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Shape isomers of α-like nuclei in terms of the multiconfigurational dynamical symmetry
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Background: The shape isomers of the N = Z = even nuclei are known from the energy-surface calculations
within the Bloch-Brink (BB) α-cluster model and Nilsson model. As an alternative, a new method (called SCS)
has been proposed recently for determining the stable shapes, which is based on the investigation of the stability
and consistency of the SU(3) symmetry (or quadrupole deformation).
Purpose: We wish to derive the shape isomers of the α-like nuclei from the SCS method and compare them
with the results of the energy-surface calculation. Furthermore, we intend to study the consequences of the
stable symmetries. In particular, we investigate (i) what kind of binary clusterizations are structurally allowed
for the shape isomers and (ii) if energy spectra similar to those of the BB model can be obtained with a simple
dynamically symmetric Hamiltonian.
Methods: We determine the stability and self-consistency of the quadrupole deformation from a systematic
calculation with the Nilsson model by applying the concept of the quasidynamical U(3) symmetry. The allowed
cluster configurations are determined from the application of the U(3) and UST(4) selection rules. The forbidden
ones are characterized quantitatively. The energy spectrum is calculated with a simple dynamically symmetric
Hamiltonian of the multiconfigurational dynamical symmetry (MUSY), which proved to be useful for the
description of some experimental spectra.
Results: The shape isomers found from the SCS method are in good agreement with the results of the energy
surface method (BB and Nilsson models). Their allowed binary clusterizations are obtained from structural
selection rules, but they give a hint for the available reaction channels, too. Last, a very simple energy functional
is able to reproduce the gross features of their energy spectra in a large range of excitation energy and
deformation.
Conclusions: The similarity of the shape isomers from two very different methods gives a strong support to these
predictions. The reasonable reproduction of the energy distribution of the “ground-band heads” is especially
remarkable, considering the fact that MUSY is able to produce the complete spectra in detail, not only the
energy minima.
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I. INTRODUCTION

The appearance of different stable shapes (shape isomers)
in many-body systems is a frequent phenomenon, and their
investigation attracts much attention both from the experi-
mental and from the theoretical sides. In atomic nuclei the
ground states usually have a moderate deformation, but in
several cases superdeformed states have been observed. They
have an approximately ellipsoidal shape of major axes with
ratio 2:1:1. Experimental evidence seems to accumulate also
for hyperdeformed states (of ratio 3:1:1). Theoretical studies
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predict more exotic configurations as well, e.g., linear chain
of α particles in N = Z = even nuclei.

Recently, symmetry-related studies added interesting new
aspects to this topic. One of them is the discovery of emer-
gent symmetries. In particular, approximately valid SU(3) and
symplectic symmetries were found from large-scale calcula-
tions which were carried out with nonsymmetric interactions
[1–4]. Both model interactions as well as realistic nucleon-
nucleon forces were applied in these studies. The symmetry
diagnostics of the wave function revealed that the SU(3)
and symplectic symmetries are valid to a good approxi-
mation. This is a surprising finding, considering that no
symmetry-related model assumptions are assumed. Especially
remarkable is the presence of these symmetries in ab initio
calculations, when all nucleons are treated uniformly, and
realistic nucleon-nucleon forces govern their behavior. These
results led to the conclusion that the nuclear dynamics is
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dominated by a few stable deformations [3,4], with vibrational
excitations.

The understanding of the interrelation between fundamen-
tal structure models has also been deepened recently by
the discovery of a connecting dynamical symmetry, called
MUSY. This symmetry bridges the shell, collective, and
cluster models to each other [5,6] for the multi-major-shell
problem. Since MUSY plays an important role in our study,
we briefly summarize its basic features in the next section.
Here we just mention that it has several interesting applica-
tions with remarkable predictive power.

In this work we derive the shape isomers of the α-like
nuclei from the study of the stability and self-consistency of
the U(3) [or SU(3)] symmetry, or since it is uniquely related to
the quadrupole deformation [7], one can say from the stability
and self-consistency of the deformation. This method is called
SCS, abbreviating stability and consistency of the SU(3) sym-
metry, and it is an alternative to the usual energy-minimum
calculation. The U(3) symmetry, which is investigated in SCS
[8], connects the shell and collective models (as it is discussed
more in detail later). The calculations are based on the Nilsson
model, which includes symmetry-breaking interactions, too.
Therefore, the stable shapes revealed by our SCS method are
examples of emergent symmetries, too.

The most systematic search for the stable shapes of the α-
like nuclei was carried out within the framework of the Bloch-
Brink α-cluster model [9–11] and the Nilsson model [12]. We
compare our results with these ones.

We determine also the allowed binary clusterizations of the
shape isomers by applying (microscopic) U(3) and UST(4)
selection rules. Since the cluster configurations are closely
related to reaction channels (one can say that they are actu-
ally defined by reaction channels), the determination of the
allowed clusterizations carries important information on the
reactions which can populate the shape isomers.

Owing to the effect of the antisymmetrization, different
cluster configurations can have large overlap with each other
or with the shell configuration. In some cases the overlap can
be complete, that is 100%. For the U(3) basis states of the
different configurations, this total overlap can be picked up
easily, and we do so. Hence, we select those configurations
which are identical with each other [up to the validity of the
U(3) symmetry, which turns out to be a good approximation].

The energy spectra of shape isomers are obtained from a
dynamically symmetric Hamiltonian of MUSY, which proved
to be useful in describing experimental data. In particular, it
could reproduce the gross features of the spectra of different
configurations (shell, or quartet, core-plus-α, heavy clusters)
in a wide range of energy and deformation [5,6,13–15]. Here
we address the question if this simple energy functional is able
to produce spectra similar to those of the BB cluster model,
which contain many local energy minima. The MUSY ap-
plications to energy spectra incorporated so far two [5,14] or
three valleys [13,15]. It is worth noting, however, that MUSY
gives full spectra, not only the energy minima, and in some
cases a detailed spectrum of heavy-ion resonances [14] or α

particles [16] could be obtained as a parameter-free prediction
in good agreement with the observation. Here we wish to
reveal if the simple dynamically symmetric Hamiltonian (with

two or three parameters) is capable of reproducing the location
of many minima of an energy surface.

In what follows first we summarize some characteristics
of MUSY in Sec. II, and then we determine the shape iso-
mers of α-like nuclei from the SCS method, based on the
Nilsson model and the concept of quasidynamical symme-
try in Sec. III. The results are compared with those of the
energy-surface calculations, based on the Nilsson and the
α-cluster models. The possible binary clusterizations of the
shape isomers are obtained in Sec. IV, and Sec. V contains
some discussion on the cluster-shell coexistence. The energy
spectra are presented in Sec. VI. Finally the conclusions are
drawn in Sec. VII.

