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Background: The statistical approach is usually applied for the description of electromagnetic decay of the
nucleus with the exception of the lowest excitation energies as well as for the calculation of the interaction of
photons with nuclei, in particular the reaction cross sections. This concept employs nuclear level density (NLD)
and photon strength functions (PSFs).
Purpose: While PSFs and NLD of some well-deformed rare-earth nuclei were measured by several methods,
sometimes with conflicting results, the PSFs of 168Er were addressed only by (γ , γ ′) experiments. On the other
hand, the low-lying levels of 168Er are well studied, including the isomeric state at 1094 keV, which enables
various tests of the statistical approach.
Methods: The γ rays following radiative neutron capture on a 167Er sample were measured with the highly
segmented γ -ray calorimeter Detector for Advanced Neutron Capture Experiments at the Los Alamos Neutron
Science Center. The γ -ray energy spectra for different multiplicities (multistep cascade, or MSC, spectra) were
gathered for many s-wave resonances of both possible spins. Moreover, we were able to detect the decay of the
short-lived isomer and deduce the isomeric ratio for a few resonances.
Results: Analysis of the MSC spectra within the statistical model enabled us to draw conclusions about dipole
PSFs, in particular on the properties of the scissors mode, and NLD. The spectra can be well reproduced
with phenomenological PSFs models but not with any of several models based on quasiparticle random-phase
approximation (QRPA) calculations with different interactions. We showed that nonstatistical effects in feeding
of the isomeric state play a role up to excitation energies of at least about 2 MeV.
Conclusions: Deduced parameters of the scissors mode were found to be similar to those of neighbor well-
deformed even-even Gd and Dy nuclei. Models like that of Kadmenskij, Markushev, and Furman (KMF) or
like the modified generalized Lorentzian (MGLO) model provide a good description of experimental spectra.
In contrast to several previous analyses of well-deformed rare-earth isotopes, we were able to match the
experimental isomeric ratio with statistical model simulations.

DOI: 10.1103/PhysRevC.107.044313

I. INTRODUCTION

In medium- and heavy-mass nuclei complete spectroscopic
information can be experimentally obtained only for levels
at the lowest excitation energies, below 1.5–2 MeV in even-
even nuclei. These limitations originate mainly from the rapid
increase of the nuclear level density (NLD) with excitation en-
ergy. The γ decay of these nuclei at higher excitation energies
is then usually described using the statistical model in terms
of the NLD and a set of photon strength functions (PSFs) for
different transition types. These quantities are essential for
calculations of cross sections in all nuclear reactions involving
photons, which play an important role especially in nuclear
astrophysics [1,2] and in the development of advanced nuclear
reactors [3].

*Corresponding author: knapova@ipnp.mff.cuni.cz

There are many models of both the PSFs and NLD
available in the literature [4,5] and their validation as
well as obtaining further information on the properties of
these quantities is important. The two PSF features that
strongly influence the γ decay of neutron resonances in
well-deformed nuclei are the energy dependence of the gi-
ant electric dipole resonance (GEDR) low-energy tail and
the collective M1 excitation known as the scissors mode
(SM) [6,7].

The use of the statistical approach might not be fully ap-
propriate in the region where we start to miss information on
low-lying levels and where structural effects still could play
a significant role. Nevertheless, the validity of the approach
is difficult to test in this region. Although analyses of neutron
capture data [8–10] and the so-called Oslo method [11–13]
assume its applicability and do not observe significant devi-
ations, the data from (γ , γ ′) reaction cast some doubts; see
discussion and Fig. 43 in Ref. [14].
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In this paper, we investigate the applicability of the sta-
tistical model in this region using 168Er, perhaps the best
studied well-deformed rare-earth nucleus at low excitation
energies. This isotope attracted great attention from both the
experimental and theoretical sides until the 1990s. Most no-
tably, in 1981 Davidson et al. [15] combined high-resolution
bent crystal gamma and beta spectroscopy from the ILL with
resonance and average resonance capture measurements taken
at the BNL reactor. Later, Jungclaus et al. [16] carefully
examined the previous claims about the completeness of the
decay scheme using another high-resolution coincidence mea-
surement of the γ cascades following the thermal neutron
capture. Their conclusion is that the decay scheme is complete
up to 2 and 2.2 MeV for positive and negative parity levels,
respectively; for details see [16] and references therein. Their
findings are, among others, reflected in the latest ENSDF
evaluation [17].

