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Measures of complexity and entanglement in many-fermion systems
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There is no unique and widely accepted definition of the complexity measure (CM) of a many-fermion wave
function in the presence of interactions. The simplest many-fermion wave function is a Slater determinant. In
shell-model or configuration interaction (CI) and other related methods, the state is represented as a superposition
of a large number of Slater determinants, which in the case of CI calculations reaches about 20 billion terms
[Johnson, arXiv:1809.07869]. Although in practice this number has been used as a CM for decades, it is ill
defined: it is not unique, and it depends on the particular type and the number of single-particle wave functions
used to construct the Slater determinants. The canonical wave functions and/or natural orbitals [Löwdin, Adv.
Phys. 5, 1 (1956); Löwdin and Shull, Phys. Rev. 101, 1730 (1956); Bardeen et al., Phys. Rev. 108, 1175 (1957);
N. N. Bogoljubov, Il Nuovo Cimento 7, 794 (1958); Valatin, Il Nuovo Cimento 7, 843 (1958); de Gennes,
Superconductivity of Metals and Alloys (CRC Press, Boca Raton, FL, 1999); Ring and Schuck, The Nuclear
Many-Body Problem, 1st ed. (Springer-Verlag, Berlin, 2004)] and their corresponding occupation probabilities
are intrinsic properties of any many-body wave function, irrespective of the representation, and they provide
a unique solution to characterize the CM. The non-negative orbital entanglement entropy, which vanishes for a
Slater determinant, provides the simplest CM, while a more complete measure of complexity is the entanglement
spectrum. We illustrate these aspects in the case of a complex nonequilibrium time-dependent process, induced
nuclear fission described within a real-time density functional theory framework extended to superfluid systems,
which can describe simultaneously the long-range and the short-range correlations between fermions. The orbital
entanglement entropy of the fissioning nucleus illustrates the localization mechanism of the many-body wave
function in Fock and/or Hilbert space. The (minimal) number of Slater determinants required to represent such
a complex many-body wave function with a well-defined number of particles in the case presented here is about
10500. The realistic case of the highly nonequilibrium nuclear fission process illustrated here is equivalent to a
system of 23.328 × 109 interacting quantum spin-1/2 particles, a very large system for the study of quantum
entanglement.

DOI: 10.1103/PhysRevC.107.044318

I. INTRODUCTION

Only two years after Schrödinger [1] published his
equation, the representation of the wave functions for an
interacting many-body system became a question of major
concern. For a system of N spinless particles in three dimen-
sions such a wave function would require (n3

s )N−1 complex
numbers, where ns is the number of discrete spatial points
in one dimension. The smallest spatial separation between
two spatial lattice points l determines the maximum momen-
tum cutoff � = π h̄/l . The simplest solution suggested almost
a century ago for a system of many fermions was to use
the Hartree-Fock (HF) approximation [2–5] and its later ex-
tension, the Hartree-Fock-Bogoliubov (HFB) approximation
[6–10], which in three dimensions and in the absence of any
symmetry is still numerically challenging even nowadays. At
the same time, short-range correlations (SRCs) are critical
in obtaining ab initio accurate descriptions of many-fermion
systems. In the case of the dynamics of many-fermion systems
out of equilibrium this is still a question which awaits to be
fully addressed microscopically [11].

For fermion systems the elementary building block in
constructing a many-fermion wave function is the Slater deter-
minant, also known as the HF wave function. In the presence

of pairing correlations the generalized Slater determinant, the
HFB many-body wave function, plays a similar role, and often
in the case of nuclei it requires a particle projection. Despite
the short-range and strong character of the interactions be-
tween nucleons, many single-particle and collective properties
of nuclei can be calculated quite successfully using mean-
field theory approaches such as HF and HFB, Landau-Migdal
theory for Fermi liquids, shell-model calculations, etc. In all
these approaches a rather limited number of single-particle or-
bitals are typically used. When pairing correlations are present
the Fermi surface is diffuse and the number of single-particle
orbitals needed in order to describe the nuclear masses and the
low-energy excited states in most applications is at most about
twice as large as the total particle number [10,12].

For decades in nuclear physics the correlations have typ-
ically been treated with rather low-momentum cutoffs �

and their effects have been rolled into effective (not always
synonymous with accurate), mostly phenomenological, low-
energy interactions. The typical argument used in calculations
of open-shell nuclei was that the energy of the ground state
converged quite rapidly as a function of the chosen cutoff.
This is expected in the case of a variational approach, since
errors of order O(δ) in the many-body wave function lead to
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errors O(δ2) in the energy near the minimum. Anderson [13],
in discussing the treatment of electronic systems, character-
ized this kind of situation as the “quantum chemists’ fallacy
no. 1 and 2,” of which even Wigner was partially guilty, as
“you may get pretty good energetics out of a qualitatively
wrong state.” The perfect example is the case of a super-
conductor, in which, despite the fact that the contribution
to the ground-state energy from the condensation energy is
practically negligible, meaning the ground-state energy can
be evaluated with sufficient accuracy in the absence of pairing
correlations, the wave function with pairing correlations leads,
however, to qualitative changes, which otherwise would have
been completely overlooked.

The Slater determinants form a complete set of N-particle
many-body states. The number of Slater determinants in an
expansion of a many-fermion wave function has a very strong
dependence on the size of the single-particle (HF) basis set.
In configuration interaction (CI) or shell-model calculations
[14], which are used to construct the ground state and a few
excited states only, the dimension of the Hamiltonian matrix
to be diagonalized, before any symmetry restrictions are im-
posed, is

Nsp!

N!(Nsp − N )!
≈

(
Nsp

N

)N

, typically � (
n3

s

)N−1
, (1)

where Nsp is the size of the adopted single-particle Hilbert
space. Notice that Nsp is the only adjustable parameter in
Eq. (1) for a given particle number N . Similar arguments apply
also for other many-body techniques such as coupled cluster
approaches, the generator coordinate method, and certain im-
plementations of the quantum Monte Carlo method. Does this
number accurately describe the complexity of a CI many-body
wave function? In the case of time-dependent processes it
is well known that the dynamics are governed in general by
statistical factors, namely, by the number of accessible states
available for the system to evolve into for ergodic systems.
As a result, underestimating the number of basis states could
lead to inaccurate results, while overestimating this number
can lead to unnecessary calculations. However, equilibration
times might be significantly longer than specific charac-
teristic times, in which case statistical arguments are not
applicable.

The main questions we address in this work are the follow-
ing:

(i) Does a useful measure or measures of the complexity
of a many-body wave function exist?

(ii) Does a minimal set of Nsp single-particle states exist
and what are its properties? This question received an
answer many years ago [15–19].

(iii) How can one construct such a basis set easily?
(iv) Does a measure or measures of complexity of a

many-body wave function shed any new light on
nonequilibrium processes, where (local) thermaliza-
tion has not had enough time to occur?

More than 70 years ago Levinger [20] invoked the
quasideuteron model and the short-range character of the
proton-neutron correlations in order to describe the nu-

clear photoeffect. Using realistic nucleon interactions, various
authors observed that very-high-momentum single-particle
states are occupied with significant probability [21,22]. As
in the case of Levinger’s quasideuteron model, the pres-
ence of the SRCs, reflected in the significant single-particle
probabilities of high-momentum states, were crucial in order
to describe the results of the (e, e′ p) experiments [23,24],
which showed that deep single-particle levels were occu-
pied with an unexpectedly low probability [22,25], nsp ≈
0.6. Brueckner’s framework was a parallel approach fa-
vored for decades [26,27] and used to include, although
not explicitly, the role of SRCs in the mean-field treatment
nuclei.

There is a rather wide range of observables that cannot
be reproduced accurately in calculations in mean-field-type
of treatments. One example is the nucleon momentum
distribution, which has been studied theoretically and ex-
perimentally in cold-atom and nuclear systems for a long
time [21–25,28–44], confirming Tan’s [45–47] prediction
made for systems with zero-range interactions that the high-
momentum distribution behavior nk = C/k4 is in fact a
generic feature of strongly interacting many-fermion systems,
and thus a qualitative and quantitative feature of such systems
both in and out of equilibrium. The important conclusion
of many studies of nuclear systems was that approxi-
mately 20% of the spectral strength is found for momenta
k > kF .

In current studies of the masses and low-energy spec-
tra of nuclei the role of SRCs is captured in a reduced
space of single-particle orbitals using renormalization group
techniques [48,49], and the SRCs never appear explic-
itly. Tropiano et al. [50,51] demonstrated recently how
Levinger’s quasideuteron model and the effect of SRCs on
the nucleon momentum distribution can be reproduced at a
low-momentum resolution using the similarity renormaliza-
tion group (SRG) approach [48,49]. Within the SRG approach
the scattering properties and energy spectra of very light nu-
clei are reproduced with impressive accuracy, although the
quality degrades with increasing atomic mass [52], likely due
to a simpler theoretical treatment of SRCs at only the next-to-
next-to-leading-order level [53]. However, the simplification
provided by the SRG approach in calculating ground-state and
low-energy excited-state properties results in a rather complex
and opaque structure of various observables, in particular
the nucleon momentum distribution, which become complex
many-body operators with the result that “the best choice of
scale may not be so clear for analyzing SRC experiments
because of the tradeoffs” [50]. The extension of the SRG
approach to time-dependent nonequilibrium phenomena is yet
to be realized. The dynamics are controlled by gain and loss in
the case of kinetic equations, and therefore by the availability
of final states in particular. Then, it is not obvious whether
that SRG approach, which operates in a limited single-particle
space, could describe time-dependent phenomena, such as
fission or many-nucleon transfer reactions in heavy-ion col-
lisions. Many outstanding issues, concerning the relevance
of the SRCs in low-energy nuclear physics in particular, re-
maining to be addressed in the near future were discussed in
recent papers [54,55]. As Miller [56] notes, the three scales
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relevant to low-energy nuclear physics—size of nuclei, aver-
age separation between nucleons, and the nucleon size—are
basically of the same order of magnitude, and thus there is
effectively no scale separation and the effects of SRCs can be
measured [57].