II. MULTICONFIGURATIONAL DYNAMICAL
SYMMETRY

The key role of the SU(3) symmetry in connecting the
spherical shell model, the quadrupole collective model and
the cluster model is known since 1958 [17–19]. First the
connection was found for the single-shell problem. In short
we can say that their common intersection is provided
by the

U(3) ⊃ SU(3) ⊃ SO(3) (1)

dynamical symmetry.
It took a long time until symmetry-governed models for

the multi-major-shell problem were developed in the shell
[20,21], collective [22,23], and cluster [24,25] pictures, and
their connection was revealed [5,6]. It turns out that the inter-
section of these fundamental models is given by a dynamical
symmetry that is a generalization of the previous one:

Us(3) ⊗ Ue(3) ⊃ U(3) ⊃ SU(3) ⊃ SO(3), (2)

called multiconfigurational dynamical symmetry (MUSY).
Here Us(3) indicates the symmetry of valence shell in the
shell and (microscopic) collective model, and the internal
cluster symmetry in the cluster model, while Ue(3) stands
for major shell excitation (meaning relative motion in the
cluster picture). A further symmetry in the particle-index
pseudospace connects the different configurations with each
other and can guide us to derive physical operators that are
invariant with respect to the connecting transformations [5].
Therefore, MUSY is a composite symmetry of composite
systems. The systems contain two or more configurations,
each of them shows a dynamical symmetry of type (2), and
a further symmetry connects the different components to each
other.

An interesting feature of MUSY is that it shows a dual
breaking of symmetries: the larger U(3) and SU(3) sym-
metries are broken dynamically, due to the presence of
symmetry-breaking interactions (see below), while the ro-
tational SO(3) symmetry is spontaneously broken in the
eigenvalue problem of the intrinsic Hamiltonian [26]. The
spontaneous breaking results in deformed shape in the intrin-
sic system: quadrupole deformation in the shell model and
more exotic molecular shape in the cluster model. This kind
of dual breaking of symmetries is a common feature of many
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dynamical symmetries of the algebraic structure models [27],
including the Elliott model, as their prototype [17].

III. SHAPE ISOMERS

A. Method of calculation

Here we employ the SU(3) symmetry to explore the pos-
sible shape isomers of 4N-nuclei (with N = 3, 4,. . . , 11) by
examining the stability and self-consistency of the quadrupole
deformation parameters.

Note that the SU(3) here is a quasidynamical (or effective)
symmetry [28–30], a generalization of the original SU(3)
applied by Elliot [17], and it is more broadly usable compared
to the simple one. The latter is known to be valid for the
ground-state region of light nuclei. At the excited states where
the real SU(3) is not well defined, one has to utilize the
quasidynamical symmetry. Nevertheless, whenever the simple
symmetry is valid, both of the symmetries coincide.

The method of calculation is developed from the observa-
tion that the asymptotic Nilsson-state of the many-nucleon
system is an intrinsic state of the quasidynamical SU(3)
symmetry [30]. Originally, the method was defined for large
prolate deformation [30], and later it was extended to the
oblate side as well as to small deformations [31]. The details
are discussed in Ref. [8], and here we summarize merely the
basic steps.

(1) Derive the asymptotic Nilsson states by solving the
eigenvalue problem of the deformed but cylindrically
symmetric Hamiltonian,

H = − h̄2

2M
� + M

2

[
ω2

⊥(x2 + y2) + ω2
z z2]

− C(�l · �s) − D�l2,

where the last two terms are due to the spin-orbit
interaction and angular momentum. The elongation
parameter

ε = ω⊥ − ωz

ω0
with ωz = ω0

(
1 − 2

3
ε

)
,

ω⊥ = ω0

(
1 + 1

3
ε

)

is related to the more common deformation parameter
β by ε ≈ 0.95β [8].

(2) Determine the Nilsson orbitals as a function of the
quadrupole deformation parameters and then obtain
the many-particle state by filling them with nucleons
following the energy-minimum and Pauli exclusion
principles.

(3) Diagonalize the deformed Hamiltonian of a triaxial
shape with the deformed harmonic oscillator potential,

V = M

2

(
ω2

x x2 + ω2
y y2 + ω2

z z2
)
, (3)

in cylindrical coordinates. Thereafter, expand the Nils-
son orbitals of a given deformation (ε, γ ) in terms of
the asymptotic Nilsson states derived previously [31].

FIG. 1. A schematic illustration of finding stable shape isomers
based on the stability and self-consistency of the SU(3) symmetry.

(4) Determine the effective SU(3) quantum numbers
(λ,μ) from the linear combinations of the single
particle orbitals and from the relations of the large
deformation [30].

(5) These effective quantum numbers can be converted to
the quadrupole deformation parameters [32],

β2 = 16π

5N2
0

(λ2 + μ2 + λμ), γ = arctan

√
3μ

2λ + μ
,

(4)

where N0 = n1 + n2 + n3 + 3
2 (A − 1) with A as the

mass number of the nucleus is the number of oscillator
quanta, n1, n2, n3 are U(3) quantum numbers related
to the SU(3) counterparts by λ = n1 − n2 and μ =
n2 − n3. Thereby, one can examine the stability and
self-consistency of both the effective SU(3) quantum
numbers and the deformation parameters.

B. Stable shapes

Constructing graphs of the output parameters as a function
of the input ones, we witness a pattern of step functions, a
schematic demonstration is given in Fig. 1. The shape isomers
associated with U(3) quantum numbers [n1, n2, n3] are deter-
mined in the plateauing zones, shown in Figs. 2 and 3. Note
that the major axes of the ellipsoidal shape of the nucleus can
be characterized by the SU(3) quantum numbers as follows:

a

c
= n1 + A

2

n3 + A
2

and
b

c
= n2 + A

2

n3 + A
2

. (5)

The results demonstrate a strong concurrence with the
configurations calculated by the Bloch-Brink cluster model
in Refs. [9–11]. A comparison between the SCS and energy-
surface calculation, including the Nilsson model [12] as well,
is given in Table I.
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FIG. 2. Shape isomers given by the U(3) quantum numbers [n1, n2, n3] of some 4N-nuclei obtained from the stability and self-consistency
of the quasidynamical SU(3) symmetry. The calculation is carried out for different values of the deformation parameter γ with step of 10◦.
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FIG. 3. Analogous to Fig. 2.

IV. CLUSTERIZATION OF THE SHAPE ISOMERS

Here we explore the possible binary clusterizations of
the shape isomers aforenamed. In particular, we examine all
possible combinations of two stable nuclei (8Be is, despite
being unstable, included for systematic purpose). We apply
the U(3) selection rule for the space part and the spin-isospin
U(4) selection rule for the other degrees of freedom. In this
consideration, the clusters are supposed to be in their intrinsic
ground state, as the corresponding (free) nuclei. As for the
shape and orientation of the clusters are concerned, no restric-
tion is applied. Arbitrary quadrupole deformation and relative
orientation are allowed.

The U(3) selection rule (which can be applied also
for multicluster systems [33]) for a binary clusterization
requires

[n1, n2, n3] = [
nA

1 , nA
2 , nA

3

] ⊗ [
nB

1 , nB
2 , nB

3

] ⊗ [nR, 0, 0], (6)

where [n1, n2, n3] is the U(3) irreducible representation (ir-
rep) of the parent nucleus, while the first two factors on the
right-hand side are the U(3) irreps of the two clusters and the
last one stems from the relative motion.

