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Energy dependent optical potential for reactions involving 6,7Li projectiles
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The dependence of the optical Cook potential on the bombarding energies of reactions involving 6,7Li
projectiles has been analyzed. It has been found that, for reactions occurring close to or below the Coulomb
barrier, the depth of the imaginary potential should be reduced from the value originally proposed by Cook in
order to achieve better agreement with experimental elastic data. A modified version of the Cook potential is
presented for both lithium isotopes, and its results are compared with those obtained using other existing optical
potentials. Finally, the effects of the corrections made to the original Cook potential are studied in a one-neutron
transfer case, highlighting the importance of using the correct optical potential for different reaction channels.
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I. INTRODUCTION

To properly understand the evolution of our universe from
the beginning until the present day, it is mandatory to de-
termine the abundance of isotopes created during primordial
nucleosynthesis. The hydrogen, helium, and lithium isotopes
created during this process have given rise to a long chain of
nuclear reactions occurring in various spatial environments,
resulting in all of the nuclei observed today. However, a
discrepancy still exists between experimental abundance ob-
servations and the theory for the 6Li and 7Li isotopes, as
noted by [1]. Understanding the mechanisms that these nuclei
undergo may shed some light on this problem.

Concerning to the case of lithium isotopes, the proper com-
prehension of such mechanisms is even more difficult since
these nuclei may undergo the break-up (BU) process, breaking
into an α particle plus a valence particle (2H for 6Li and 3H
for 7Li). The possibility of breaking up opens a series of new
reaction mechanisms which are not observed in other nuclei,
such as the incomplete fusion process [2,3], where just one
of the remaining fragments of the fragmented lithium is fused
with the target while the other is scattered.

Since the nuclear mechanisms of reactions that may oc-
cur when lithium isotopes are involved are different from
those observed in other nuclei, it is expected that the theo-
retical approach required to describe the reactions involving
these isotopes may also be different. Some well-known
examples are the continuum discretized coupled channels
(CDCC) approach [4–8], the adiabatic approximation [9], and
Faddeev-AGS equations [10]. While these methods deal with
different aspects related to the reaction mechanisms that the
lithium isotopes may undergo, they all share the common fea-
ture that their calculations are not easily implemented and are
computationally consuming, demanding a high computational
power. It is also well known that the BU mechanism may
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have some influence on other reaction channels, such as fu-
sion (making a separation between complete and incomplete
fusion) [11] and elastic scattering.

As one may observe, a complete description of the BU
mechanism is extremely difficult, making it quite attractive
to perform calculations using an optical model approach that
requires low computational power and depends on a few pa-
rameters. Besides, such simple calculations are useful from an
experimental point of view, making possible to obtain reliable
estimates of expected cross sections, allowing proper planning
of experiments.

Due to their importance in the astrophysical scenario and
the aforementioned difficulty in describing the reaction mech-
anisms that lithium isotopes may undergo, it is natural to
expect that they have been widely studied and several opti-
cal potentials have been developed over the years trying to
provide a good description of experimental data. Two recent
examples of such potentials are found in Refs. [12,13], which
were developed based on the analysis of a large existing
database of elastic scattering. Among the existing optical po-
tentials for 6,7Li projectiles, the one developed by Cook [14]
is one of the most commonly used until now. Cook developed
an optical potential obtained from almost 70 elastic scattering
data sets. The final potential was represented by a Woods-
Saxon (WS) shape composed by a real and imaginary parts,
with all parameters fixed except the depth of the imaginary
part. This potential has a dependence based solely on the
atomic mass of the target, making it quite easy and accessible
for most users. The author did not find any dependence on
the reaction energy, however, it should be noted that most
of the data used to study the original potential were based
on bombarding energies much above the Coulomb barrier.
Therefore, the main aim of the present work is to reanalyze
this energy dependence from the perspective of new data
acquired since then. Such study is important because some
reaction mechanisms, like the breakup reaction (BU), do not
participate equally at all reaction energies. For instance, in
Ref. [15], it was found that the coupling of the BU effect to
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elastic channel calculations had a much greater impact when
the reaction energy was around the Coulomb barrier. Since it
is well established that 6,7Li may undergo such effect, a new
analysis mainly centered in this energy range makes sense.
Therefore, the nuclear systems used in the present analysis
will only be those for which data on elastic scattering under
the Coulomb barrier are available. This should not be seen as
a weak point of the present work since the region above the
barrier has already been well studied by the original work of
Cook, being unnecessary to revisit studies at this bombarding
energy. From now on, the optical potential resulting from the
systematics described in [14] will be referred to as the Cook
potential.