In Secs. II and III we describe the general properties of
the canonical wave functions, which are needed to evaluate
the canonical occupation probabilities and the orbital entan-
glement entropy, which provide measures of the complexity
and of the many-body wave functions. The complexity of a
many-body wave function can be characterized by the de-
gree of nonsimilarity to a Slater determinant. Canonical wave
functions were introduced a long time ago, in connection
with describing pairing correlations, as the eigenvectors of
the one-body density matrix. The mathematical framework
for describing superfluid fermionic systems was formulated
in terms of quasiparticles by Bogoliubov [7] and Valatin [8].
Zumino [58] and Bloch and Messiah [59] showed that one
can introduce a particular set of quasiparticles, with similar
properties to the set used by Bardeen et al. [6] (BCS), the
canonical set of states (see also Ref. [10]). Löwdin [15],
Löwdin and Shull [16] introduced the natural spin orbitals
as the eigenvectors of the one-body density matrix. The
definitions of the canonical wave functions and the natural
orbitals are mathematically identical, yet have been used in
different contexts, particularly extensively in chemistry [19],
but lately also in nuclear physics [60–73], often without
realizing that they represent the same complete set of or-
thonormal single-particle orbitals, namely, the canonical set of
states.

It has been proven that if one intends to represent a
correlated many-body wave function as a sum over Slater
determinants, the natural orbitals or, in other words, the
canonical wave functions set is the optimal set, namely, the
smallest-size single-particle basis set [15–19]. Mathemati-
cally it is obvious that the canonical wave functions or the
natural orbitals form a full orthonormal set, but as far as we
can judge from the literature many properties of this set were
never studied, as only a small reduced number of canonical
wave functions was ever extracted numerically and only some
properties of this reduced set were discussed. We show here
that the canonical wave functions have some very distinctive,
even striking and peculiar, properties which were never dis-
cussed in literature.

We demonstrate that the canonical wave functions are ba-
sically of three types: (i) a subset similar to usual mean-field
single-particle wave functions; (ii) a subset of wave func-
tions corresponding to occupation probabilities nk ≈ C/k4,
which oscillate much faster than the mean-field type of single-
particle wave functions, are fully localized inside the system,
have rather small occupation probabilities, and are typically
ignored in evaluation of the ground-state properties of nuclei;
and (iii) a subset of canonical wave functions localized outside
the system and which play an insignificant role in defining
physical properties of the system. The first subset has a size
comparable to the particle number. The size of the second
subset, not explicitly discussed in literature, is typically an
order of magnitude larger in size than the first subset (or even
larger for small spatial resolutions) and its size is determined

by the level of spatial resolution adopted or the momentum
cutoff

� = π h̄

dx
, (2)

which is defined by the adopted spatial resolution dx = l .
Only canonical wave functions of types (i) and (ii) are relevant
in order to accurately evaluate properties of a many-body
system and in particular SRCs and the entanglement or the
Boltzmann and Shannon entropies. We will show that the
combined number of states of types (i) and (ii) is approxi-
mately given by phase space volume

g
4π

3
r3

0A
4π

3
�3 1

(2π h̄)3
= 8π2

9

( r0

dx

)3
A, (3)

where g = 4 is the spin-isospin degeneracy factor and r0 =
1.2 fm for nuclei. In Sec. IV we discuss the definition of the
orbital entropy for a system of indistinguishable particles.

In Sec. V we illustrate the insight the time evolution of the
entanglement or Boltzmann entropy can provide in the case of
quantum nonequilibrium processes, specifically induced nu-
clear fission, and demonstrate that the entanglement entropy
and therefore the size of the physically relevant canonical set
has a nonmonotonic time dependence, of similar origin as the
widely discussed many-body localization in one-dimensional
(1D) systems [74–89]. In the dynamics of isolated systems
the evolution of the entanglement entropy plays the role of
thermodynamic entropy for local observables [90–92]. The
manner in which the case of induced fission is described theo-
retically is similar to what in the condensed matter literature is
called quenching, when a system is prepared as the stationary
state of a nuclear Hamiltonian subject to external constraints
and then it is evolved in time under a pure Hamiltonian
with no constraints. The realistic case of the highly nonequi-
librium nuclear fission process illustrated here is equivalent
to a system of 8 × (NxNyNz )2 = 8 × (302 × 60)2 = 23.328 ×
109 interacting quantum spin-1/2 particles. This nuclear sys-
tem is likely by orders of magnitude the largest system
where quantum entanglement has been studied so far in
literature.

The experience gathered during more than a decade of
studying nonequilibrium processes in nuclear systems and
cold-atom systems seem to point towards a rather unexpected
emerging scenario. It was demonstrated that pairinglike cor-
relations can emerge at very large excitation energies, when
they are not supposed to exist [93–97]. One can partially
understand such behavior using the semiclassical Nordheim
[98] and Boltzmann-Uehling-Uhlenbeck [99] approach to
quantum kinetic phenomena, which was recently extended
in a pure quantum framework [11]. The neutron-neutron and
proton-proton collisions are captured in a time-dependent ex-
tension of the density functional theory (DFT) [95,100] by
including the pairing field. As we will demonstrate here, as
well in the case of induced fission (see Ref. [11] and Sec. V),
the time-dependent pairing fields lead to a large population
of high-momentum single-particle states, a process which is
expected in nonequilibrium phenomena, as systems typically
evolve towards large regions of allowed phase space. We
present our conclusions in Sec. VI.
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II. THE CANONICAL BASIS OR NATURAL ORBITAL SET

We show here how using the canonical [10] (introduced for
treating superfluid systems) or natural orbital [15,16] basis set
one can get insight into how many single-particle states are
needed to accurately describe various properties of a physical
system.

As the single-particle strength is spread by interactions
over a wide energy interval the structure of the many-body
wave function is always very complex. Even in a reduced
single-particle Hilbert space, as used in shell-model calcu-
lations, the number of contributing Slater determinants is of
the order of tens of billions [14], a number which depends
very strongly on the type of the single-particle set of wave
functions used. This number is only optimal if one uses the
canonical or natural orbital set [15–19]. The complexity can
be quantified for any quantum state |�〉 by evaluating the or-
bital entanglement or quantum Boltzmann one-body entropy
[11,66,98,99,101–107]

S = − g
∑∫

k
nk ln nk

− g
∑∫

k
[1 − nk] ln[1 − nk], (4)

where g is the spin-isospin degeneracy, �
∫

implies summa-
tion over discrete and integration over continuous variables,
respectively, and nk are the canonical occupation probabilities∫

dζ n(ξ, ζ )φk (ζ ) = nkφk (ξ ), 0 � nk � 1, (5)

∑∫
ξ

φ∗
k (ξ )φl (ξ ) = δkl , (6)

N =
∑∫

k
nk, (7)

where N is the total particle number and n(ξ, ζ ) is the number
density matrix defined accordingly1:

n(ξ, ζ ) = 〈�|ψ†(ζ )ψ (ξ )|�〉. (8)

Here ψ†(ξ ) and ψ (ξ ) are the field operators for the creation
and annihilation of a particle with coordinate ξ = (r, σ, τ )
(spatial, spin, and isospin coordinates) and |�〉 is an arbitrary
quantum many-body state, either static or time dependent. The
wave function � can describe either a static or time-dependent
many-body system, and therefore the canonical occupation
numbers and the corresponding canonical wave function can
be time dependent as well.

The many-body wave function � can be a member of a
Hilbert space, if the particle number is well defined, or of the
Fock space, in which case it will contain components with
different particle numbers. We will discuss here both cases in
the context of nuclear fission. The one-body density n(ξ, ζ )

1Some authors prefer the definition of the density matrix normal-
ized to 1 [17,108], instead of particle number N , as in this case the
space of density matrices becomes convex.

can also be defined as [15–17,19]

nN (ξ1, . . . , ξN , ζ1, . . . , ζN )

= �(ξ1, . . . , ξN )�∗(ζ1, . . . , ζN ), (9)

n(ξ, ζ ) = N
∫ N∏

k=2

dξknN (ξ, ξ2, . . . , ξN , ζ , ξ2, . . . , ξN ). (10)

The orbital entanglement entropy S defined in Eq. (4) is
nonvanishing in the ground state of any interacting system
[11,66,101,106,109], unlike the textbook thermodynamic en-
tropy. The orbital entanglement entropy S attains its minimum
value in the case of a pure Slater determinant Smin = 0, when
nk ≡ 1 or nk ≡ 0, and its maximum value when nk ≡ N/Nsp,
where Nsp is the dimension of the single-particle space and
the single-particle strength is spread uniformly over the entire
Hilbert space. The entropy S, which is thus a measure of the
complexity of the many-body wave function, can be evaluated
accurately only when very-high-momentum occupation prob-
abilities up to values nk ≈ 10−6 are taken into account (see
Sec. V).

