), for (a) 243Am +n at 0.0253 eV and (b) 238Np +n at 0.0253 eV.

to 10−3, this prediction of isotope distribution by the FYTD
model is relatively satisfactory.

C. 238Np, 243Am, and 236Np fission yield prediction

After several verification, it is proved that the FYTD model
has good learning and prediction ability for ENDF/B data. In
this part, we maintain the previous ENDF/B training set un-
changed and predict the data that do not exist in the ENDF/B
database. To verify whether the predicted results are reliable,
the predicted yield data will be compared with the JEFF
database and experimental data.

Taking 243Am and 238Np as examples, their fission yield
data under thermal neutrons is missing in the ENDF/B-
VIII.0 database, but they exist in the JEFF-3.3 database. The
predicted fission yield will be compared with the data in JEFF-
3.3. Figure 5 shows the comparison of yield mass distribution.
It can be seen from Fig. 5(a) that the prediction of 243Am by
the FYTD model is basically within the error range of JEFF
data, the χ2

N is 0.659 × 10−5. Only at the edge A = 80–85,

FIG. 6. Fission yield mass distribution of 236Np +n at 0.0253 eV
predicted by FYTD model (black solid curves) and two sets of corre-
sponding experimental data (red and green dots) from Refs. [44,45].
The inset on the upper left shows the valley areas in logarithmic
scale.

there is a little deviation between the prediction results and
the JEFF data. For prediction of 238Np in Fig. 5(b), there is a
certain deviation at the light nucleus peak. Therefore, the χ2

N
is bigger, reaching 1.797 × 10−5.

From the above two comparisons, it can be seen that the
prediction of the FYTD model for the yield data of 243Am and
238Np under thermal neutrons are consistent with the JEFF
data, but this is based on the existing data. As can be seen from
Table I, 243Am and 238Np have no data under thermal neutrons
but under fast neutrons in ENDF/B database. It is relatively
easy for the FYTD model to predict the data of a target nucleus
at one energy points when the data at other energy point is
known. However, the yield data of some target nuclei are very
scarce, such as 236Np. Its independent yield data are missing
in both ENDF/B and JEFF databases, and there are only a few
experimental measurement data of chain yield. To predict the
yield data of 236Np, it is necessary to capture information from
other target nuclei, which tests the model’s ability to learn and
predict the dependence of target nucleus.

Figure 6 show the mass distribution of fission products
in thermal fission of 236Np measured by the two experimen-
tal groups and the corresponding predictions by the FYTD
model. The panel on the upper left is added to show the valley
areas in logarithmic scale. It can be seen that the predictions
by the FYTD model at heavy nucleus peak agree with the two
sets of experimental data, and there is a slight deviation near
A = 100 at light nucleus peak. As for the valley value, the
predicted magnitude is consistent with the experimental data.
This result proves the ability of FYTD model to learn and
predict the target nucleus dependence of FPY.

D. Prediction of 2 MeV neutron-induced fission yield

The above prediction of this neutron energy dependence
is limited in three energy points. To verify the scalability of
the FYTD model over the incident neutron energy degrees of
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FIG. 7. Fission yield mass distribution for (a) 235U and (b) 229Th
at 2 MeV predicted by FYTD model (black dots), GEF model
(green dots), and corresponding experimental data (red dots) from
Refs. [46,47]. The insets show the valley areas in logarithmic scale.

freedom and predict FPY data under 2 MeV, the only FPY
data under 2 MeV (239Pu +n at 2 MeV) in ENDF/B-VIII.0
database is included in the training set. Then the FYTD model
can predict the 2 MeV FPY data of the remaining heavy nuclei
in the tensor. The reliability of this prediction is verified by
comparison with experimental data and the predictions of the
GEF model. The data of the GEF model comes from the
database GEFY-6.2.

Figure 7 shows the mass distribution of the products in
235U and 229Th fissions at 2 MeV. It can be seen from Fig. 7(a)
that both predictions by the FYTD and GEF models agree
well with experimental data in the peak area. In the valley
area shown in the inset, the prediction by the FYTD model
is slightly closer to the experimental data than that of GEF
model. For predictions for 229Th in Fig. 7(b), no completely
strict experimental data for 229Th at 2 MeV are published.
The experimental data at 1.9 MeV were used for comparison.
According to energy dependence, it can be simply speculated

FIG. 8. Neutron excess as a function of product charge number
for 235U +n fission at different energies, in which the 2 MeV results
are predicted by the FYTD model. Spherical shell Z = 50, N = 82
and deformed shells Z = 44, N = 64 are marked by dashed lines.

that the data at 1.9 MeV should be slightly higher than the
data at 2 MeV in the peak area, and lower in the valley area.
The peak predicted by the FYTD model is just slightly lower
than the experimental value and higher than that predicted
by the GEF model. Overall, the prediction of FYTD model
is basically consistent with the prediction of GEF model and
experimental data.