Many recent works have successfully employed the Cook
potential to study a variety of aspects of nuclear reactions.
For instance, the elastic scattering of the 6Li + 12C reaction
[16] has been analyzed using the Cook potential. In Ref. [17],
the inelastic scattering of the 6Li + 144Sm [18] reaction has
been studied, and it was found that the coupling of inelastic
channels of the target were weakly coupled to the elastic scat-
tering. Furthermore, the same reference also discusses another
use of the Cook potential by using the results obtained from
optical model calculations as a guide for the development of
new reaction theories. Reference [19] uses the Cook potential
to describe the breakup of the unstable isotope 8Li. The use
of the Cook potential to study transfer reactions has been
employed in the 7Li + 124Sn reaction [20]. Finally, the use of
the Cook optical potential to study complete and incomplete
fusion in various reactions has been used in Refs. [21,22].
All of these examples demonstrate that the use of the Cook
potential is still important and is widely used in recent works
that aim to elucidate even more fundamental and microscopic
aspects of nuclear reaction mechanisms.

The work is organized as follows. In Sec. II, the data selec-
tion and the data reduction performed is explained. Section III
and its subsections bring the obtained results for 6Li and
7Li nuclei, as well as their comparison to the original Cook
potential and other optical potentials existing in the literature.
Finally, the application of the energy corrected Cook potential
and its impact in the study of the one neutron transfer pro-
cess is presented in this same section. The conclusions are
presented in Sec. IV.

II. DATA SELECTION AND DATA REDUCTION

Before properly studying the possible effect of energy de-
pendence on the Cook potential, it was necessary to select
data for such a study. It is desirable that the selected elas-
tic scattering angular distributions data have been measured
with targets of different atomic masses, ranging from light to
heavy nuclei. Additionally, the bombarding energy of 6,7Li
projectiles should be distributed in a region from below to
above the Coulomb barrier of each nuclear reaction. This is
particularly important because the Cook potential has been
widely employed and used with several kinds of target nuclei
of various atomic masses, and has proven to work well in most
situations. It is also important to note that the Cook potential
has been obtained mainly using data in the region above the
Coulomb barrier. Therefore, the aim of the present work is to

study the reactions occurring at energies around (and mainly
below) the barrier.

To select the data, a search was carried out on the Ex-
for database [23], selecting existing elastic data of reactions
ranging from energies below the Coulomb barrier to over it.
Since the number of measurements below the barrier is not
very large and many measurements have been performed just
over the barrier, many systems have not been considered in
our analysis.

For the 6Li projectile, reactions with 12C, 27Al, 28Si, 58Ni,
59Co, 64Zn, 90Zr, 112,116,120Sn, 208Pb, and 209Bi targets have
been considered. In the case of 7Li projectile, reactions with
the 12C, 27Al, 28Si, 59Co, 64Zn, 116,120Sn, and 138Ba isotopes
have been considered. In total, 81 angular distributions have
been analyzed to study the energy dependence of the Cook
potential for 6Li projectile, while 62 angular distributions have
been considered for the same study for 7Li nucleus. The list
of used data is displayed in Table I. The Coulomb barrier has
been calculated using the well-known semiempirical formula
Ebarr

c.m. = 0.9Z1Z2

A11/3+A1/3
2

[24], where Zi and Ai are the atomic and

mass numbers of each participating nucleus. One may notice
from Table I that most of the references have been acquired
after the publication of the original work of [14].

The systematic approach used in the present work con-
sisted of verifying the energy dependence of the imaginary
part of the optical potential developed by Cook [14]. There-
fore, all the parameters previously found in Cook’s work are
still valid for 6Li and 7Li. For both nuclei, a Coulomb radius
of RCoul = 1.3 fm should be used. When using a 6Li projectile,
one should adopt the following parameters for a complex
Woods-Saxon shape of the optical potential:

VR = 109.5 MeV, rR = 1.326 fm, aR = 0.811 fm,

rI = 1.534 fm, aI = 0.884 fm, (1)

WI = 58.16–0.328 A + 0.00075 A2 MeV.