From a quantum information science (QIS) point of view
it is convenient to use the Shannon definition of the entropy
[108], and use instead a rescaled set of canonical occupation
probabilities (typically arranged in decreasing order)

ñk = nk

N
,

∑∫
k

ñk = 1, 0 � ñk � 1

N
, (11)

S = −
∑∫

k
ñk log2 ñk= − 1

N

∑∫
k

nk log2 nk + log2 N. (12)

In the case of Fermi systems the minimum and maximum
possible values of the Shannon entropy are

Smin = log2 N, Smax = log2 Nsp. (13)

The minimum value for S is achieved only in the case of a
Slater determinant for N > 1 particles, and for any superposi-
tion of Slater determinants, S > log2 N .

Both entropies S and S obviously characterize the level
of complexity of the many-body wave function: the extent to
which particle interactions spread the single-particle strength
over the entire spectrum. It is important to notice that both
entropies can attain their minimum values for states which as
a rule do not correspond to a minimum total energy. Basically
both of these entropies characterize, in slightly different man-
ners, the degree of the entanglement of the many-body system
and henceforth we will use only the Boltzmann entropy S from
this point onwards.

III. PROPERTIES OF THE CANONICAL
WAVE FUNCTIONS

The canonical states or the natural orbitals φk (ξ ) form a
complete set ∑∫

k
φk (ξ )φ∗

k (ζ ) = δ(ξ − ζ ). (14)

Since n(ξ, ζ ) basically vanishes when either spatial coor-
dinate is well outside the system, any function f (ξ ) with
support outside the system is automatically an eigenstate of
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n(ξ, ζ ) with nk ≈ 0. The canonical states in the case of a
finite nucleus in vacuum form a set with cardinality c, the
cardinality of R3. If the nucleus is simulated in a finite box
then the number of canonical states is countable and the set
has the cardinality ℵ0, the cardinality of the integers. Since
for a stable nucleus the number density decays exponentially
at large distances, the description of a bound nucleus in a
sufficiently large simulation box should be sufficient, and a
smaller set of single-particle wave functions with cardinality
ℵ0 should always suffice.

An eigenfunction φk (ξ ) with nk > 0 has its support largely
inside the system, where the support of n(ξ, ζ ) is, and one
can presume that it oscillates with the maximum momentum
pmax = √

2m|U | that a typical nuclear mean field can support
for a bound state, where U ≈ −50 MeV is the depth of the
mean field. One can then conjecture that the total number of
states with nk > 0 is of the order of the total number of bound
quantum states a nuclear mean field can sustain,

Nmax ≈ 4π p3
max

3

4πr3
0A

3

1

(2π h̄)3
≈ 0.5A, (15)

where r0 = 1.2 fm and A is the total number of nucleons,
and where we did not account for spin and isospin degrees
of freedom. (The spin-isospin degeneracy was not accounted
for here.) Since both normal number and anomalous densities
are constructed from canonical quasiparticle wave functions)
qpwfs, with strictly nonvanishing occupation probabilities
0 < nk � 1, it then follows that only a finite set of such
functions is likely needed to represent the densities. We
show below that Eq. (15) grossly underestimates the size of
the canonical basis set with nk > 0. Using Eqs. (A8) and
(5) it follows that the density matrix n(ξ, ζ ) has the same
eigenfunctions φk (ξ ):∫

dζ n(ξ, ζ )φk (ζ ) = (1 − nk )φk (ξ ). (16)

This equation may be used to construct the canonical states
localized mostly outside the system.

One can introduce the time-reversal canonical orbitals [12],
not necessarily identical to those defined in Eq. (A22),

φk (ξ ) = iσyφ
∗
k (ξ ), (17)

where σy is the Pauli matrix.
We first illustrate the properties of the canonical wave

functions with some generic numerical results obtained for
a one-dimensional example, which retains all the qualita-
tive features of a three-dimensional system. For the sake of
simplicity we have chosen a one-dimensional system with
potential and pairing fields

V (x) = V0

1 + cosh(x/a)
cosh(R/a)

, (18)


(x) = 
0

1 + cosh(x/a)
cosh(R/a)

, (19)

where we use the notation for the spatial coordinate −∞ <

x < ∞, V0 = −50 MeV, 
0 = 3 MeV, R = r0A1/3 = 14.9 fm,
a = 0.5 fm, and μ = −5 MeV. (We avoid using a Woods-
Saxon potential well in order not to generate singularities

of the derivatives of the wave functions at the origin, which
would lead to unphysical long momentum tails of the wave
functions.) We solved the non-self-consistent superfluid local
density approximation (SLDA) or HFB equations for the qp-
wfs [96,110], using the discrete variable representation (DVR)
method [111],(

H − μ 



 −H + μ

)(
uk

vk

)
= Ek

(
uk

vk

)
, (20)

in a box of size L = 80 fm and with four different lattice
constants dx = 1, 0.5, 0.25, 0.125 fm, where

H = − h̄2

2m

d2

dx2
+ V (x) (21)

and m is the nucleon mass, in the absence of spin-orbit interac-
tion. Equations (20) are for the components uk (x) with spin up
and vk (x) with spin down. The equations for the components
uk (x) with spin down and vk (x) with spin up are obtained from
these equations by changing the sign of the pairing field 
(x)
only [96,110]. The SLDA equations for cold fermionic gases
and nuclei have the same structure in this case. It is straight-
forward to extend this type of analysis to more complicated
geometries, for example, the pasta phase in neutron star crusts,
or the superconductor–normal metal–superconductor (SNS)
junctions in condensed matter physics. The case discussed
here is equivalent to a NSN junction. This analysis equally
applies to infinite periodic systems.

This one-dimensional model is equivalent to solving the
SLDA equations for a spherical system, in this case for s
orbitals, with orbitals φk (x) = −φk (−x) and x � 0 in the
present formulation. For a three-dimensional spherical sys-
tem the wave functions would be ψ (r) = φ(r)/rYlm(θ, φ)
and r = x � 0. For angular momenta l > 0 one has to add
the centrifugal potential h̄2l (l + 1)/2mr2. In the presence of
the centrifugal barrier a classically forbidden region appears
near the origin and some of the corresponding canonical
wave functions for l > 1 will have the character of “exterior”
functions with occupation probabilities nk beyond the UV
knee shown in Fig. 2. The one-dimensional normal number
density n(x) here is only for the fermions with spin down,
which in the case of even fermion particle number is identical
to the normal number density of the spin-up particles. As
shown in Ref. [112] the anomalous density κ (x) has longer
exponential tails than the number density n(x). This longer
tail of the pairing field becomes particularly important as one
approaches the nucleon drip line. This behavior should be also
apparent in the profiles of V (x) and 
(x), an aspect which
we neglected here and which does not change the qualitative
behavior of these densities (see Fig. 1). Figure 1 also shows
that with increasing spatial resolution (dx → 0) the normal
density is more accurately reproduced at larger distances. We
have also checked that Eqs. (A20) and (A21) in the Appendix
correctly reproduce the normal and anomalous densities when
using the canonical wave functions. From the spatial behavior
of the canonical wave functions illustrated in Figs. 3 and 4
it is obvious that they can be obtained with real accuracy
using semiclassical quantization conditions, as they are almost
perfect stationary standing waves in an almost perfect square
well potential.
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FIG. 1. The normal number (black) and anomalous (red) densi-
ties for x � 0, for four lattice constants in decreasing order dx = 1,
0.5, 0.25, 0.125 fm. n(x) and κ (x) stand for n(x, x) and κ (x, x),
respectively.

The canonical occupation probabilities nk shown in Figs. 1
and 2 have a conspicuous behavior not discussed previously
in literature. For smaller lattice constant dx the maximum
momentum cutoff � = h̄π/dx is large and the spectrum of
nk extends to high energies. The profile of nk has two obvi-
ous “knees,” one close to the Fermi level, the infrared (IR)
knee, where a transition from the BCS-like behavior of nk

to a powerlike behavior occurs for k ≈ 20 in Fig. 2, and
a second one at a high energy, the ultraviolet (UV) knee.
The canonical wave functions φk (x) have the expected spatial
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FIG. 2. The canonical occupation probabilities for four lattice
constants dx in a log-log scale, corresponding to momentum cut-
off � = π h̄/dx. In the inset we plot nk in the linear scale close
to the Fermi surface. The results obtained with increased machine
precision, 10−40, are shown with continuous solid lines. The dashed
horizontal black line shows the level of typical machine double
precision, 10−16, and dashed lines for nk show the corresponding
results obtained for the occupation probabilities.
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FIG. 3. The canonical wave function φ12(x) and occupation
probability n12 = 0.978 along with profiles of the number density
n(x) and of the anomalous density κ (x) in the case dx = 0.125 fm.
Since V (x) = V (−x) and 
(x) = 
(−x), all these functions have
well-defined spatial parities and we represent these quantities only
for x � 0.

behavior as long as their support is commensurate with the
support of the number density matrix n(x, y) as discussed
above [see Eq. (5), the text below, and Figs. 3 and 4 in the
case of dx = 0.125 fm]. However, as soon as the support of
the canonical wave functions φk (x) is essentially outside the
support of the density matrix n(x, y) (see Fig. 5, for which
the index k is on the right of the UV knee in Fig. 2), the
corresponding nk decay significantly faster with k. Both the
profiles and the numerical values of nk for these canonical
states can be obtained with greater accuracy using increased
precision (see Fig. 2). These canonical occupation probabili-
ties do not identically vanish simply due to obvious quantum
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FIG. 4. The same as Fig. 3 for φ40(x) and n40 = 1.298 × 10−4,
localized inside the system, with k in the interval between the IR
knee and the UV knee.
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FIG. 5. The same as Fig. 3 for φ400(x) and n400 = 2.6 × 10−13,
an “exterior” canonical wave function localized outside the sys-
tem, with k beyond the UV knee. These types of wave functions
clearly cannot be solutions of a typical Schrödinger equation with
a local potential. The inset shows that the high-frequency spatial
oscillations have a wavelength 2dx, determined by the momentum
cutoff �. In the limit � → ∞ these canonical wave functions have
no spatial derivatives, as they oscillate from lattice point to lattice
point.

localization effects, but they are increasingly smaller with
increasing resolution and decreasing lattice constant dx. In
the limit dx → 0 the UV knee → ∞ and at the same time the
number of canonical states localized outside the system also
tends to infinity. These nonlocalized canonical states, how-
ever, are irrelevant in describing the physical properties of the
system.