The U(3) selection rule copes with space symmetry, and
hence it is possible to quantitize the geometrical difference
between the quadrupole shapes of the combination of the two
clusters (with their relative motion) and of the parent nucleus
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TABLE I. Comparison of shape isomers discovered by the Nilsson energy surface calculation [12], the Bloch-Brink (BB) (α-cluster)
model [9–11], and by the stability and self-consistency of the SU(3) symmetry (SCS) [8]. For the first, the ratio of harmonic frequencies
ωx:y:z = ωx : ωy : ωz is given with the deformation parameters. Meanwhile, for the second, the α configuration of each state, the corresponding
shell configuration, its excitation energy E (MeV), and the U(3) quantum numbers [n1, n2, n3] derived from the configuration are provided. The
abbreviations of the α configurations are the following: GS for ground state, α-ch for the linear α chain, e.tri for equilateral triangle, ttrh for
tetrahedral shape, bpy for bipyramidal, a.bpy for asymmetric bipyramid, tri for triaxial, h.tri for highly deformed triaxial, pro for prolate, ob for
oblate, h.ob for highly deformed oblate. The notation 2D(◦ : ◦) implies a two-dimensional configuration with ωy : ωx given in the parentheses.
Last, for the SCS method, the results are given as U(3) quantum numbers, and the deformation parameters. The abbreviations in the names of
the discovered shape isomers are: GS for ground state, α-ch for the linear α chain, SD for superdeformed state, HD for hyperdeformed state,
Tri for triaxial, Pr for prolate, Ob for oblate, VP for very deformed prolate, EP for extreme prolate, and asym for asymmetric; in some cases,
the subscripts appear and their values are h̄ω.

Energy surface Bloch-Brink α-cluster model SCS method

Nucl. h̄ω ωx:y:z (γ , ε) α-conf. Shell conf. E U(3) Shape U(3)eff (γ , ε) a : b : c

12C 0 2:1:1 (60,0.83) GSe.tri (1)−4 0.00 [4,4,0] GS(Ob) [4,4,0] (60,0.5) 1.7:1.7:1
4 3:3:1 (0,1.11) α-ch (1)4(2)4 7.90 [12,0,0] α-ch [12,0,0] (0,1.3) 3:1:1

16O 0 1:1:1 (0,0) GSttrh (1)12 0.00 [4,4,4] GS [4,4,4] (0,0) 1:1:1
4 4:2:1 (43,1.04) kite (1)−4[20]4 17.41 [12,4,0] SD [12,3,1] (9.8,0.8) 2.2:1.2:1
12 4:4:1 (0,1.2) α-ch (1)4(2)4(3)4 18.90 [24,0,0] α-ch [24,0,0] (0,1.6) 4:1:1

20Ne 0 2:2:1 (0,0.4) GSbpy [200]4 0.00 [12,4,4] GS [12,4,4] (0,0.5) 1.6:1:1
0 a.bpya [200]4 1.60 [12,4,4] asym [10,6,4] (19.1,0.3) 1.4:1.1:1
4 8:3:2 (50,1.17) 2D(3:2) (1)−4[20]4[11]4 20.03 [16,8,0] SD(Tri) [14,10,0] (43.9,0.7) 2.4:2:1
8 2D(3:1) (1)−4[20]4[30]4 24.98 [24,4,0] HD [24,3,1] (4.5,1.2) 3.1:1.2:1
20 5:5:1 (0,1.25) α-ch (1)4(2)4(3)4(4)4 31.70 [40,0,0] α-ch [40,0,0] (0,1.8) 5:1:1

24Mg 0 4:3:2 (20,0.45) GStri [200]4[101]4 0.00 [16,8,4] GS [16,7,5] (9.8,0.5) 1.6:1.1:1
0 Tri0 [13,10,5] (38.2,0.3) 1.5:1.3:1
4 (0,1.0) pro [200]4[300]4 14.18 [24,4,4] SD(Pr) [24,4,4] (0,0.9) 2.2:1:1
4 3:1:1 (60,1.23) 2D(1:1)b (1)−4[20]4[11]4[02]4 24.94 [16,16,0] SD(Ob) [16,16,0] (60,0.7) 2.3:2.3:1
4 triangleb (1)−4[20]4[11]4[02]4 27.22 [16,16,0]
8 5:2:1 (42,1.26) 2D(2:1) (1)−4[20]4[11]4[30]4 25.68 [28,8,0] Tri8 [27,6,3] (6.6,1) 2.6:1.2:1
8 Ob8 [21,15,0] (43.9,0.8) 2.8:2.2:1
16 HD [40,3,1] (2.6,1.5) 4:1.2:1
32 6:6:1 (0,1.25) α-ch (1)4(2)4(3)4(4)4(5)4 45.50 [60,0,0] α-ch [60,0,0] (0,1.9) 6:1:1

28Si 0 Ob0 [14,13,9] (49,0.19) 1.2:1.2:1
0 3:3:2 (0,0.45) GS(pro) [200]4[110]4[101]4 0.00 [20,8,8] Pr0 [19,9,8] (4.7,0.4) 1.5:1.0:1
0 2:1:1 (60,0.49) ob [200]4[110]4[020]4 2.40 [16,16,4] GS [16,15,5] (55.3,0.4) 1.6:1.5:1
4 tri [200]4[110]4[300]4 12.70 [28,8,4] Tri4 [27,8,5] (7.2,0.8) 2.2:1.2:1
8 h.ob (1)−4[20]4[11]4[02]4[21]4 32.27 [24,20,0] Ob8 [24,20,0] (51.1,0.8) 2.7:2.4:1
8 2D(3:2) (1)−4[20]4[11]4[02]4[30]4 38.85 [28,16,0] Tri8 [26,11,7] (11.5,0.6) 1.9:1.2:1
8 (60,1.35)
12 (0,1.0) pro [200]4[300]4[400]4 26.20 [40,4,4] HD [40,4,4] (0,1.2) 3:1:1
12 tri (1)−4[20]4[11]4[30]4[21]4 37.37 [36,12,0] Tri12 [35,8,5] (5.2,1) 2.6:1.2:1
16 6:3:1 (35,1.32) VP16 [43,6,3] (3.9,1.3) 3.4:1.2:1
28 EP28 [60,3,1] (1.7,1.7) 4.9:1.1:1
48 α-ch (1)4(2)4(3)4(4)4(5)4(6)4 60.20 [84,0,0] α-ch [84,0,0] (0,2) 7:1:1

32S 0 Ob0 [16,16,12] (60,0.1) 1.1:1.1:1
0 5:4:3 (20,0.21) GStri [011]−4[002]−4 0.00 [20,16,8] GS [19,14,11] (21.8,0.2) 1.3:1.1:1
0 pro [020]−4[002]−4 4.30 [20,12,12]
4 2:2:1 (0,0.68) S(2:1)c [200]4[101]4[110]4[300]4 3.20 [32,8,8] SD(Pr) [31,9,8] (2.2,0.7) 2:1:1
4 h.ob [200]4[110]4[020]4[210]4 13.40 [24,20,4] SD(Ob) [24,20,4] (49.1,0.6) 2:1.8:1
12 2D(3:2) (1)−4[20]4[11]4[02]4[30]4[21]4 43.10 [36,20,0] Tri [36,20,0] (33.7,0.9) 3.2:2.2:1
12 10:3:2 (54,1.42)
12 (0,1.0) HD12 [44,7,5] (2.6,1.1) 2.9:1.1:1
20 (30,1.3) 2D(4:1) (1)−4[20]4[11]4[21]4[30]4[40]4 45.69 [52,12,0] HD20 [51,8,5] (3.3,1.2) 3.2:1.1:1
24 pro [200]4[300]4[400]4[500]4 45.50 [60,4,4] EP24 [60,4,4] (0,1.5) 3.8:1:1
68 α-ch (1)4(2)4(3)4(4)4(5)4(6)4(7)4 75.50 [112,0,0] α-ch [112,0,0] (0,2.1) 8:1:1
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TABLE I. (Continued.)