One may notice from Eq. (1) that all the parameters are
fixed, except by the imaginary depth of the potential, which
depends on the mass of the target nucleus. A similar form is
observed in the complex potential of 7Li projectile, which may
be visualized in Eq. (2) (once again adopting RCoul = 1.3 fm):

VR = 114.2 MeV, rR = 1.286 fm, aR = 0.853 fm,

rI = 1.739 fm, aI = 0.809 fm, (2)

WI = 40.13–0.341 A + 0.00093 A2 MeV.

The parameters used in Eqs. (1) and (2) are simply those
originally proposed in [14]. After selecting this data, we found
the best fit between elastic scattering data and theoretical
calculations. The calculations used the VR, rR,I , and aR,I values
proposed in Eqs. (1) and (2), just allowing the variation of the
depth of the imaginary potential. The best fit was found by
the reduction of the χ2 value using the code SFRESCO [25].
We visually verified the comparison between data and the
found adjustment one by one. This was necessary because
some data had no error bars for some data points (typically for
the most frontal ones), so the best fit obtained might give a lot
of weight to these specific data points, resulting in a tendency
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TABLE I. Table displaying the Coulomb barrier, bombarding energies, and references for each combination of projectile-target analyzed
in this work.

Projectile Target E barr
lab (MeV) Elab(MeV) References

6Li 12C 5.92 4.5, 5.8, 6.4, 7.5, 9, 11, and 13 [26]
6Li 27Al 8.91 7, 8, 10, 12, 18, and 34 [27,28]
6Li 28Si 9.46 7.5, 9, 11, 13, 16, 20, 21, 25, 34, 60, 75, 90, 210, and 318 [29–35]
6Li 58Ni 14.67 9.9, 11.2, 12.1, 13, and 14 [36]
6Li 59Co 14.07 12, 18, 26, and 30 [37]
6Li 64Zn 15.23 11.8, 12.8, 13.6, 14.8, 16.3, 17.8, 19.8, and 21.9 [38]
6Li 90Zn 18.29 14.9, 16.9, 18.9, 20.9, 24.9, and 29.9 [39]
6Li 112Sn 21.43 21, 22, 23, 30, and 35 [40,41]
6Li 116Sn 21.21 20, 22, 23, 26, 30, and 35 [40]
6Li 120Sn 21.02 19, 24, 27, and 30 [42,43]
6Li 208Pb 29.42 23, 30, 36, 42, and 48 [44]
6Li 209Bi 29.74 24, 26, 28, 30, 32, 32.8, 34, 36, 38, 40, 44, and 50 [45]
7Li 12C 6.10 4.5, 5.8, 9, 11, and 13 [26]
7Li 27Al 9.00 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, and 19 [46–49]
7Li 28Si 9.55 8, 8.5, 9, 10, 11, 13, 15, 16, 21, 26, 36, and 350 [29,50–52]
7Li 59Co 14.05 12, 18, 26, and 30 [53]
7Li 64Zn 15.20 13, 13.8, 15, 16.6, 18.3, and 20.4 [54]
7Li 116Sn 21.08 18, 19, 20, 21, 22, 23, 24, 26, 28, 30, and 35 [55,56]
7Li 120Sn 20.87 20, 22, 24, 26, 28, and 30 [15,57]
7Li 138Ba 22.44 21, 22, 23, 24, 28, 30, and 32 [58]

that describes these points well but does not describe the over-
all angular distribution (especially in the backward region). In
these cases, we slightly modified the depth to obtain the best
visual fit. We needed to make such modifications in eight of
the angular distributions of 6Li projectile and in seven of the
elastic angular distributions of 7Li projectile, which represent
around 10% of the total number of data sets used.

With the final values that led to the best fits of the studied
angular distributions, the next step consisted of studying the
dependence of these values as a function of the bombarding
energies of the projectiles. Since the different systems have
different Coulomb barrier energies (as can be seen from Ta-
ble I), the best way to compare them is to display the reaction
energy as a function of the Coulomb barrier, where values less
than 1 represent bombarding energies below the barrier and
values greater than 1 indicate reactions occurring at energies
above the barrier. To this end, we now introduce the variable
ER, given by

ER = Elab

Ebarr
lab

, (3)

In Eq. (3), Ebarr
lab = ( 0.9ZprojZtarg

A1/3
proj+A1/3

targ
) · ( Aproj+Atarg

Atarg
) MeV is the

Coulomb barrier expressed in the laboratory framework, and
Elab is the impinging energy of the projectile. Equation (3)
allows the comparison among all the systems as they are now
normalized by their own barrier. To obtain the behavior of the
adjusted values and compare them to those obtained by the
Cook potential, it seems is natural to define a variable Wrat as

Wrat = Wadj

WCook
. (4)

In Eq. (4), Wadj is the depth of the adjusted imaginary
potential obtained through the χ2 minimization procedure,

while WCook is the depth of the imaginary optical potential
obtained through the Cook systematics given in Eqs. (1) and
(2). The variable Wrat is defined as the ratio between the best
fit obtained with the adjusted values and the values expected
by the Cook systematics. Therefore, any discrepancy between
the Cook systematics and the depth necessary for the best fit
can be visualized through a plot of Wrat as a function of ER.
This comparison is made for both projectiles in Fig. 1.