Impact of long momentum tails in three dimensions

Below the IR knee in Figs. 2 and 6 the canonical oc-
cupation probabilities have the expected BCS behavior [6].
It is clear, however, that in between the IR knee and UV
knee there is a region where the canonical occupation prob-
abilities have a power-law behavior. Such a behavior, due
to the short-range character of the nuclear forces, was pre-
dicted in 1980 by Sartor and Mahaux [28] and recently put
clearly in evidence experimentally in nuclei by Hen et al.
[36,43] and Cruz-Torres et al. [44]. Tan [46] has proven
analytically the emergence of this behavior for fermions in-
teracting with a zero-range interaction in three dimensions.
Nuclear pairing is typically simulated in theory with a δ

potential, which naturally leads to a local pairing field 
(ξ )
[112], similar to the case discussed here. Tan [46] showed
that in the case of a zero-range interaction asymptotically
nk ∝ C/k4 for any many-body state. This power-law behavior
of the number density is directly related to the divergence
of the anomalous density matrix, Eq. (A7). In the case
of a three-dimensional system it was shown in Ref. [112]
that the anomalous density matrix κ (ξ, ζ ) ∝ 1/|r − r′| when
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n k
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FIG. 6. The canonical occupation numbers at t = 0 obtained
from HFBTHO and self-consistent SLDA solution on the three-
dimensional spatial lattice for protons and neutrons, respectively, in
the case of 236U induced fission. Here nk are ordered in decreasing
order. The canonical occupation probabilities up to a constant define
the entanglement spectrum − ln nk [79].

|r − r′| → 0, where r and r′ are the spatial components of ξ

and ζ , respectively.
It is also important to appreciate that the presence of the

long momentum tail nk = C/k4 implies∫ ∞

�

dkk2nk = C

�
, (22)

and therefore the particle number converges rather slowly as a
function of the upper momentum cutoff �. The actual particle
number can be reproduced in mean-field calculations simply
by adjusting the chemical potential, thus introducing errors in
the actual value of the chemical potential (a correction which
might be small in practice). However, the total kinetic energy
of a system ∫

d3k
h̄2k2

2m
nk (23)

obviously diverges if � → ∞. Consequently, the correct
evaluation of the total kinetic energy, and as a result the
evaluation of the total energy of a many-body system, be-
comes a rather subtle problem, which in modern theoretical
nuclear physics is resolved using the methods of effective field
theory (EFT), where infinities are handled with “kid gloves.”
While within EFT one can define the total energy of the sys-
tem, the separate definitions of either the kinetic, interaction,
and even separate parts of the interaction energies become
meaningless.

A closer analysis of Fig. 4 clearly shows that some canoni-
cal wave functions φk (x) oscillate much faster than the density
n(x, x). The oscillation of the number density n(x, x) is due
to confinement in a finite box, a finite Fermi momentum,
and a relatively well-defined Fermi momentum kF , and is a
behavior known for decades for all finite Fermi systems. Our
initial “naive” estimate of the maximum expected number of
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relevant canonical wave functions [see Eq. (15)], is an un-
derestimate, since the maximum momentum cutoff h̄π/dx >√

2m|U |. The coupling of the qpwfs components vk (ξ ) to
the continuum states, facilitated by 
(ξ ), leads to spatial
oscillations with any wave vector up to the maximum allowed
value h̄π/dx. In the limit dx → 0 the cardinality of the set
of canonical wave functions φk (ξ ) is either ℵ0 for a finite
system in a finite volume or c for an isolated finite system
in vacuum. Therefore, one should use, for the best estimate of
the number Nmax, the cutoff momentum pmax = h̄π/dx, and
from the condition of accommodating a standing wave in our
“square well” potential, with 2R ≈ 14.9 fm in our numerical
example, one obtains the approximate position of the UV knee
at kmax = 2R/dx + O(a/R) ≈ 240 for dx = 0.125 fm (as k
counts the number of half wavelengths inside the potential
well), in perfect agreement with our numerical identification
of the UV knee in Fig. 2. When coupling a bound state through
the pairing field 
 with the continuum, the strength of the
bound state is spread over a large energy range with very
long tails, with a Lorentzian shape of the spectral distribution
[112]. Moreover, in time-dependent phenomena, even in the
absence of a true pairing condensate (when the long-range
order is lost) and at high excitation energies (with correspond-
ing temperatures well above the pairing phase transition Tc)
the remnant pairing field leads to many single-particle transi-
tions and the quantum Boltzmann one-body entropy increases
considerably [11].

With this in mind one can now provide a better estimate
of the size of the canonical basis set for a three-dimensional
system in a finite simulation box with sides of length Lx =
Nxdx, Ly = Nydy, Lz = Nzdz (dx = dy = dz), ignoring spin
and isospin degrees of freedom,

Nmax = 4π

3

(
h̄π

dx

)3 4π

3
r3

0A
1

(2π h̄)3
= 2.2A

(
r0

dx

)3

. (24)

At the same time the total number of single-particle quantum
states in such a box is

Nspwfs = LxLyLz

(2π h̄)3

(
2π h̄

dx

)3

= NxNyNz, (25)

which is typically significantly larger. For example, for a
typical simulation box for a heavy nucleus with volume
303 fm3 and dx = 1 fm the total number of qpwfs (here ignor-
ing spin and isospin degrees of freedom) is Nspwfs = 27 000 �
Nmax ≈ 3.8A < 1000. This estimate is accurate only for
some quantities, such as particle number and total energy
(see Sec. IV).

The classification of the wave functions as “interior,” as
in Figs. 3 and 4, and “exterior,” as in Fig. 5, depends on
the momentum cutoff �, particularly when discussing the
entropy of a quantum state (see Sec. IV), and less so when
evaluating the total energy of a system. Various sizes of
sets of the canonical wave functions, with k smaller than
the IR knee, have been considered in the evaluation of the
binding energies of nuclei [61–73] and they missed the long
momentum tails discussed in this work and their relevance.
Moreover, for unclear reasons, when diagonalizing the one-
body density matrix these authors obtained negative canonical

occupation probabilities, while it is obvious that the one-
body density matrix is a non-negative definite Hermitian
operator.

IV. THE ORBITAL ENTANGLEMENT ENTROPY FOR A
SYSTEM OF IDENTICAL PARTICLES

There exist a number of approaches in the literature for the
definition of the orbital entanglement entropy in the case of
indistinguishable particles [113–117], which typically depend
on the single-particle basis used. One can often find similar
either explicit or implicit statements (see, e.g., Refs. [66,73])
that orbital entanglement entropy is basis dependent. This
amounts to the statement that the orbital entanglement en-
tropy corresponding to a many-body wave function depends
on whether one uses harmonic oscillator wave functions or
plane waves, for example. Since different choices would lead
to different values of the orbital entanglement entropy it is not
clear what would be the use of such a definition, as clearly it
will not represent some intrinsic property of the many-body
system. However, this dilemma is easily resolved if one re-
alizes that, for an arbitrary many-body wave function, there
is a unique definition of the single-particle orbitals, either
the natural orbitals introduced by Löwdin [15], Löwdin and
Shull [16] or the mathematically identical definition used to
introduce canonical single-particle wave functions in the case
of superfluid systems. These sets and the properties of the
single-particle wave functions are basis independent and are
uniquely defined by the many-body wave function. Together
with the well-established mathematical proof due to Hohen-
berg and Kohn [118], a proof which withstood the test of
time, that there is a one-to-one correspondence between the
many-body wave function and the one-body density, and thus
with the one-body density matrix, makes it obvious that the
set of canonical wave functions or natural orbitals have an
intrinsic value.

The introduction of the definition used in Refs. [113,114]
for the orbital entanglement entropy was motivated by quan-
tum computing applications, in which case one deals with
well-defined single-particle orbitals corresponding to the spe-
cific physical realization of qubits, which are not necessarily
the same as the needs of QIS. The information encoded in a
many-body wave function is not identical to the information
encoded in a specific representation of the same wave func-
tion in a chosen physical realization of a quantum computer.
This is equivalent to the statement that the representation of
a many-body wave function in terms of Slater determinants
formed from single-particle wave functions is basis depen-
dent.