Energy surface Bloch-Brink α-cluster model SCS method

Nucl. h̄ω ωx:y:z (γ , ε) α-conf. Shell conf. E U(3) Shape U(3)eff (γ , ε) a : b : c

36Ar 0 3:2:2 (60,0.29) GS(ob) (2)−4 0.00 [20,20,12] GS [20,19,13] (52.4,0.2) 1.2:1.2:1
4 Ob4 [26,22,8] (47.8,0.5) 1.7:1.5:1
4 h.tri [200]4[110]4[101]4[020]4[300]4 16.80 [32,16,8] Pr4 [30,15,11] (11.5,0.5) 1.7:1.1:1
8 (7,0.74) SD(Pr) [39,12,9] (5.2,0.8) 2.1:1.1:1
8 SD(Ob) [30,25,5] (49.1,0.6) 2.1:1.9:1

12 h.tri [200]4[110]4[101]4[300]4[400]4 24.00 [48,8,8] SD12 [48,8,8] (0,1) 2.5:1:1
16 2D(4:1)d (1)−4[20]4[11]4[02]4[30]4[21]4[12]4 63.00 [40,28,0]
16 (55,1.45)
16 HD(Pr) [51,10,7] (3.5,1.1) 2.8:1.1:1
20 (47,1.33) 2D(2:1) (1)−4[20]4[11]4[02]4[30]4[21]4[40]4 62.71 [52,20,0]
20 HD(Ob) [40,32,0] (49.1,0.9) 3.2:2.8:1
24 EP24 [63,8,5] (2.6,1.3) 3.5:1.1:1
28 2D(3:1) (1)−4[20]4[11]4[30]4[21]4[40]4[31]4 69.52 [64,16,0]
92 α-ch (1)4(2)4(3)4(4)4(5)4(6)4(7)4(8)4 91.30 [144,0,0] α-ch [144,0,0] (0,2.2) 9:1:1

40Ca 0 1:1:1 (0,0) GSttrh
e (2)24 0.00 [20,20,20] GS [20,20,20] (0,0) 1:1:1

4 7:5:4 (50,0.45) Ob4 [28,23,13] (40.9,0.3) 1.5:1.3:1
8 SD(Pr) [38,17,13] (8.6,0.6) 1.8:1.1:1

12 SD(Ob) [36,31,5] (51.4,0.7) 2.2:2:1
16 (5,0.84) b(3D)f [200]4[110]4[101]4[300]4[210]4 38.10 [56,12,8] HD(Pr) [56,12,8] (4.3,1) 2.7:1.1:1

[400]4

20 2D(1:1)g (1)−4[20]4[11]4[02]4[30]4[21]4[12]4 95.33 [40,40,0]
[03]4

20 (60,1.5)
24 HD(Ob) [46,38,0] (50.6,0.9) 3.3:2.9:1
24 2D(3:2)h (1)−4[20]4[11]4[02]4[30]4[21]4[12]4 91.29 [56,28,0] Pr24 [52,19,13] (8.2,0.8) 2.2:1.2:1

[40]4

32 2D(5:2) (1)−4[20]4[11]4[02]4[30]4[21]4[40]4 98.64 [72,20,0] EP32 [77,8,7] (0.7,1.4) 3.6:1:1
[50]4

40 2D(4:1) (1)−4[20]4[11]4[30]4[21]4[40]4[31]4 99.69 [84,16,0] EP40 [87,8,5] (1.8,1.5) 4.3:1.1:1
[50]4

44 EP44 [88,10,6] (2.5,1.5) 4.2:1.2:1
88 EP88 [144,3,1] (0.7,2.1) 7.8:1.1:1
120 α-ch (1)4(2)4(3)4(4)4(5)4(6)4(7)4(8)4 107.70 [180,0,0] α-chi [180,0,0] (0,2.3) 10:1:1

(9)4

44Ti 0 3:3:2 (0,0.18) GS(pro) [300]4 0.00 [32,20,20] GS [30,22,20] (10.9,0.2) 1.2:1:1
4 (38,0.52) Tri4 [34,28,14] (43,0.4) 1.6:1.4:1

12 SD(Pr) [54,17,13] (5.1,0.8) 2.2:1.1:1
16 (0,0.86) 3:1j [200]4[101]4[110]4[300]4[210]4 35.10 [64,12,12] Pr16 [63,13,12] (1,1) 2.5:1:1

[201]4[400]4

24 2D(4:3) (1)−4[20]4[11]4[02]4[30]4[21]4[12]4 95.49 [52,44,0] Ob24 [50,46,0] (55.9,0.9) 3.3:3.1:1
[03]4[31]4

24 (60,1.5) HD(Pr) [75,12,9] (2.3,1.2) 3.1:1.1:1
28 2D(4:3)k (1)−4[20]4[11]4[02]4[30]4[21]4[12]4 92.89 [68,32,0] Tri28 [66,20,14] (6.1,0.9) 2.4:1.2:1

[40]4[31]4

[40]4[31]4

36 HD(Pr) [80,17,11] (4.5,1.2) 3.1:1.2:1
48 2D(5:2) (1)−4[20]4[11]4[21]4[30]4[40]4[31]4 103.04 [100,20,0] EP48 [105,9,6] (1.5,1.6) 4.5:1.1:1

[50]4[41]4

by introducing the so-called reciprocal forbiddenness with the
following definition [34]:

S = 1

1 + min
√

(�n1)2 + (�n2)2 + (�n3)2
. (7)

Here �ni = |ni − nc
i,k|, where ni stands for the U(3) irrep

of the parent nucleus and nc
i,k refers to the U(3) irrep of

the channel—the index k distinguishes the different product
representations obtained from the right-hand side of Eq. (6).
Based on this formula, the values S ≈ 0 and S ≈ 1 im-
ply completely forbidden and completely allowed cluster
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TABLE I. (Continued.)