One may visualize in Fig. 1 that for bombarding energies
below the region where ER ≈ 2, the Wrat value decreases

FIG. 1. Wrat in function of ER for 6Li (a) and 7Li (b). The elastic
scattering with different targets are associated to a shape and color
code displayed in the figure.
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rapidly (associated to the fact that the usual Cook system-
atics gives a very absorptive potential), indicating a need to
reduce the depth of the potential below this energy region.
In fact, the decrease is so fast that we have opted do display
Fig. 1 in a logarithmic scale on the horizontal axis for a
better visualization. The oscillations observed as the reaction
energies increase are not a big problem since the Cook po-
tential has already been proven to work well in this region
in previous works, besides that, further calculations show that
the obtained elastic angular distributions are not significantly
affected by using the best fit depth or the one obtained from
Cook systematics. It is desirable that the obtained correction
to Cook systematics replicates the depths of Eqs. (1) and (2)
in this energy region. Observing Fig. 1 one will notice that the
amount of data points in the region ER > 5 is much smaller
than the region below and around the Coulomb barrier. This
is not a problem for the results here obtained since this high
energy region has been already well studied in the original
work of [14] and the results there obtained have been used
and proved themselves consistent since then. We would like
to stress once more that the main focus of the present work
is in the region around and below the Coulomb barrier, so it
is natural that more data points for this specific region will be
adopted, besides it, one also should notice that, until this point,
the behavior presented (fast decay followed by a plateau) in
Fig. 1 comes exclusively from the data points themselves, this
way, the correction presented in the next section aims merely
to reproduce such behavior.

III. ENERGY CORRECTION TO COOK POTENTIAL

The final optical potential that best describes the elastic
scattering data of 6,7Li projectiles should be both mass and
energy dependent. While the Cook potential captures the A
dependence, the energy dependence can be incorporated by
adding a multiplicative modulation factor to the WCook(A)
imaginary depth calculated from Eqs. (1) and (2). The energy-
dependent factor can be obtained from the behavior seen in
Fig. 1, and therefore, it will vary as a function of ER(Elab).
Thus, the final corrected imaginary potential (denoted as Wcorr

henceforth) should be consistent with the form

Wcorr (Elab, A) = F (ER) · WCook(A). (5)

Equation (50 provides the final form of the corrected
Wcorr (Elab, A) potential. The modulation function F (ER) is
energy-dependent and ER can be obtained from Eq. (3). The
explicit form of F (ER) will now be determined from the best
fits to the data in Fig. 1. It is important to remember that this
function should exhibit a rapid decay as ER approaches the
Coulomb barrier, and then converge to a plateau close to unity
for energies above it. These features can be expressed mathe-
matically as F (ER) → 1 and Wcorr (Elab, A) → WCook(A).

The first step in the analysis was to determine the ap-
propriate shape for the F (ER) function. It must satisfy two
conditions: it should converge to one as ER increases and have
a rapid decline at low ER values. An exponential function
seems a natural choice for this rapid decline. However, the
problem with using a pure exponential function is that it would
vanish for high ER values, leaving no imaginary potential,

FIG. 2. The RSS of Eq. (6) adjusted to the experimental data as
a function of the N integer value for 6Li (a) and 7Li (b).

which has no physical meaning. To avoid this, a constant term
is added to the final form of the F (ER) function. An attempt to
capture these features was made by proposing the form shown
in Eq. (6):

F (ER) = A1 + A2 · e−(ER )N
. (6)

In Eq. (6), A1 and A2 are adjustable parameters, and N is an
integer number that will be varied to obtain the best fit to the
data. Other forms of Eq. (6), with more adjustable parameters,
have been tested but resulted in worse adjustments to the data.
Examples of these tentative functions include F (ER) = A1 +
e

A2

E
A3
R and F (ER) = A1 + A2 · e

A3
EN

R , among others. Therefore,
the simpler form of Eq. (6) was kept, and the value of the N
integer parameter was studied. Another advantage of this form
is that Eq. (6) is linear in the adjustable parameters A1 and
A2, which helps to guarantee that the general minimum value
of the parameters is obtained when performing the minimum
square method. In order to maintain the linearity of the F (ER)
function, the N parameter in Eq. (6) was kept as an integer,
instead of allowing it to be adjusted as a real number. The
best fit for the integer value of N for each lithium isotope
was obtained by studying the variation of the residual sum
of squares (RSS) of each fit as a function of the N parameter.
This study is shown in Fig. 2.