The question of whether an arbitrary many-body wave
function is representable either by the corresponding one-
body density [118–121] or by its one-body density matrix
[17,18] was discussed and resolved a long time ago. The
definition of the one-body density matrix, Eq. (8), is valid
for either a stationary or time-dependent many-body wave
function �(t ), with either well-defined particle number or
not, and its representation through its eigenstates, here for
the more general case of a time-dependent system, is in-
variant with respect to an arbitrary (time-dependent) unitary
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transformation U (t ):

n(ξ, ζ , t ) = 〈�(t )|ψ†(ζ )ψ (ξ )|�(t )〉, (26)∫
dζ n(ξ, ζ , t )φk (ζ , t ) = nk (t )φk (ξ, t ), (27)

n(ξ, ζ , t ) =
∑∫

k
v∗

k (ξ, t )vk (ζ , t ), (28)

v∗
k (ξ, t ) =

√
nk (t )φk (ξ, t ), (29)

v∗
k (ξ, t ) =

∑∫
l
Ukl (t )v∗

l (ξ, t ). (30)

In particular, the time-dependent HFB equations are invari-
ant as well with respect to such unitary transformations. In
other words, if at some time t the set of quasiparticle wave
functions vk (ξ, t ), uk (ξ, t ) (see the Appendix) happens to be
the canonical set, in general as time evolves the quasipar-
ticle wave functions will not remain canonical [122]. The
time-dependent number and anomalous densities are invariant
with respect to such time-dependent unitary transformations
[123], while the canonical occupation probabilities are always
uniquely defined. Therefore, unlike the case of the stationary
HFB equations, one cannot uniquely relate the quasiparticle
wave functions with the eigenvalues of the corresponding
HFB equations. This is a major difference with the Hartree-
Fock problem, in both its time-dependent and stationary
formulation. In the case of a time-dependent many-body wave
function one should introduce at each time the instantaneous
occupation probabilities nk (t ) [see Eqs. (26) and (27)] in or-
der to have a unique definition of the time-dependent orbital
entanglement entropy S(t ):

S(t ) = − g
∑∫

k
nk (t ) ln nk (t )

− g
∑∫

k
[1 − nk (t )] ln[1 − nk (t )]. (31)

The usefulness of the orbital entanglement entropy be-
comes clear particularly in the case of nonequilibrium
processes [74,80,83–85,124–126]. In the limit of a dilute
and weakly interacting system the orbital entanglement en-
tropy S(t ) becomes a very good approximation of the
time-dependent nonequilibrium thermodynamic entropy of a
many-body system [98,99], similar to the case of the classical
Boltzmann equation (see discussion in Ref. [11]).

Using the definition of the orbital entanglement entropy
through canonical or natural orbital occupation probabilities
the HF many-body wave function always has a vanishing
orbital entanglement entropy. The canonical or natural or-
bital occupation probabilities offer a natural, unique, and
simple way to characterize the entanglement properties of
systems of indistinguishable particles. As has been mathe-
matically proven [17–19], using natural orbitals, an arbitrary
many-body wave function has a well-defined and unique
Schmidt decomposition, which thus allows a unique way to
introduce the orbital entanglement entropy, irrespective of
the single-particle basis used. The canonical or natural or-
bital occupation probabilities, which are obtained after the
Schmidt decomposition of a many-body wave function, in

order to construct the so-called entropy spectrum [79], can
and do play a great role in characterizing topological phases of
matter.

V. COMPLEXITY OF THE MANY-BODY WAVE FUNCTION
IN THE CASE OF A NONEQUILIBRIUM PROCESS

Both the quantum Boltzmann one-body and Shannon en-
tropies can be evaluated only after the evaluation of the
canonical occupation probabilities [see Eqs. (4) and (12)].
Both these entropies reach their minimal values only in the
case of pure Slater determinants. Only in the presence of
interparticle interactions these entropies increase in value and
can provide a measure of the complexity of the many-body
wave function. As far as we are aware there exist no stud-
ies of how the complexity, or the degree of single-particle
spreading over the entire spectrum, depends on real time
in the case of a nonequilibrium process, particularly for a
system with a high degree of complexity. Nuclear fission is
a particularly interesting case and it provides an unexpected
insight into how the many-body wave function evolves in
time within the DFT framework from a state near the outer
saddle point until after the two fission fragments are fully
separated.

Nuclear fission is a typical example of a nonequilibrium
quantum process and one would expect that the entropy
would monotonically increase in time [11]. The actual sit-
uation, however, is more complex. We remind the reader
that the entropy S defined in Eq. (4) is an entanglement en-
tropy [66,101,106,109], which does not vanish even in the
ground state of an interacting many-fermion system, unlike
the thermodynamic entropy. In Fig. 12 we display the time
dependence of the entropy S(t ) evaluated in several different
manners, for initial conditions obtained in different meth-
ods and with and without particle number projection within
DFT extended to superfluid systems [93,100,110,127–129].
We evaluate here the neutron and proton canonical occupa-
tion probabilities as a function of time, for both unprojected
and projected total proton and neutron numbers, following
the techniques described in Refs. [123,129], and illustrate
the time evolution of the orbital entanglement entropy in the
case of 235U(n, f ) induced fission with a low-energy neutron,
described with the nuclear energy density functional SeaLL1
[130] and using the code LISE [131]. This extension of DFT to
a superfluid fermion system, in the spirit of the local density
Kohn-Sham framework, is called the time-dependent super-
fluid local density approximation (TDSLDA).

Beyond the UV knee, for the canonical states localized
mostly outside the system, the mean kinetic energies εk drop
in value and their contribution to the total kinetic energy is
commensurate with what one expects from numerical dis-
cretization errors (dx �= 0) of the continuum. As one can see
from Fig. 7, in the region between the IR and UV knees
(see Fig. 6), the canonical occupation probabilities have the
approximate expected behavior nk ∝ 1/ε2

k , where

εk = 〈φk| − h̄2∇2

2m
|φk〉. (32)
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FIG. 7. The canonical occupation probability nk as a function
of εk . In the inset we show that the canonical occupation prob-
abilities nk around the Fermi level have the expected textbook
behavior. Comparing Figs. 6 and 7 one sees that εk are only ap-
proximately monotonic functions of k, which, only for relatively
large values of εk , can be related to eigenstates in the approximately
square well nuclear self-consistent potentials for different angular
momenta [132].

Since nuclear systems are to a large extent saturating systems,
while the linear momentum p = −ih̄∇ is not conserved, its
absolute value is rather well defined and the single-particle
wave functions can be well approximated in the semiclas-
sical limit, the single-particle energies can be evaluated by
quantization of classical orbits, and the shell structure of both
spherical and deformed systems is reproduced with impres-
sive accuracy [132].

As we have proceeded in all our past TDSLDA simulations
of nuclear fission [95,96,133–135], the initial state was deter-
mined using the HFBTHO code [136,137] which uses a small
single-particle set of wave functions of size, which is quite
sufficient to estimate the total energy of a nucleus. Since the
TDSLDA simulations are performed on a 3D spatial lattice
NxNyNz = 302 × 60, with a lattice constant l = 1 fm, the size
of the HFB matrix is much larger, 4 × 302 × 60 = 216 000,
for neutrons and protons, respectively.

In Fig. 6 we show the canonical occupation numbers,
up to the UV knee only, obtained using the HFBTHO self-
consistent densities and a set of self-consistent solutions on
the 3D spatial lattice at t = 0. If one is interested in the
total particle number the sum N = ∑

k nk converges with an
accuracy of 0.01 particles if summed up to nk ≈ 10−5 (see
below the discussion of Fig. 10), thus at most a few thou-
sands of canonical states (both spin up and down) in the
case of the self-consistent solution on the 3D spatial lattice,
a number almost an order of magnitude smaller than the size
of the basis set 2 × 302 × 60 = 108 000 (the factor 2 is for
the spin).

Within the SLDA, or any treatment of pairing correlations
with a local pairing field 
(ξ ), the theory requires regular-
ization and renormalization [127,128]. We have checked that
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FIG. 8. The quantity C = (2mεk/h̄2)2nk , which in the regime
nk ≈ C/k4, between the IR and UV knees, defines Tan’s contact.

indeed

(εk )2nk ≈
(

h̄2

2m

)2

C if kIR < k < kUV (33)

(see Figs. 2, 6, 8), confirming the theoretical prediction of
Refs. [28,46]. In the case of pure finite-range nucleon inter-
actions, with no zero-range components, there is an upper
momentum cutoff controlled by the interaction range. When
treating nuclear systems as composed of proton and neutrons
the typical momentum cutoff is � ≈ 600 MeV/c, which is
related to the QCD chiral symmetry breaking scale �χ con-
trolled by the nucleon size, as it makes no sense to consider
the interaction between two nucleons when their quark clouds
strongly overlap. Figure 8 demonstrates that between the
IR and UV knees the canonical occupation probabilities ap-
proach asymptotically the expected behavior nk ∝ 1/ε2

k , even
though our cutoff momentum � = h̄π/dx ≈ 600 MeV/c is
not sufficiently high, as the momentum interval between the
IR and the UV knees covers less than an order of magnitude.
In this rather small momentum interval the behavior of the
canonical occupation probability is closer to nk ∝ 1/ε2.3–2.5

k .
In the case of the HFBTHO solution the number of relevant

canonical states is at most 1000 or so (see Fig. 9 for the
number of canonical wave functions up to a given occupation
number cutoff n� ≈ 10−5). A particle projected many-body
wave function can now be expressed as a sum of Slater de-
terminants, built from canonical states and/or natural orbitals.
The number of these Slater determinants can be considered
as an appropriate measure of the complexity of a many-body
wave function,

NCW Fs!