Energy surface Bloch-Brink α-cluster model SCS method

Nucl. h̄ω ωx:y:z (γ , ε) α-conf. Shell conf. E U(3) Shape U(3)eff (γ , ε) a : b : c

52 EP52 [106,11,7] (2,1.6) 4.4:1.1:1
84 EP84 [148,6,2] (1.4,2) 7.1:1.2:1

148 α-ch (1)4(2)4(3)4(4)4(5)4(6)4(7)4(8)4 124.40 [220,0,0] α-chl [220,0,0] (0,2.3) 11:1:1
(9)4(10)4

aThis configuration is similar to the bipyramid one, but the α clusters on the symmetry axis are not equally separated from the center of mass
of the three other clusters; four of the clusters in fact from an 16O structure [11].
bAccording to the authors of Ref. [10], these two configurations are probably not orthogonal, since they share the configuration and very similar
energies.
cThe state S(2 : 1) has an 16O-16O structure and corresponds to a pure deformed harmonic oscillator state [11].
dThe authors of Ref. [10] found another shape isomer with the same shell configuration of slightly different energy, 64.57 MeV. Nevertheless,
they did not specify the difference between these two configurations, but both of them can be assigned to be a 4p4h excitation of the state with
ωy : ωx = 4 : 1.
eThough this nucleus has a spherical shell-model ground state [11].
fIt has an 16O-8Be-16O structure [11].
gThe authors of [10] observed three other shape isomers having the same shell configuration but of different energies (95.71, 96.24, and 96.66
MeV). They were thought to be the same physical state, since they have nearly equal binding energies and more or less the same shape, and
more importantly they have the same shell-model limit.
hThe authors of Ref. [10] discovered another shape isomer having the same shell configuration but of different energy, 95.33 MeV.
iDue to technical limitation of our program, this state was found by a manual calculation.
jThis state is part of a family which starts with the α − α − α chain state in 12C and extends up to 48Cr [11]. Indeed, it has 16O −12 C −16 O
structure.
kThe authors of [10] found also a shape isomer with the same shell configuration of binding energy 93.49 MeV. Though they did not specify
the difference between these two configurations, both of them can be interpreted as a 4p4h excitation of the state with ωy : ωx = 4 : 3 or
ωy : ωx = 5 : 2; the geometries support the former one.
lDue to technical limitation of our program, this state was found by a manual calculation.

configurations, respectively. The results are displayed in
Figs. 4 and 5. Note that there are several shape isomers and
each may have more than one candidate because of the uncer-
tainty of the effective quantum numbers, thus we manifest all
possibilities for merely 12C,16 O,20 Ne. Regarding to heavier
nuclei, in addition to all shapes derived by the Bloch-Brink
α-cluster model [9–11], only those from the SCS calculation

FIG. 4. Reciprocal forbiddenness as a function of the mass num-
ber of the lighter cluster for the different shape isomers of 12C. The
colored lines are just to guide the eye. Here, the continuous lines of
different colors represent different shape isomers.

that show strong agreement with the α-cluster model and can
be expressed by a simple shell configuration are displayed.

The UST(4) selection rule, unlike its U(3) counterpart,
deals with spin-isospin symmetry and does not subsume the
term belonging to the relative motion; it assumes

[ f1, f2, f3, f4] = [
f A
1 , f A

2 , f A
3 , f A

4

] ⊗ [
f B
1 , f B

2 , f B
3 , f B

4

]
, (8)

where the left-hand side is the U(4) symmetry of the parent
nucleus, while the right-hand side subsumes the U(4) symme-
tries of the two clusters.

A summary—containing all completely allowed binary
cluster configurations for all candidates of every shape
isomer—is tabulated in Table II.

V. CLUSTER-SHELL COEXISTENCE

The shell model and the cluster model are based on dif-
ferent physical pictures; thus, when we visualize these states
naively, they are very different. In a phenomenological ap-
proach, they have orthogonal wave functions. The effect of
the antisymmetrization, however, washes out somewhat the
drastic difference between the models. As a result, the shell
and cluster states may have finite overlap. This overlap can
be considerable, sometimes even 100%. The same is the case
with different cluster configurations.

As mentioned above, the U(3) symmetry was found as
the common overlap between the shell and cluster models as
early as 1958, wherefore the U(3) basis states can be a pure
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FIG. 5. Analogous to Fig. 4 for 16O,20 Ne,24 Mg,28 Si,32 S,36 Ar,40 Ca,44 Ti. Here the dotted lines indicate other candidates (effective
symmetry) for the same shape isomer which is displayed by the continuous line of the same color.
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TABLE II. Application of the U(3) and UST(4) selection rules to determine possible binary clusterizations for different states of 4N-nuclei
obtained from the SCS calculation and from the α-cluster (BB) model. The states are represented by U(3) quantum numbers. Those which
are in italic format were achieved only from the BB model. The investigation was carried out only for stable isotopes in addition to 8Be for
systematic reason. Note that in this table, only completely allowed configurations are demonstrated, i.e., the reciprocal forbiddenness S = 1.

Nucl. State Possible clusterizations

12C [4,4,0] 1H + 11B, 2H + 10B, 3He + 9Be, 4He + 8Be, 6Li + 6Li
[12,0,0] 4He + 8Be, 6Li + 6Li

16O [4,4,4] 1H + 15N, 2H + 14N, 3He + 13C, 4He + 12C, 6Li + 10B, 7Li + 9Be, 8Be + 8Be
[12,4,0] 4He + 12C, 6Li + 10B, 7Li + 9Be, 8Be + 8Be
[12,3,1] 6Li + 10B, 7Li + 9Be, 8Be + 8Be
[24,0,0] 8Be + 8Be

20Ne [12,4,4] 1H + 19F, 2H + 18O, 3He + 17O, 4He + 16O, 6Li + 14N, 7Li + 13C, 8Be + 12C, 9Be + 11B, 10B + 10B
[10,6,4] 1H + 19F, 2H + 18O, 3He + 17O, 6Li + 14N, 7Li + 13C, 8Be + 12C, 9Be + 11B, 10B + 10B
[16,8,0] 8Be + 12C, 9Be + 11B, 10B + 10B
[24,4,0] 8Be + 12C, 9Be + 11B, 10B + 10B
[24,3,1] 9Be + 11B

24Mg [16,8,4] 1H + 23Na, 2H + 22Ne, 3He + 21Ne, 4He + 20Ne, 6Li + 18O, 7Li + 17O, 8Be + 16O, 9Be + 15N,
10B + 14N, 11B + 13C, 12C + 12C

[16,7,5] 1H + 23Na, 2H + 22Ne, 3He + 21Ne, 6Li + 18O, 7Li + 17O, 9Be + 15N, 10B + 14N, 11B + 13C,
12C + 12C

[13,10,5] 3He + 21Ne
[24,4,4] 4He + 20Ne, 6Li + 18O, 7Li + 17O, 8Be + 16O, 9Be + 15N, 10B + 14N, 11B + 13C, 12C + 12C
[28,8,0] 12C + 12C
[27,6,3] 9Be + 15N, 10B + 14N, 11B + 13C, 12C + 12C

28Si [20,8,8] 1H + 27Al, 2H + 26Mg, 3He + 25Mg, 4He + 24Mg, 6Li + 22Ne, 7Li + 21Ne, 8Be + 20Ne, 9Be + 19F,
10B + 18O, 11B + 17O, 12C + 16O, 13C + 15N, 14N + 14N