The RSS is defined as RSS = ∑
(W exp

rat − F (ER))2, which
gives a measure of the discrepancy between the experimental
W exp

rat values and the N-dependent F (ER) estimation from the
model. The function that best fits the data is the one with the
lowest RSS value. In this study, N = 3 was obtained for 6Li
projectile, while N = 4 was obtained for 7Li. The values for
A1 and A2 parameters that give the best fit to data are shown
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TABLE II. Table showing the best fits obtained from Eq. (6) for
each projectile. The adopted N integer values were extracted from
Fig. 2. The A1 and A2 parameters are those of Eq. (6).

Projectile N A1 A2

6Li 3 1.021(27) −0.659(85)
7Li 4 1.116(36) −1.35(13)

in Table II, while the adjusted functions for each projectile
can be visualized in Fig. 3 (solid red lines) compared to
the experimental data (black circles). The form of Eq. (6)
is used instead of a linear polynomial form due to its sim-
plicity regarding the low number of adjustable parameters.
If one desires to use a polynomial form, one should make
the adjustment using a high-order polynomial, which implies
a large number of variables to be adjusted. For example, in
the 6Li case, a polynomial of order 6 (composed of seven
adjustable parameters) should be implemented if one desires
to have a similar RSS value when compared to the form
of Eq. (6).

From Fig. 3, it is observed that the proposed function fits
the experimental data well, displaying a rapid fall for Wrat at
low ER values and converging to one as ER becomes larger.
In other words, the final potential converges to the Cook
potential for higher reaction energies. One should note that
the shape adopted in Eq. (6) with the parameters displayed in
Table II could imply negative values for the F (ER) function
for low values of ER, which has no physical meaning. One
should keep in mind that the present correction for the Cook
potential is obtained based on the available data present in

FIG. 3. Wrat in function of ER for 6Li (a) and 7Li (b). The black
circles are the experimental data for all targets and the solid red lines
display the best fit of Eq. (6) using the parameters shown in Table II.

the literature, which mainly covers the region over ER > 0.7.
Thus, more data are needed to obtain a more general function
to study other regions of the function. The results obtained
here should be used in the region over ER ≈ 0.7. Even though
the scattering at low energies is expected to be essentially
Rutherford, a small contribution to the imaginary potential
is expected since some dissipative processes still may occur
(like the complete and incomplete fusion) even with lower
probability.

One may argue that introducing a variation in the imag-
inary potential implies that variations in the real part of the
optical potential should also be introduced. Effects like the
break-up threshold anomaly [59] have already demonstrated
that such dependence could occur. However, the amount of
available data in the literature and the reaction energy at which
they have been measured do not allow us to perform such a
study. In Ref. [59], the break-up threshold anomaly has been
studied in the 6Li + 208Pb reaction, and the results show that
for the ER > 0.7 region, a minor alteration in the real part
of the potential was necessary. The data used in the present
analysis are for this same energy range; thus, it is expected
that no modifications in the real potential are necessary for
the present work.

To summarize, in order to obtain the corrected potential,
one needs to follow the routine: (1) obtain the original Cook
potential using Eqs. (1) or (2); (2) calculate the ER value,
using Eq. (3) and the Ebarr

lab discussed in the text; (3) calculate
the F (ER) function (adopting the parameters of Table II); and
(4) obtain the final optical potential via Eq. (5). In the next
section, a comparison of this new optical potential with some
of the existing potentials in literature is presented.