N!(NCW Fs − N )!
� Nsp!

N!(Nsp − N )!
, (34)

which is exponentially smaller than the total number of pos-
sible Slater determinants (for either neutrons or protons) in
the entire many-body Hilbert space corresponding to Nsp =
2 × NxNyNz = 108 000. In the case of a shell-model or CI
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FIG. 9. The number of canonical wave functions at t = 0 as a
function of the canonical occupation number cutoff n�. The dashed
lines correspond to the HFBTHO set of self-consistent solutions, while
the solid line corresponds to the self-consistent solutions obtained on
the 3D spatial lattice.

calculation, for example, the complexity, and likely the ac-
curacy as well, of the many-body wave function thus cannot
be judged by the dimension of the many-body Hilbert space,
which depends on the type of single-particle wave functions
used.

In the case of HFBTHO the chemical potentials can be tuned
to fix the desired particle numbers, even if the size of the
single-particle space is (artificially) small. The particle num-
ber and the total energy of the system converge faster as a
function of the cutoff in nk when compared to the entangle-
ment entropy S(t ) (compare Figs. 10 and 11). The lesson is
that one cannot judge the quality or the complexity of a wave
function by using a wave function obtained by a variational
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FIG. 10. The accuracy of the particle number evaluated for the
self-consistent solutions at t = 0 as a function of the canonical occu-
pation number cutoff.
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FIG. 11. The accuracy of the entropy evaluated for the self-
consistent solutions at t = 0 as a function of the canonical occupation
number cutoff.

estimate for a qualitatively different observable (see also the
arguments presented by Anderson [13] and our discussion
above).

In a full TDSLDA simulation of fission we have extracted
the canonical occupation probabilities as a function of time,
and for all times their qualitative behavior is very similar to
that at t = 0 as illustrated in Figs. 6 and 7, even though the
pairing condensates are absent for times >700 fm/c and the
role of SRCs is always manifest (see also Refs. [11,138]). The
entropies S(t ) evaluated using HFBTHO initial wave functions
are shown with the red solid and dashed lines in Fig. 12, in the
case of unprojected particle numbers and projected particle
numbers, respectively. The initial densities obtained with the
code HFBTHO were placed on this spatial lattice and only
the proton and neutron chemical potentials were slightly ad-
justed, in order to obtain the correct particle numbers Z = 92
and N = 144, respectively. Fully self-consistent initial wave
functions obtained on the 3D spatial lattice NxNyNz = 30 ×
30 × 60 were used to determine the canonical occupation
probabilities for the entropies S(t ) shown with black solid and
dashed lines for unprojected particle numbers and projected
particle numbers, respectively. The difference between the
initial canonical occupation probabilities obtained using the
HFBTHO, in which only the chemical potentials were adjusted,
fully self-consistent solutions obtained on the 3D NxNyNz

lattice are illustrated in Fig. 6. In Fig. 12 with dashed lines
we present the corresponding entanglement entropies evalu-
ated after the proton and neutron particle projections were
performed at each time.

After each 100 fm/c the time-dependent neutron and pro-
ton density matrices were used to determine the instantaneous
canonical occupation probabilities and evaluate the corre-
sponding S(t ) shown in Fig. 12. To evaluate the entropy
with an accuracy at the ≈0.1% level in Fig. 12 we needed
to account for occupation probabilities with nk � 10−6. The
entropies are larger in the case of particle unprojected wave
functions, as such many-body wave functions have more
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FIG. 12. The time dependence of the entropy S(t ) evaluated in
the case of the induced fission of 235U(n, f ) with a low-energy
neutron as a function of time from the vicinity of the outer saddle
point until the two fission fragments are fully separated. The solid
curves correspond to entropies evaluated without particle projection
of the total many-body wave function, while the dashed curves are
obtained after particle projection was performed before the canonical
occupation probabilities were evaluated. The difference between the
black and red curves is due to the difference between the initial
states. In the case of the red curves we used initial densities obtained
by solving the constrained self-consistent HFB equations using the
code HFBTHO [136,137] using a relatively small set of transformed
harmonic oscillator basis states. In the case of the black curves we
obtained constrained self-consistent solutions directly on a 3D spatial
lattice, which corresponds to a much larger single-particle space and
a high momentum cutoff � = h̄π/l ≈ 600 MeV/c, where l = 1 fm
is the spatial lattice constant and the dimension of the HFB matrix
in this case is 216 000. Even though there are differences between
the values of the entropies evaluated before and after a total particle
projection was performed, the qualitative behavior of the quantum
Boltzmann one-body entropy is by and large the same. The nuclear
shapes obtained in TDSLDA during the time evolution are shown at
0, 675, and 1650 fm/c.

complexity, since they contain components with different par-
ticle numbers. At the same time, for the evaluation of the total
particle number, and implicitly of the number densities and
total energy of the system, it is sufficient to include only states
with nk � 10−4. In time-dependent simulations, however, we
have found that one cannot limit the number of qpwfs included
in the calculations without severely affecting the outcome. A
reformulation of the time-dependent DFT within a canonical
wave-function basis set does not exist at this time. A major
difficulty is that a set of initial canonical wave functions does
not remain canonical under time evolution.

Our initial nuclear configuration corresponds to a nucleus
slightly above the outer fission barrier, when the nucleus starts
its evolution towards the scission configuration and the neck
is formed. Scission occurs quite fast after a time ≈700 fm/c,
after which the two fission fragments recede from each other,
although their shapes still evolve and their equilibrium is
attained at much later times [95,96]. The initial wave function

describes the ground state of a shape-constrained nucleus,
with thus technically zero thermodynamic many-body en-
tropy. While the initial state was a “bound” state, the final
nonstationary state lies in a continuum, where the density of
many-body states is very large, even in the finite simulation
box used in our numerical simulation.

In the case of HFBTHO initial conditions the entropy of the
nucleus increases up to a time t ≈ 300 fm/c, matching the
entropy of the system obtained with fully self-consistent ini-
tial conditions obtained on the spatial lattice. Once the initial
HFBTHO conditions are placed on the spatial lattice the nucleus
“realizes” that the full nuclear wave function “lives” in a much
larger space, the “doors are opened wide” and the system “ex-
pands” accordingly, until the HFBTHO initial conditions reach
in time a complexity comparable to the complexity of the
self-consistent many-body wave function obtained on the 3D
spatial lattice. We conclude that more accurate initial condi-
tions are needed in the future studies to eliminate the “unphys-
ical” evolution caused by using HFBTHO initial conditions.
We remind the reader that we routinely perform (TD)SLDA
calculations with a lattice constant dx = 1 fm, which cor-
responds to a cutoff momentum � = h̄π/dx ≈ 600 MeV/c,
which is the typical largest cutoff momentum used in chiral
perturbation effective field theory studies of nucleon inter-
actions. It is our hope that by including effective pn pairing
[11] one can eventually simultaneously capture all long- and
short-range correlations in a mean-field-like approach.

The question, however, remains why the actual entropy
S(t ), the solid and dashed lines in Fig. 12, decreases until
scission. The natural explanation is that while the neck is
forming, “communication” between the emerging fission frag-
ments is hindered and it completely stops after scission; thus
the space in which the quasiparticle wave functions evolve
becomes smaller than it was at the initial time. When the neck
starts emerging the free flow of nucleons from one side to
the other of the elongated nucleus is increasingly inhibited
until a time ≈700 fm/c, when the neck attains a very small
diameter and after that the two fission fragments start separat-
ing. During this time period until ≈700 fm/c the spreading
of the single-particle strength is suppressed. After scission
the two fission fragments emerge with significant excitation
energy, ≈15–20 MeV each, but obviously not in thermody-
namic equilibrium, as in particular their shapes evolve as well.
These aspects are likely also connected with the widely stud-
ied problem of many-body localization, a topic of significant
interest in predominantly 1D condensed matter systems [84].
When the hopping strength between sites is weaker than the
amplitude of the disorder such 1D systems fail to thermalize.
The forming of a neck between emerging fission fragments
basically plays the same role as disorder in 1D condensed
matter systems: it increasingly inhibits the nucleon jumps
between these emerging fission fragments. Unlike in the case
of a system in contact with a thermostat, the entropy of an
isolated many-body system or, in a more precise language,
the complexity of its many-body wave function does not nec-
essarily always increase monotonically in time at intermediate
times. A similar situation is often used in demonstrations in
introductory physics classes: when compressed air is released
from a container, it cools, and its entropy decreases.
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FIG. 13. The number of canonical states vs time for cutoffs nk �
10−4 and 10−6, respectively. These have to be compared with the size
of the entire set of canonical wave functions 2N − xNyNz = 108 000
in this study.

It is instructive to determine the number of canonical states
with occupation probabilities nk up to different cutoffs (see
Fig. 13). A cutoff in canonical occupation probabilities at
the level nk � 10−5 can be sufficient for evaluating particle
number with a relative accuracy O(10−4) (see also Fig. 10).
However, for the evaluation of the entanglement entropy,
which is a more accurate measure of the complexity of the
many-body wave function, a cutoff in nk � 10−6–10−7 is
needed (see Fig. 11).

It is also instructive to evaluate the two different contri-
butions to the entanglement entropy S(t ) = S1(t ) + S2(t ) [see
Eq. (4)]. As one can judge from Fig. 14, S1(t ) and S2(t ) have
a very similar behavior and almost equal magnitudes. This is
particularly relevant, since S1(t ) is identical to the Shannon
entropy S, up to an additive constant and a multiplicative
factor [see Eq. (12)].