[19,9,8] 1H + 27Al, 2H + 26Mg, 3He + 25Mg, 4He + 24Mg, 6Li + 22Ne, 7Li + 21Ne, 8Be + 20Ne, 9Be + 19F,
10B + 18O, 11B + 17O

[16,16,4] 4He + 24Mg, 6Li + 22Ne, 7Li + 21Ne, 8Be + 20Ne
[16,15,5] 4He + 24Mg, 6Li + 22Ne, 7Li + 21Ne, 8Be + 20Ne
[28,8,4] 4He + 24Mg, 6Li + 22Ne, 7Li + 21Ne, 8Be + 20Ne, 9Be + 19F, 10B + 18O, 11B + 17O, 12C + 16O,

13C + 15N, 14N + 14N
[27,8,5] 3He + 25Mg, 4He + 24Mg, 6Li + 22Ne, 7Li + 21Ne, 8Be + 20Ne, 9Be + 19F, 10B + 18O, 11B + 17O,

12C + 16O, 13C + 15N, 14N + 14N
[26,11,7] 1H + 27Al, 2H + 26Mg, 3He + 25Mg, 4He + 24Mg, 6Li + 22Ne, 7Li + 21Ne, 8Be + 20Ne, 9Be + 19F,

10B + 18O,
[40,4,4] 8Be + 20Ne
[35,8,5] 3He + 25Mg, 4He + 24Mg, 6Li + 22Ne, 7Li + 21Ne, 8Be + 20Ne, 9Be + 19F, 10B + 18O, 11B + 17O,

12C + 16O, 13C + 15N, 14N + 14N
32S [16,16,12] 4He + 28Si, 8Be + 24Mg

[20,16,8] 1H + 31P, 2H + 30Si, 3He + 29Si, 4He + 28Si, 6Li + 26Mg, 7Li + 25Mg, 8Be + 24Mg, 9Be + 23Na,
10B + 22Ne, 11B + 21Ne, 12C + 20Ne

[19,14,11] 7Li + 25Mg, 8Be + 24Mg, 9Be + 23Na
[20,12,12] 2H + 30Si, 8Be + 24Mg
[32,8,8] 6Li + 26Mg, 7Li + 25Mg, 8Be + 24Mg, 9Be + 23Na, 10B + 22Ne, 11B + 21Ne, 12C + 20Ne, 13C + 19F,

14N + 18O, 15N + 17O, 16O + 16O
[31,9,8] 6Li + 26Mg, 7Li + 25Mg, 8Be + 24Mg, 9Be + 23Na, 10B + 22Ne, 11B + 21Ne, 12C + 20Ne, 13C + 19F,

14N + 18O, 15N + 17O
[24,20,4] 8Be + 24Mg
[44,7,5] 9Be + 23Na, 10B + 22Ne, 11B + 21Ne
[51,8,5] 7Li + 25Mg, 8Be + 24Mg, 9Be + 23Na, 10B + 22Ne, 11B + 21Ne, 12C + 20Ne, 13C + 19F

36Ar [20,20,12] 1H + 35Cl, 2H + 34S, 3He + 33S, 4He + 32S, 6Li + 30Si, 7Li + 29Si, 8Be + 28Si, 9Be + 27Al,
10B + 26Mg, 11B + 25Mg, 12C + 24Mg

[20,19,13] 1H + 35Cl, 2H + 34S, 3He + 33S, 4He + 32S, 6Li + 30Si, 7Li + 29Si, 8Be + 28Si,
[26,22,8] 6Li + 30Si, 7Li + 29Si, 9Be + 27Al, 10B + 26Mg
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TABLE II. (Continued.)

Nucl. State Possible clusterizations

[32,16,8] 4He + 32S, 6Li + 30Si, 7Li + 29Si, 8Be + 28Si, 9Be + 27Al, 10B + 26Mg, 11B + 25Mg, 12C + 24Mg,
13C + 23Na, 14N + 22Ne, 15N + 21Ne, 16O + 20Ne, 17O + 19F, 18O + 18O

[30,15,11] 6Li + 30Si, 7Li + 29Si, 9Be + 27Al, 10B + 26Mg, 11B + 25Mg, 12C + 24Mg, 13C + 23Na
[39,12,9] 6Li + 30Si, 7Li + 29Si, 9Be + 27Al, 10B + 26Mg, 11B + 25Mg, 12C + 24Mg, 13C + 23Na, 14N + 22Ne,

15N + 21Ne, 17O + 19F, 18O + 18O
[48,8,8] 9Be + 27Al, 10B + 26Mg, 11B + 25Mg, 12C + 24Mg, 13C + 23Na, 14N + 22Ne, 15N + 21Ne, 16O + 20Ne,

17O + 19F, 18O + 18O
[51,10,7] 9Be + 27Al, 10B + 26Mg, 11B + 25Mg, 12C + 24Mg, 13C + 23Na, 14N + 22Ne, 15N + 21Ne

40Ca [20,20,20] 1H + 39K, 2H + 38Ar, 3He + 37Cl, 4He + 36Ar, 4He + 36S, 6Li + 34S, 7Li + 33S, 8Be + 32S, 12C + 28Si
[28,23,13] 7Li + 33S, 8Be + 32S, 9Be + 31P, 10B + 30Si, 11B + 29Si
[38,17,13] 7Li + 33S, 8Be + 32S, 9Be + 31P, 10B + 30Si, 11B + 29Si, 12C + 28Si, 17O + 23Na, 18O + 22Ne,

19F + 21Ne, 20Ne + 20Ne
[56,12,8] 13C + 27Al, 14N + 26Mg, 15N + 25Mg, 16O + 24Mg, 17O + 23Na, 18O + 22Ne, 19F + 21Ne, 20Ne + 20Ne

[52,19,13] 6Li + 34S, 7Li + 33S, 8Be + 32S, 10B + 30Si, 11B + 29Si, 17O + 23Na, 18O + 22Ne, 19F + 21Ne,
20Ne + 20Ne

[63,15,10] 9Be + 31P, 10B + 30Si, 11B + 29Si, 13C + 27Al, 14N + 26Mg, 15N + 25Mg, 16O + 24Mg, 17O + 23Na,
18O + 22Ne, 19F + 21Ne, 20Ne + 20Ne

44Ti [32,20,20] 1H + 43Ca, 2H + 42Ca, 3He + 41K, 4He + 40Ar, 4He + 40Ca, 4He + 40K, 6Li + 38Ar, 7Li + 37Cl,
8Be + 36Ar, 8Be + 36S, 9Be + 35Cl, 10B + 34S, 11B + 33S, 12C + 32S, 16O + 28Si, 20Ne + 24Mg,
21Ne + 23Na, 22Ne + 22Ne

[30,22,20] 1H + 43Ca, 2H + 42Ca, 3He + 41K, 6Li + 38Ar, 7Li + 37Cl, 8Be + 36Ar, 8Be + 36S, 9Be + 35Cl,
10B + 34S, 11B + 33S, 12C + 32S