A. Comparison with other optical potentials

In this section, the elastic scattering calculations obtained
with the new energy-corrected optical potential proposed in
this work are compared with those obtained with the original
Cook potential of Ref. [14] and with the optical potentials
proposed by Xu et al. of Refs. [12,13]. Such comparisons are
the main aim of this section. Figures 4–7 bring the comparison
of the elastic scattering data for several systems with the
optical model calculations using the Cook potential (solid blue
line), the energy-corrected potential presented in this work
(dashed red line), and the potentials proposed by Xu et al.
(dotted green line). The figures tried to display the compar-
isons comprising different mass numbers of the targets, as also
different bombarding energies relatively to the barrier, this
way, each system is analyzed in two different energies, one
below (ER < 1) and one above (ER > 1) the barrier, whenever
possible.

Figures 4 and 5 show a comparison of the three theoretical
calculations described before with experimental data for the
6Li projectile. The panels on the left side of the figures display
the comparison of calculations to experimental data for 27Al,
28Si, 58Ni, 64Zn, 90Zr, 112Sn, 116Sn, 120Sn, and 209Bi targets
with bombarding energies below their respective Coulomb
barriers. On the right side of Fig. 5, the same comparison is
made for energies above (or close to) the barrier. An overall
analysis of both figures indicates that the energy-dependent
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FIG. 4. Elastic angular distribution of 6Li projectile with 27Al
(E = 7 and 10 MeV), 28Si (E = 9 and 13 MeV), 58Ni (E = 11.2
and 14 MeV), and 64Zn (E = 12.8 and 16.3 MeV) targets. The solid
blue line brings the Cook theoretical calculations, the dashed red line
brings the results calculated with the optical potential proposed in
this work, while the dotted green line brings the results obtained with
the potential proposed in Ref. [12]. The horizontal scale is the same
for all the panels. The vertical scales of the left panels are shown to
the left of them, while the scale values for the right panels are shown
in the right side of them.

Cook potential proposed in this work provides better results
for reactions occurring below the Coulomb barrier (ER < 1).
Particularly, for the 27Al, 58Ni, 64Zn, 112Sn, 116Sn, and 120Sn
systems, the new potential provides a better description of
experimental data below the barrier when compared to the
one proposed by Xu et al. and the original Cook potential.
From both figures, it can also be observed from the right
panels of both figures that the new potential rapidly converges
to the results obtained with the original Cook potential, as
desired when the form of Eq. (6) was proposed. Regarding
energies above the barrier, some systems show that the new
and the original Cook potential have a better agreement with
data (i.e., 27Al and 64Zn), while for the 58Ni, 120Sn, and
209Bi systems, the potential proposed in Ref. [12] provides a
better agreement. One should notice that the small sample of
systems analyzed in the present work (when compared to the
literature) does not allow one to point if there is a particular
potential that is superior to the others in describing the elastic
scattering of systems involving the 6Li projectile. To give a
quantitative answer, one needs to make a comprehensive study
including the maximum number of systems available in the
literature, over a vast energy range. This is clearly not the aim
of the present work and will not be done. However, from the
analysis of the systems displayed in Figs. 4 and 5, we have
an indication that the energy correction to the Cook potential

FIG. 5. Elastic angular distribution of 6Li projectile with 90Zr
(E = 14.9 and 24.9 MeV), 112Sn (E = 21 and 35 MeV), 116Sn (E =
20 and 35 MeV), 120Sn (E = 19 and 27 MeV), and 209Bi (E = 24
and 36 MeV) targets. The solid blue line brings the Cook theoretical
calculations, the dashed red line brings the results calculated with the
optical potential proposed in this work, while the dotted green line
brings the results obtained with the potential proposed in Ref. [12].
The horizontal scale is the same for all the panels. The vertical scales
of the left panels are shown to the left of them, while the scale values
for the right panels are shown in the right side of them.

provides a better description of data at energies below the
Coulomb barrier.

The overall effect of the new optical potential (when
compared to the one originally proposed by Cook) consists
in enhancement of the elastic angular distribution for the
bombarding projectile energies below the Coulomb barrier.
It occurs because the multiplicative F (ER) function gives a
number smaller than 1 in this energy range, causing the de-
crease of the imaginary potential depth. A possible qualitative
explanation for the necessity of decreasing the magnitude of
the imaginary potential depth lies in the fact that, for energies
below the barrier, the reduction of the number of reaction
channels is expected.