One might hastily conclude that our conclusions are lim-
ited to the case of pairing correlations only. This conclusion
would be wrong for several reasons. First, even when the
pairing correlations, not necessarily the pairing condensates,
occur only in the s wave between protons and neutrons
only, the corresponding pairing fields still describe the role
of collisions. At the semiclassical level such collisions are
incorporated by the collision integral in the extension of
the Boltzmann equation due to Nordheim [98] and Uehling-
Uhlenbeck [99] at finite local temperatures (see also the
discussion in Ref. [11]). The results obtained so far in the
study of numerous cold-atom and nuclear systems amply
demonstrate that when these systems are highly excited, well
above the critical temperature Tc for the onset of pairing
condensates, and their corresponding pairing correlations are
absent, the high-momentum states are increasingly occupied
as time goes on (see Refs. [93–97]). In the results illustrated
in Fig. 14, at times beyond 700 fm/c in the emerging fission
fragments pairing condensates are absent and the temperature
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FIG. 14. The time dependence of the two parts of the entangle-
ment entropy S(t ) = S1(t ) + S2(t ), where S1(t ) = −∑

k nk ln nk and
S2(t ) = −∑

k (1 − nk ) ln(1 − nk ). Up to an additive constant and an
overall normalization, S1(t ) is equal to the Shannon entropy S [see
Eq. (12)].

of the fission fragments is T > Tc. Second, in a Kohn-Sham-
like extension of the time-dependent DFT (TDDFT) the role
of finite-range interactions can be incorporated only through
local potentials, as nonlocal Fock-like potentials will not be
used in the foreseeable future in time-dependent simulations.
For example, in Ref. [36] it is shown how the role of the tensor
interaction at high-momentum transfer can be emulated with
a pure attractive s-wave interaction in the pn triplet channel,
which dominates the SRCs in nuclear systems. Third, note
that even in the Boltzmann equation and its semiclassical
extension, the Boltzmann-Uehling-Uhlenbeck equation, the
collisions are always local in space and describe the time
evolution of the one-body density matrix, similarly to TDDFT.
Collisions in higher partial waves will likely be incorporated
by corresponding anomalous densities depending on various
gradients of the quasiparticle wave functions, as is done cur-
rently also for the corresponding terms in the self-consistent
Skyrme-like potentials. The pn collisions, in particular, play
the role of collisions due to the tensor interactions, and are
still absent in current nuclear TDSLDA simulations, but they
can and will soon be incorporated [11].

In Fig. 12 we show the entanglement entropy evaluated
both before and after particle projections. For times larger
than 700 fm/c the nuclear system is normal (T > Tc), and
these entropies increase with time as expected for a nonequi-
librium process. The number of Slater determinants in the
corresponding particle projected expansion of the highly cor-
related many-body wave function is still increasing in time.
This number can be estimated for either the proton or neutron
systems to be on the order of 10120–10140 using Eq. (1) with
the number of relevant single-particle orbitals extracted from
Fig. 13. This estimate is orders of magnitude larger than
any size ever attempted in CI calculations, which never take
into account explicitly SRCs. As our own still unpublished
results in larger spaces confirm, the number of canonical
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states and/or natural orbitals in a time-dependent situation
increase dramatically with the size of the simulation. As
more single-particle states become available the number of
accessible final states increases as well and the trajectory
of the reaction changes accordingly, as one would naturally
expect.

VI. CONCLUSIONS

To study the complexity of a many-fermion wave function
we have concentrated here on the properties of the canoni-
cal wave functions and/or natural orbitals basis set and the
corresponding occupation probabilities. Unlike previous stud-
ies, which were limited only to the study of canonical wave
functions and/or natural orbitals only for the ground state
of various systems and small basis sets of such states, we
have extended our analysis to excited and in particular to
many-fermion functions describing nonequilibrium processes
and have shown that their properties are universal and gen-
eral properties of the one-body density matrix, whether the
system is static or time dependent (see also Refs. [11,138]).
The canonical wave functions and/or natural orbitals fall
basically into two distinct categories: The first group corre-
sponds to wave functions with their support predominantly
inside the nucleus. The second category corresponds to wave
functions with their support outside the nucleus, and in the
limit of high spatial resolution (� → ∞) these wave func-
tions have vanishing occupation probabilities and hence do
not contribute to observables. We have dubbed these two
categories as “interior” and “exterior” canonical wave func-
tions. As far as we are aware, the existence and properties
of these two sets of canonical wave functions and/or natural
orbitals has not been discussed in literature. The “interior”
wave functions fall into two subgroups: the first group corre-
sponding to occupation probabilities described by well-known
either Bardeen-Cooper-Schrieffer distribution in the presence
of pairing correlations or the textbook distribution [139]

n(k) = 1

1 + exp[−β(ε(k) − μ)]
, (35)

where β = 1/T , and the second group which has a power-law
behavior

n(k) = C

k4
, (36)

due to SRCs [11,36,37,45–47] in both cold atoms and nu-
clear systems, in particular due to the dominant role of the
tensor interactions between protons and neutrons [21–25,28–
44] in nuclear systems. Moreover, while for an isolated
quantum system in vacuum the cardinality of the entire
set of canonical wave functions is c = |R3|, the cardinal-
ity of the “interior” subset of canonical wave functions
is only ℵ0 = |Z| = |N|. The spatial profile of these “inte-
rior” wave functions has the hallmark behavior of “standing
waves” in a finite potential well, with their “spatial fre-
quencies” extending up to infinity when � → ∞. These
“interior” states should not be confused with single-particle
quantized states, which can be defined only in the case
of static HF or HFB calculations, where the (generalized)

density matrix commutes with the (generalized) single-body
Hamiltonian.

In calculations performed in finite spatial boxes, the set of
physically relevant “interior” canonical wave functions only
has a significantly smaller size than the full set, which can
be crucial in performing many-body simulations within such
a reduced space, but “physically complete” set. The set of
− ln nk is also known as the entanglement spectrum [79] and
it is widely used in literature to characterize the properties of
strongly interacting many-body systems [80–89].

The canonical basis set appears well suited for performing
shell-model calculations [14]. However, it remains a chal-
lenge to reformulate TDDFT explicitly within this basis.
Approximate sets of canonical states can be easily generated,
for example, for nuclear problems, by solving the non-self-
consistent equations for the radial wave functions(

H − μ 



 −H∗ + μ

)(
uk

vk

)
= Ek

(
uk

vk

)
, (37)

H = − h̄2∇2

2m
+ V + Vso, (38)

where the central potential V and the pairing field 
 have
spherical symmetry, and Vso is an appropriate single-particle
spin-orbit potential. The generation of sufficiently large sets
of canonical wave functions, or natural orbitals, with exact
quantum numbers n jlm, in the case of spherical symmetry,
is numerically cheap and the set can be adapted for the
problems studied in Refs. [61–73]. Unlike the sets of nat-
ural orbitals used in these papers and many similar studies
in atomic physics and chemistry calculations, the sets we
discussed here are accurate, have no negative canonical oc-
cupation probabilities, as they should, can be generated easily
with the expected spherical symmetry, and their quality can
be easily improved during the calculations by adapting the
properties of the potentials V , Vso, μ, and 
 to ensure high
accuracy within a relatively small size basis set. A particular
aspect which we observed is that the canonical wave functions
φk (ξ ) depend very weakly on the magnitude of the pairing
field 
.

Induced nuclear fission and collisions of heavy ions are a
particularly relevant highly nonequilibrium strongly interact-
ing quantum many-body system to study. Nuclear fragments
emerge highly excited in both fission and heavy-ion collisions,
with an average temperature well above the critical temper-
ature T > Tc [11,95,133], at an excitation energy at which
the pairing correlations are absent. Therefore, the fact that
we formally obtained the result that the final quantum Boltz-
mann one-body or entanglement entropy increases within a
formalism emerging from a treatment of pairing correlations,
in particular even after performing a projection on the to-
tal proton and neutron numbers, furthermore underlines our
conclusion that this increase is indeed solely related to the sig-
nificant larger degree of complexity and more entanglement
in the final many-body wave function compared to the initial
many-body function.

Long tails of the momentum distribution have been
measured [36,43] and a comprehensive picture of nuclei
should and can incorporate both mean-field and SRCs
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[11,138]. These conclusions are in full agreement with Tan’s
[37–39,45–47] conclusion that the presence of SRCs, al-
though not necessarily always with “pure” character nk =
C/k4, are present irrespective of whether the system is super-
fluid or a Fermi-like liquid. The presence of these long tails for
nk leads to a generalization of the textbook definition [139]
of the equilibrium single-particle occupation probabilities in
strongly interacting many-fermion systems [138].

As the example of induced fission shows, the current
implementation of the extension to superfluid systems of
the TDDFT includes single-particle momenta up to ≈600
MeV/c, the upper limit considered in current implementations
of the chiral effective field theory for nucleon interactions
in the treatment of light, medium, and even heavy nuclei.
Upon including the proton-neutron dynamical pairing cor-
relations one would be able to basically describe, within a
unified approach, both long-range and short-range nucleon
correlations [11], particularly for nonequilibrium processes.
The highly nonequilibrium nuclear fission process discussed
here is apparently the largest system where quantum entan-
glement has been studied so far [74–89], with aspects related
to the widely studied topics of Hilbert space and many-body
localization.