[54,17,13] 11B + 33S, 12C + 32S, 13C + 31P, 14N + 30Si, 15N + 29Si, 17O + 27Al, 18O + 26Mg, 19F + 25Mg,
20Ne + 24Mg, 21Ne + 23Na, 22Ne + 22Ne

[64,12,12] 17O + 27Al, 18O + 26Mg, 19F + 25Mg, 20Ne + 24Mg, 21Ne + 23Na, 22Ne + 22Ne
[63,13,12] 22Ne + 22Ne
[75,12,9] 19F + 25Mg, 20Ne + 24Mg, 21Ne + 23Na, 22Ne + 22Ne
[66,20,14] 7Li + 37Cl, 8Be + 36Ar, 8Be + 36S, 9Be + 35Cl, 10B + 34S, 11B + 33S, 12C + 32S, 13C + 31P,

14N + 30Si, 15N + 29Si, 21Ne + 23Na, 17O + 27Al, 18O + 26Mg, 19F + 25Mg, 20Ne + 24Mg,
21Ne + 23Na, 22Ne + 22Ne

[80,17,11] 12C + 32S, 13C + 31P, 14N + 30Si, 15N + 29Si, 17O + 27Al, 18O + 26Mg, 19F + 25Mg, 20Ne + 24Mg,
21Ne + 23Na, 22Ne + 22Ne

shell model and a pure cluster state at the same time. This
situation happens when the multiplicity of the basis state is 1.
In such a case, the cluster-model wave function can be written
as a linear combination of a single term of the shell basis
[of the relevant U(3) symmetry], i.e., they are identical. This
phenomenon is well known for some ground (and low-lying)
states of light nuclei for a long time.

It turns out that (i) stable U(3) symmetry characterizes sev-
eral high-lying states, with large deformation, as well, which
are known as the shape isomers. Furthermore, (ii) many of
them have the same simple shell connection, as those found
earlier in the ground-state region.

Here we investigate this question for the shape isomers,
described in the previous sections. In particular, Table III
lists those shell configurations which have single multiplicity,
and their possible binary clusterizations in terms of α-like
clusters. When a shape isomer has more than one candidate
for the U(3) symmetry, we take the one which corresponds
to a simple shell configuration, which usually coincides with
the ones obtained from the α-cluster calculations. Figure 6
shows the shell and cluster configurations with wave functions
of 100% overlap.

VI. ENERGY SPECTRA

A. The energy functional

In MUSY-based studies, one usually applies a simple dy-
namically symmetric Hamiltonian. In spite of its simplicity,
however, it seems to be able to describe the gross features
of the spectra, including spectra of the ground-state region,
as well as those of the superdeformed and hyperdeformed
minima [13]. It is expressed in terms of the invariant operators
of the group-chain: U(3) ⊃ SU(3) ⊃ SO(3) basis [14]:

H = (h̄ω)n + aC(2)
SU(3) + bC(3)

SU(3) + d
1

2θ
L2, (9)

where the first constituent is the harmonic oscillator Hamil-
tonian, the second one possessing the eigenvalue λ2 + μ2 +
λμ + 3(λ + μ) stems from the quadrupole-quadrupole inter-
action, the third operator with the expected value (λ − μ)(λ +
2μ + 3)(2λ + μ + 3) splits the degeneracy of the prolate
and oblate shapes, and the last one is related to the three-
dimensional rotation. This Hamiltonian is symmetric with
respect to transformations between the different configura-
tions [5].
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TABLE III. Shell-model multiplicity 1 representations with possible α-like clusterizations from the BB-model and SCS calculations. The
ones in italic format are from the BB model, but very close correspondent was found in SCS, too.

Nucl. h̄ω State Possible α-like clusterizations

12C 0 [4,4,0] 4He + 8Be
4 [12,0,0] 4He + 8Be

16O 0 [4,4,4] 4He + 12C, 8Be + 8Be
4 [12,4,0] 4He + 12C, 8Be + 8Be
12 [24,0,0] 8Be + 8Be

20Ne 0 [12,4,4] 4He + 16O, 8Be + 12C
0 [10,6,4] 8Be + 12C
4 [14,10,0]
4 [16,8,0] 8Be + 12C
8 [24,4,0] 8Be + 12C
20 [40,0,0]

24Mg 0 [16,8,4] 4He + 20Ne, 8Be + 16O, 12C + 12C
0 [13,10,5]
4 [24,4,4] 4He + 20Ne, 8Be + 16O, 12C + 12C
4 [16,16,0]
8 [28,8,0] 12C + 12C
32 [60,0,0]

28Si 0 [20,8,8] 4He + 24Mg, 8Be + 20Ne, 12C + 16O
0 [14,13,9]
0 [16,16,4] 4He + 24Mg, 8Be + 20Ne
4 [28,8,4] 4He + 24Mg, 8Be + 20Ne, 12C + 16O,
8 [24,20,0]
8 [28,16,0]

12 [40,4,4] 8Be + 20Ne
48 [84,0,0]

32S 0 [19,14,11] 8Be + 24Mg
0 [20,16,8] 4He + 28Si, 8Be + 24Mg, 12C + 20Ne
0 [20,12,12] 8Be + 24Mg
4 [31,9,8] 8Be + 24Mg, 12C + 20Ne
4 [32,8,8] 8Be + 24Mg, 12C + 20Ne, 16O + 16O
4 [24,20,4] 8Be + 24Mg
12 [36,20,0]
20 [52,12,0]
24 [60,4,4]
68 [112,0,0]

36Ar 0 [20,20,12] 4He + 32S, 8Be + 28Si, 12C + 24Mg
4 [32,16,8] 4He + 32S, 8Be + 28Si, 12C + 24Mg, 16O + 20Ne
12 [48,8,8] 12C + 24Mg, 16O + 20Ne
16 [40,28,0]
20 [52,20,0]
92 [144,0,0]

40Ca 0 [20,20,20] 4He + 36Ar, 8Be + 32S, 12C + 28Si
16 [56,12,8] 16O + 24Mg, 20Ne + 20Ne
20 [40,40,0]
24 [56,28,0]
32 [72,20,0]
120 [180,0,0]

44Ti 0 [32,20,20] 4He + 40Ca, 8Be + 36Ar, 12C + 32S, 16O + 28Si, 20Ne + 24Mg
0 [30,22,20] 8Be + 36Ar, 12C + 32S
16 [64,12,12] 20Ne + 24Mg
28 [68,32,0]
148 [220,0,0]
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FIG. 6. Some shape isomers (with simple shell configurations) of 12C, 16O, 20Ne, 24Mg, 28Si, 32S, 36Ar, 40Ca, 44Ti are juxtaposed with their
corresponding binary α-like cluster configurations which show 100% overlap with the shell-model wave functions. In front of the square
brackets is the major shell excitation quanta, whereas the U(3) symmetry of the shape is indicated inside the square brackets. The clusters were
drawn in such a way that the z and x axes are in the plane of the paper and are horizontal and vertical, respectively; meanwhile, the y axis is
perpendicular to the plane of the paper.