Figures 6 and 7 show a comparison between the three the-
oretical calculations described earlier and experimental data
for 7Li projectiles. The figures display elastic angular distri-
butions for reactions with 12C, 27Al, 28Si, 59Co, 64Zn, 116Sn,
120Sn, and 138Ba targets. Similar conclusions can be drawn
for the 7Li isotope as were obtained for 6Li. Once again, for
energies below the Coulomb barrier, the new proposed po-
tential tends to give a better description of experimental data,
especially for 27Al, 28Si, 59Co, 64Zn, 116Sn, and 120Sn targets.
The main difference observed for the 7Li projectile (compared

044604-6



ENERGY DEPENDENT OPTICAL POTENTIAL … PHYSICAL REVIEW C 107, 044604 (2023)

FIG. 6. Elastic angular distribution of 7Li projectile with 12C
(E = 5.8 and 13 MeV), 27Al (E = 7 and 9 MeV), 28Si (E = 8.5
and 11 MeV), and 59Co (E = 12 and 18 MeV) targets. The solid
blue line brings the Cook theoretical calculations, the dashed red line
brings the results calculated with the optical potential proposed in
this work, while the dotted green line brings the results obtained with
the potential proposed in Ref. [13]. The horizontal scale is the same
for all the panels. The vertical scales of the left panels are shown to
the left of them, while the scale values for the right panels are shown
in the right side of them.

to 6Li) is that the three calculations here performed appear to
give very similar results for energies above the Coulomb bar-
rier. Although a quantitative comparison of the potentials and
how they fit experimental data would yield more conclusive
results, the analysis of Figs. 6 and 7 indicates that the new
energy-dependent potential proposed in this work provides
a better description of data in the energy region below the
Coulomb barrier.

When one is dealing with the 7Li projectile, besides the
possibility of the break up for this isotope it is also observed
that such nucleus has an excited state with a reasonably low
excitation energy, which usually has an important role in the
correct description of the reaction mechanisms (as discussed
in [15]). The 3/2− ground state (g.s.) is separated from the
1/2− excited state just by 477 keV, this way, such channel
may be easily acquired when one performs nuclear reaction
experiments. Typically, one couples the inelastic excitation of
projectile/target to the coupling scheme and uses the Cook
potential as the optical potential. This procedure is correct
when the existing coupling between the elastic and inelastic
channels is negligible, which is usually true concerning to the
inclusion of inelastic states of target, however, the inclusion
of the 1/2− excited state 7Li typically has a great impact in
calculations, this way, it is expected that the use of the original
optical potential will cause a double counting, turning data

FIG. 7. Elastic angular distribution of 7Li projectile with 64Zn
(E = 15 and 18.3 MeV), 116Sn (E = 18 and 23 MeV), 120Sn (E = 20
and 24 MeV), and 138Ba (E = 22 and 30 MeV). The solid blue
line brings the Cook theoretical calculations, the dashed red line
brings the results calculated with the optical potential proposed in
this work, while the dotted green line brings the results obtained with
the potential proposed in Ref. [13]. The horizontal scale is the same
for all the panels. The vertical scales of the left panels are shown to
the left of them, while the scale values for the right panels are shown
in the right side of them.

and calculations incompatible to each other. As the g.s. of
the 7Li projectile has a large spin and the nucleus presents
a high static quadrupole moment, it is also expected that the
reorientation effect [60–62] of the g.s. could contribute to the
correct theoretical description of the elastic scattering angular
distribution. This way, even that the present work furnishes a
good description for elastic data below the Coulomb barrier,
if one wants to perform theoretical calculations explicitly in-
cluding the reorientation effect of the g.s. and the first excited
state of 7Li projectile, modifications in the optical potential
adopted must be performed.

B. Corrected potential used in a transfer case

Up until this point, we have mainly focused on how the
correct choice of potential reflects on the elastic channel of
any given reaction. As is well known, the elastic channel
usually is the one which more influences the remaining pro-
cesses, this way, the correct description of it may affect all
the remaining reaction channels. In order to verify this point,
we performed coupled reaction channel (CRC) calculations
to explore the influence that an optical potential may present
in the other reaction channels. We used the one-neutron
stripping data of the 7Li + 120Sn → 6Li + 121Sn reaction at
20 MeV from Ref. [15]. The experimental data consist of the
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FIG. 8. The upper panel represents the elastic data of 7Li + 120Sn
reaction with bombarding energy of 20 MeV being compared to CRC
calculations using the original Cook potential (solid red line) and the
modified Cook potential proposed by this work modifying just the
entrance partition (dashed green line) as well as both partitions (solid
blue line). The lower panel displays the same calculations compared
to one neutron stripping transfer channel (6Li + 121Sn). The transfer
data (as also the displayed curves) are composed by the sum of
three low-lying states of 121Sn (3/2+ g.s., 11/2− at 0.006 MeV,
and 1/2+ with 0.060 MeV), since they could not be experimentally
distinguished.