As a result of our present analysis we expect that the
properties of the canonical basis set and the use of entangle-
ment entropy can be extended to strongly correlated quantum
many-body systems in order to characterize the degree of
complexity of the corresponding many-body wave functions
and the degree of their entanglement, and thus provide addi-
tional insight into the QIS of many-body systems and their
dynamics. As a side result, we provided a method to construct
easily a set of approximate canonical wave functions and/or
natural orbitals with correct quantum numbers, which can
be improved while a solution to the many-body problem is
constructed.
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APPENDIX

We will review here the Bogoliubov-Valatin formalism and
the definition of the canonical wave functions. As Klich [101]
has shown, the same formalism can be used to characterize
the entanglement entropy of any noninteracting system par-
titioned into two complementary parts. At the same time the
reader should be aware that the definition of the entanglement
entropy is not unique, as there are many different way to
partition a system into two subsystems and we refer the reader
to reviews where these differences have been discussed in
rather great detail [102–105].

The creation α
†
k and annihilation αk quasiparticle operators

are represented with a unitary transformation from the field
operators as follows [10]:

α
†
k =

∫
dξ [uk (ξ )ψ†(ξ ) + vk (ξ )ψ (ξ )], (A1)

αk =
∫

dξ [v∗
k (ξ )ψ†(ξ ) + u∗

k (ξ )ψ (ξ )], (A2)

and with the reverse relations

ψ†(ξ ) =
∑∫

k
[u∗

k (ξ )α†
k + vk (ξ )αk], (A3)

ψ (ξ ) =
∑∫

k
[v∗

k (ξ )α†
k + uk (ξ )αk]. (A4)

Here ψ†(ξ ) and ψ (ξ ) are the field operators for the creation
and annihilation of a particle with coordinate ξ = (r, σ, τ ),
(uk (ξ ), vk (ξ ))T are the quasiparticle wave functions, and the
integral implies also a summation over discrete variables
when appropriate. In a finite volume, with periodic boundary
conditions, the index k is always discrete. For a finite isolated
system in vacuum [112,140] the sum over k stands for a
summation over the discrete indices and an integral over the
continuous ones, respectively.

The Hermitian number density and the skew-symmetric
anomalous density matrices are defined as

n(ξ, ζ ) = 〈�|ψ†(ζ )ψ (ξ )|�〉 =
∑∫

k
v∗

k (ξ )vk (ζ ), (A5)

n(ξ, ζ ) = 〈�|ψ (ξ )ψ†(ζ )|�〉 =
∑∫

k
uk (ξ )u∗

k (ζ ), (A6)

κ (ξ, ζ ) = 〈�|ψ (ζ )ψ (ξ )|�〉 =
∑∫

k
v∗

k (ξ )uk (ζ ) (A7)

n(ξ, ζ ) + n(ξ, ζ ) = δ(ξ − ζ ), (A8)

where the quasiparticle vacuum is defined as

αk|�〉 = 0, |�〉 = N
∏

k

αk|0〉, 〈�|αkα
†
l |�〉 = δkl ,

(A9)

and N is a normalization factor (determined up to an arbitrary
phase), αk|0〉 �= 0, and |0〉 is the vacuum state. For any k, if
the norm

∫
dξ |vk (ξ )|2 = 0 the corresponding factor αk should

be skipped in the definition of |�〉. The new density matrix
n(ξ, ζ ) is used in the discussion of the canonical basis set.2

The anticommutation relations for the field operators
ψ†(ξ ), ψ (ξ ) and for the quasiparticle operators α

†
k , αk imply

that [10]∫
dξ [u∗

k (ξ )ul (ξ ) + v∗
k (ξ )vl (ξ )] = δkl , (A10)∫

dξ [uk (ξ )vl (ξ ) + vk (ξ )ul (ξ )]y = 0, (A11)

2The wave functions vk (ξ ) can be considered either as the vectors
labeled by k with components enumerated by ξ or as the vectors
labeled by ξ and components enumerated by k. Thus n(ξ, ζ ) is the
complex scalar product of vectors with labels ξ and ζ , while 〈vk |vl〉
is the complex scalar product of vectors k and l .
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∑∫
k

[uk (ξ )u∗
k (ζ ) + v∗

k (ξ )vk (ζ )] = δ(ξ − ζ ), (A12)

∑∫
k

[uk (ξ )v∗
k (ζ ) + v∗

k (ξ )uk (ζ )] = 0. (A13)

Equation (A12) means that the quasiparticle wave functions
uk (ξ ), vk (ξ ) form (in general) an overcomplete set, as for an
arbitrary function g(ξ ) one has the decomposition

g(ξ ) =
∑∫

k
uk (ξ )

∫
dζ u∗

k (ζ )g(ζ )

+
∑∫

k
v∗

k (ξ )
∫

dζ vk (ζ )g(ζ ). (A14)

Additionally one can show that [10]

∫
dζ [n(ξ, ζ )n(ζ , η) + κ (ξ, ζ )κ†(ζ , η)] = n(ξ, η), (A15)∫
dζ n(ξ, ζ )κ (ζ , η) =

∫
dζ κ (ξ, ζ )n∗(ζ , η). (A16)

For a finite system the quasiparticle components vk (ξ )
always have a finite norm [112]

∫
dξ |vk (ξ )|2 < ∞, (A17)

unlike the quasiparticle components uk (ξ ), which can be ei-
ther normalizable or not in an infinite volume. The index k
can be either discrete or continuous, respectively.

One can consider an arbitrary unitary transformation
UU† = I (where I is the identity operator) of the quasiparticle
wave functions

ṽl =
∑∫

k
Uklvk, vk =

∑∫
l
U∗

kl ṽl , (A18)

ũl =
∑∫

k
Ukluk, uk =

∑∫
l
U∗

kl ũl , (A19)

which leaves the normal and anomalous density matrices un-
changed. This type of transformation for quasiparticle wave
functions was suggested in Refs. [123,141] in order to si-
multaneously diagonalize the overlap matrices 〈vk|vl〉 and
〈uk|ul〉. Only the canonical occupation probabilities are in-
variant with respect to arbitrary unitary transformations U
mentioned above and one can then show that

n(ξ, ζ ) =
∑∫

k
nkφ

∗
k (ξ )φk (ζ ), (A20)

κ (ξ, ζ ) =
∑∫

k

√
nk (1 − nk )φ∗

k
(ξ )φk (ζ ), (A21)

where

φ∗
k
(ξ ) = 1√

nk (1 − nk )

∫
dζ κ (ξ, ζ )φ∗

k (ζ ), (A22)

〈φk|φ∗
k
〉 = 0, 〈φ∗

k
|φ∗

k
〉 = 1, (A23)∫

dζ n(ξ, ζ )φ∗
k
(ζ ) = nkφ

∗
k
(ξ ), (A24)

where only 0 < nk < 1 contribute in Eqs. (A21) and (A22)
and Eqs. (A23) and (A24) follow from Eqs. (5), (A15), and
(A16).

In the Hartree-Fock (HF) approximation the situation is
much simpler; since nk = 0 or 1, the anomalous density
vanishes and the occupation probabilities are defined in the
representation which simultaneously diagonalizes the num-
ber density matrix and the mean field, and in that particular
representation the occupation probabilities have a straight-
forward physical interpretation. In the presence of pairing
correlations one can introduce a generalized density matrix
[10], which commutes with the generalized mean field. How-
ever, in that representation the normal number density has
the form given by Eq. (A5), where 〈vk|vl〉 �= nkδkl . One can
define the occupation probabilities either as nk = 〈vk|vk〉 in
the representation in which the generalized mean field is di-
agonal, or instead use the canonical occupation probabilities
nk from Eq. (5) and define the single-particle energies as
ek = 〈φk|H |φk〉, where H is the normal mean-field single-
particle Hamiltonian within the Hartree-Fock-Bogoliubov
(HFB) and superfluid local density approximation (SLDA)
frameworks, and in which case 〈φk|H |φl〉 �= 0 if k �= l . The
simple relationship between the HF occupation probabilities
and the single-particle energies thus becomes more difficult
to interpret physically and justify within HFB and SLDA
frameworks.3

Since the total particle number is not well defined within
HFB and SLDA, as the gauge symmetry is broken, one has
to restore this symmetry. In the canonical representation the
gauge symmetry is significantly easier to restore [123,141].
The many-body wave function acquires the well-known BCS
form |�〉 = �k (uk + vka†

ka†
k
)|0〉 [6], where ak|0〉 = 0, u2

k +
v2

k = 1, and nk = v2
k and various other gauge-symmetry-

restored observables can be easily extracted [123].
The quasiparticle representation in which the generalized

number density matrix and the generalized mean field com-
mute is particularly suited for numerically determining the
corresponding static many-body wave function |�〉, only if
one uses diagonalization methods. The diagonalization, which
is typically numerically very expensive, can be eschewed
[142], as both normal and anomalous densities can be de-
termined without the knowledge of the quasiparticle wave
functions (qpwfs) and of the corresponding quasiparticle en-
ergies.

3Any many-fermion system, either superfluid or normal, can be
described using the same formalism, as one can introduce a normal
number density matrix [Eq. (A20)] and an “anomalous number den-
sity” [Eq. (A21)] with the functions vk (ξ ) = √

nkφk (ξ ) and uk (ξ ) =√
1 − nkφk (ξ ) [101].
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