Here we apply this Hamiltonian for the description of the
energy spectra of the shape isomers of 4N nuclei. Since we
know only the ground-state band head in each local minimum,
the last term of the Hamiltonian is irrelevant in the present
case, i.e.,

H = (h̄ω)n + aC(2)
SU(3) + bC(3)

SU(3). (10)

B. Result

The investigation is carried out using the results of the
BB model [9–11], which were summarized in Table I. To be
specific, we try to determine h̄ω, a, b in Eq. (10) in such a way
that the deviation from the BB energy is the smallest.

In Eq. (10) lie three parameters, thus nuclei equipped with
less than three configurations, namely 8Be and 12C, cannot be
considered.
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FIG. 7. The energy spectra of 12C and 16O calculated by the simple MUSY Hamiltonian H = (h̄ω)n + aC(2)
SU(3) in comparison with that

determined by the α-cluster (BB) model.

In Refs. [9–11], for some heavy nuclei, including

48Cr, 52Fe, 56Ni, 60Zn,

the authors calculated only the energy of the linear α-chain
state, thus the whole spectrum cannot be described.

For the rest of the nuclei, the regression is carried out
utilizing the well-known least square method, in which we
minimize the function

F =
m∑

i=1

(
EMUSY

i − EBB
i

)2
, (11)

where m is the total number of states to be fitted, EMUSY
i and

EBB
i are energies calculated based on the two models—MUSY

and BB—respectively.
We have tested also the performance of an even simpler

Hamiltonian with b = 0, whereby 12C can be examined as
well. That is, Eq. (10) reduces to

H = (h̄ω)n + aC(2)
SU(3). (12)

Please note that for the 16O case one can apply only the two-
parameter functional, too. It has three shape isomers, but due
to the special quantum numbers of its ground state (n = λ =
μ = 0), there are only two equations, so the three-parameter
problem is undefined. The results of both investigations are

presented in in Figs. 7–9, and the parameters are shown in
Table IV, and Fig. 10.

It is blatant that almost every nucleus is governed by the
model in case of three terms in Eq. (10) (except for 28Si, which
has slightly larger deviation—acceptable notwithstanding).
The exclusion of the last element results in larger deviation,
of course, but still showing considerable similarities between
the spectra of the two models.

VII. SUMMARY AND CONCLUSIONS

In this work, we investigated the shape isomers of N =
Z nuclei by applying the multiconfigurational dynamical
symmetry. The shape isomers were obtained from a study
of the stability and self-consistency of the U(3) symmetry.
This is the connecting symmetry of the shell, collective,
and cluster models not only for a single-shell problem, as
uncovered in 1958, but also for the multishell excitations,
where it appears as the united symmetry of the valance
shell (or internal cluster) Us(3) group and the Ue(3) exci-
tation group, Us(3) ⊗ Ue(3) ⊃ U(3). It determines uniquely
the quadrupole shape, thus the stability and self-consistency
of the shape was investigated. The real U(3) is not general
enough to be valid in a large range of deformation and energy,
therefore, the quasidynamical symmetry was applied, which
coincides with the real one when the latter is valid. Nilsson

TABLE IV. Results of the determination of the parameters (in MeV) of the MUSY Hamiltonian. The error of the calculation is determined
by the formula Err2 = F

m = 1
m

∑m
i=1(HMUSY

i − HBB
i )2, where m is the total number of states to be fitted. The closer the error to zero, the more

compatible the MUSY-based energy is with the energy produced in the α-cluster model.

H = (h̄ω)n + aC(2)
SU(3) + bC(3)

SU(3) H = (h̄ω)n + aC(2)
SU(3)

Nucl. h̄ω a b Err h̄ω a Err

12C 5.000 −0.07961 0.000
16O 10.398 −0.16338 0.000
20Ne 9.682 −0.120 0.00024 0.716 7.706 −0.07509 0.819
24Mg 17.093 −0.221 0.00065 1.569 7.968 −0.05783 3.059
28Si 6.902 −0.048 0.00005 3.744 5.702 −0.03004 3.835
32S 8.180 −0.060 0.00010 1.911 4.325 −0.01725 3.808
36Ar 9.781 −0.067 0.00010 2.660 4.954 −0.01734 5.760
40Ca 10.692 −0.063 0.00008 2.901 5.788 −0.01793 10.383
44Ti 8.888 −0.045 0.00005 0.831 4.485 −0.01107 9.550
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FIG. 8. The energy spectrum of 16O, 20Ne, 24Mg, 28Si, 32S calculated by the two simple MUSY Hamiltonians (dots) in comparison with
that determined by the α-cluster (BB) model (triangles). The figures on the left-hand side correspond to H = (h̄ω)n + aC(2)

SU(3) + bC(3)
SU(3), while

those on the right-hand side correspond to H = (h̄ω)n + aC(2)
SU(3).

calculations were performed, and the shape isomers appeared
as plateaus of the physical β parameter as a function of the
input deformation.

Several shape isomers emerged for nuclei ranging from
12C to 44Ti. The results show remarkable similarity to the

previous ones from energy-minimum calculations of the Nils-
son model, and very good agreement with those of the
Bloch-Brink α-cluster model. (The α-model and our SCS
method give more shape isomers than the Nilsson energy
surfaces.)
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FIG. 9. Analogous to Fig. 8 for 36Ar, 40Ca, and 44Ti.

Based on the U(3) and spin-isospin UST(4) selection rules,
the allowed binary cluster configurations of the shape iso-
mers were determined. This is only a necessary condition, of
course, the energetic aspects of the problem were not consid-
ered. Nevertheless, it can be an useful piece of information
even from the experimental viewpoint, in light of the fact
that the cluster configuration and the reaction channels are
uniquely related to each other.

A major point of the present work is the investigation of the
energy distribution of the shape isomers. Beforehand MUSY
was applied for the unified description of the spectra in the
first, second, and third valleys, that is to say, it was used
in the ground, superdeformed and hyperdeformed minima.
A very remarkable founding was that a very simple energy-
functional with only three parameters could reproduce the
experimental spectrum in a large range of excitation energy
and quadrupole deformation. Here we addressed the question

whether the simple dynamically symmetric Hamiltonian is
able to produce realistic energies for the complete spectra of
shape isomers. Due to the fact that the available experimen-
tal data are rather limited, we tried to reproduce the energy
spectra, which were obtained from the BB α-cluster model.
It turns out that the energy of all the shape isomers can be
obtained with a good approximation with a very simple energy
functional, containing only three parameters: the oscillator en-
ergy, the quadrupole force, and a deformation-dependent part
that makes difference between the prolate and oblate shapes.
Furthermore, even the first two terms gave a remarkable con-
currence. In this calculation only a single state, “the ground
state,” was calculated in each valley, since only the local
minima are available from the α-cluster model. It is worth
emphasizing, however, that MUSY allows the determination
of the detailed spectra as well, and not only for a shell or
quartet configuration, but for different clusterizations, as well.
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FIG. 10. Fitted values of h̄ω, a, b (MeV) as functions of N = A/4 for the two simple MUSY Hamiltonians.
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