It is worth noting that, since there is only one existing
2 MeV datum that can be referred to during the prediction,
the prediction uncertainty given by the FYTD model is much
higher than that in the previous prediction, it can be clearly
observed in the Fig. 7 now. In addition, the uncertainty of
229Th is greater than that of 235U, because the existing Th
data is far less than U. In general, the uncertainty given by
the FYTD model at present follows a rule. The less existing
data to learn, the greater the uncertainty of the prediction.

Then neutron excess and proportion of isomeric states is
calculated to further verify the prediction. Figure 8 shows the
neutron excess of 235U fission products induced by neutrons of
different energies. The data of 2 MeV are the prediction by the
FYTD model, and the rest are for ENDF/B data. The positions
of some shells are marked in the figure. The definition of
neutron excess is referred to the Ref. [10] and is defined as
the ratio of the average neutron number to the proton number
of the product. This quantity can reflect the neutron proton
composition of the fission product and the influence of shell
effect on fission. From the data at 0.0253 eV, 0.5 MeV, and
14 MeV in the figure, it can be observed that the neutron
proton composition of the product is greatly affected by the
shells of Z = 50, N = 82 and Z = 44, N = 64. However, with
the increase of neutron incident energy, the excitation energy
of compound nucleus increases, and the curve gradually flat-
tens. This is because the increase of excitation energy will
hinder the influence of shell effect, and the increase of valley
area in yield mass distribution is also caused by this reason.
It can be seen from the figure that the predicted data under
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FIG. 9. Isomeric ratios predicted by FYTD model (black dots)
and GEF model (green dots) for several fission products from
235U +n at 2 MeV.

2 MeV neutron incidence generally conforms to this law. In
most areas, the predictions are between 0.5 and 14 MeV data,
and only deviate at Z = 43. This verification further proved
that FYTD model learn and predict the impact of excitation
energy on yield.

In the FYTD model, the isomeric states of products can
be considered, and the corresponding data can be learned and
predicted. Figure 9 shows the proportion of isomeric states for
128Sb, 130Sb, 131Te, 132Sb, 132I, 133Te, 133Xe, 134I, and 135Xe
produced in fission. It can be seen that, except for 130Sb, the
predictions by the FYTD model are consistent with those by
the GEF model. The above comparison further proved the
ability of FYTD model to learn and predict the multidimen-
sional dependence of FPY. Predictions for fission at 2 MeV
also proves that the FYTD model is not only applicative at
0.0253 eV, 0.5 MeV, and 14 MeV, but also extend to other
neutron energy with the help of data for one target nucleus.

IV. CONCLUSION

This study applied the tensor decomposition algorithm to
the prediction of independent fission product yields. A fission
yield tensor decomposition model was established and applied
to a variety of yield predictions for verification.

The fission yields of 235U and 239Pu are set as missing
values and then predicted. The predicted fission yields of
235U under fast neutron and high-energy neutron incident are

compared with prediction of TALYS and BNN + TALYS
models. The FYTD model can learn and predict the neutron
energy dependence of the yield data, the prediction of FYTD
model agrees well with the prediction of BNN + TALYS
model and ENDF/B-VIII.0 data. The data for 239Pu fission
under fast neutron incident spans 16 orders of magnitude
from 10−3 to 10−18. Comparison between the prediction and
ENDF/B-VIII.0 data for 851 fission products shows that 98%
of them agree with each other within one order of magnitude,
and 88% within 0.5 orders of magnitude.

By comparing the predictions with the data of 238Np and
243Am in the JEFF-3.3 database, as well as the experimental
data of 236Np, the predictive ability of the model for the
target nucleus dependence of the yield data is demonstrated.
The scalability of the yield tensor decomposition model over
the incident neutron energy degrees of freedom is examined.
After adding a set of 2 MeV neutron-induced 239Pu fission
yield data into the yield tensor, the 2 MeV neutron-induced
fission yields of 235U and 229Th are predicted. The prediction
of the FYTD model is basically consistent with the prediction
of the GEF model and experimental data. At the same time,
the prediction and verification of the isomeric states ratio and
neutrons excess of the products further prove the prediction
ability of the FYTD model.

The multiple rounds of comparative verification show that
the FYTD model can capture the complex multidimensional
dependence of fission yields and make reasonable predictions.
This study proves the effectiveness of tensor decomposition
algorithm in FPY study, and provides new ideas and tools for
the evaluation and prediction of FPY data. However, there are
still some unsolved problems. First, the FYTD model can only
give the uncertainty of the algorithm, and does not consider
the uncertainty of the original data at present. Second, FYTD
model handles discrete dimensions such as Z and N-Z well,
but has defects in predicting continuous energy dimensions.
The continuous change of FPY data with energy cannot be
predicted, and the prediction of new energy points depends
on existing data. Finally, the model currently contains fewer
physical images and constraints. These problems need to be
solved in a future study. In addition, the predictions and evalu-
ations of this study are based on the ENDF/B-VIII.0 database.
In the future we will conduct evaluations based on the EXFOR
database.
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