sum of three low-lying states of 121Sn (3/2+ ground state,
11/2− at 0.006 MeV, and 1/2+ with 0.060 MeV). The CRC
calculations included only the elastic channel in the entrance
partition and the aforementioned states of the final partition.
The optical potentials included in the initial and final parti-
tions were the Cook potential with no corrections (displayed
in Fig. 8 as the solid red line), as well as the Cook potential
with the F (ER) function using parameters from Table II of
the present work to correct only the entrance partition (dashed
green line), as well as the entrance and the final partition
(solid blue line). The spectroscopic information required to
describe the one-neutron transfer was the same as that used in
the original work [15] (Table II). The CRC calculations were
performed using prior representation with a complex remnant.
The valence neutron interaction with both cores was de-
scribed by a real Woods-Saxon potential (reduced radius ro =
1.25 fm and diffuseness a = 0.75 fm), whose depth was ad-
justed to reproduce the neutron-core binding energy. A spin-
orbit interaction with similar parameters was also included.

From the upper panel of Fig. 8, one may observe the
already discussed importance of adopting the corrected Cook
potential and how it affects the proper description of elastic
data. Since there is almost no difference between the calcu-
lations including the correction just in the entrance partition
(dashed green line) from that including it in both of them
(solid blue line), one may argue that the elastic channel is
sensible mainly to the first optical potential. The lower panel
shows the importance of also adopting such correction of
the optical potential on other reaction channels. One may

observe that the use of a mistaken potential may has some
influence directly in the proper description of the transfer
processes, where the corrected potential describes the one
neutron transfer data better than the noncorrected potential,
which clearly tends to underestimate the transfer cross sec-
tions. The observed difference between the solid red line and
the dashed green line shows once again the importance of
properly describing the elastic channel and how it affects the
transfer reaction. The solid blue line shows that the proper
description of the final partition optical potential also plays a
relevant role in the transfer reaction.

This example illustrates how the use of an incorrect po-
tential could lead to erroneous conclusions about the obtained
spectroscopic information. As discussed in Ref. [63], simi-
lar results can be obtained by changing other spectroscopic
parameters, such as the nuclear radius adopted or the theo-
retically calculated spectroscopic amplitudes. Therefore, this
result emphasizes the importance of choosing the appropriate
optical potential.

IV. CONCLUSIONS

The present work has made an extensive study of the avail-
able data on literature in order to study a possible dependence
on energy of the Cook potential for 6,7Li projectiles. The
original Cook potential has adjusted the parameters of two
WS potentials (one real and the other imaginary) to the ex-
perimental data. Originally, five of these parameters have been
kept constant, finding a dependence of the imaginary potential
depth with the target mass. The present work proposed to
correct such depth by a function F (ER), which depends on
the bombarding energy of the projectile. After selecting the
available data in a large reaction energy range, the best fit
to the elastic scattering has been obtained by the use of a
minimization χ2 routine (SFRESCO code) in which the imag-
inary potential depth was the only parameter allowed to be
varied. The ratio of the best fitted depth with the original value
proposed by the Cook potential has been shown in function of
a ER parameter, which is the ratio of the projectile bombarding
energy to the Coulomb barrier of each system. This indicated
a modulation function to the imaginary potential depth, whose
typical behavior consisted in a rapid rise for the region ER <

1, followed by a plateau which tends to original Cook original
potential.

The comparison of the results obtained with the new en-
ergy dependent optical potential proposed in this work with
those obtained using the original Cook potential and the ones
proposed by Xu et al. in Refs. [12,13] indicates that this
new potential furnishes a better description of experimental
data in the energy range of bombarding energies below the
Coulomb barrier compared to the others. In the energy range
above the Coulomb barrier, it seems that the optical potential
proposed by Ref. [12] gives a better description of data of
6Li projectile, while all the potentials give similar results for
reactions involving 7Li projectile.

Finally, the last section of this work shows how the cor-
rect choice of the adopted optical potential is mandatory
even when one desires to study other channels than not the
elastic itself. One example of the 7Li + 120Sn → 6Li + 121Sn
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transfer reaction (with bombarding energy of 20 MeV) has
been shown and the wrong description of the optical potential
resulted in an underestimation of the one neutron stripping
cross sections. Such error in this description could lead to
errors of the interpretation of data, as also of the spectroscopic
information contained in them.
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