Besides the supposedly complete decay scheme up to at
least 2 MeV, 168Er exhibits another feature: the presence of
an isomer with a half-life T1/2 = 109 ns at excitation energy
of 1094 keV [17]. Study of population of this isomer should
reveal further information on the validity of the statistical
model. In the simulations, the so-called critical energy Ecrit

divides the excitation energies into two domains: the low ex-
citation energies, where the information about levels is taken
from experimental data or evaluations, and the region above
this interval, where the description by NLD and PSFs is used.
In previous resonant neutron capture studies of short-lived
isomers in rare-earth nuclei, with half-lives of tens to hundreds
of ns, the deduced experimental populations were consider-
ably higher than the simulated ones; see Hf results from the
Karlsruhe Total Absorbtion Calorimeter [18] and Lu from
CIRENE [19] and DANCE [20]. Reference [20] also pointed
out the importance of treatment of the low-lying decay scheme
on the isomeric ratio Riso. The authors observed an increase
(by about a fifth) in Riso predicted from the statistical model
simulations when changing Ecrit from 1.4 to 1.9 MeV.

Important information on PSFs and NLD as well as popu-
lation of the isomeric state can be obtained from the analysis
of coincident γ -ray spectra measured in the decay of iso-
lated neutron resonances. These spectra were measured with
the Detector for Advanced Neutron Capture Experiments
(DANCE) [21,22] installed at the pulsed neutron beam at Los
Alamos Neutron Science Center (LANSCE) [23,24] at Los
Alamos National Laboratory.

In Sec. II we describe the experimental techniques to mea-
sure the spectra with the DANCE calorimeter and in Sec. III
the modeling of the statistical γ cascades. Information about
the PSFs and NLD that can be extracted from the measured
spectra is then presented in Sec. IV and the findings are
compared to available data in Sec. V. The results related to
the population of the isomeric state are then given in Sec. VI
and the summary is provided in Sec. VII.

II. EXPERIMENT AND DATA REDUCTION

A. Experimental setup

The experiment was performed at the moderated spallation
neutron source LANSCE [23,24], which produces a white

spectrum of neutrons with energies ranging from subther-
mal to several MeV with a repetition rate of 20 Hz. The
neutrons enter the flight path 14 at the Manuel Lujan Jr.
Neutron Scattering Center and at 20 m from the spallation
target they impinge on the Er sample located in the center
of the DANCE detector [21,22], an array of 160 BaF2 scin-
tillation crystals, which covers a solid angle of � 3.5π . The
9921QB photomultiplier is attached to each DANCE crystal
forming 160 independent detection modules. Each module
serves as a γ spectrometer. A 6-cm-thick 6LiH shell is placed
between the sample and the BaF2 crystals in order to reduce
the scattered neutron flux. In addition to the BaF2 crystals,
the experimental setup includes beam monitors to validate
the stability of the neutron flux. A comprehensive description
of the experimental setup and initial data processing can be
found in Refs. [21,22,25,26].

The 167Er sample, enriched to 91.5% with other Er iso-
topes dominating the composition, was prepared at Oak Ridge
National Laboratory as self-supporting, 1

4 × 1
4 inch metal foil

weighting 20.1 mg.

B. Initial data reduction

The signals from individual modules are processed using
14-bit CAEN VC1730 digitizers with 16 channels, running
at 500 megasamples per second [26]. The scintillation light
emitted by the BaF2 crystals is formed by slow (τ ≈ 600 ns)
and fast (τ ≈ 600 ps) components. Fast (12 ns) and slow
(1 µs) integrals as well as a waveform snippet of the first
80 ns were acquired for each BaF2 event. The fast-to-slow
ratio is used to discriminate γ rays against the α background
from Ra, the chemical homologue of Ba present in the crys-
tals. The spectrum of α particles is then used for run-by-run
energy calibration, together with ancillary measurements of
γ -ray sources (88Y, 22Na). A common software threshold for
deposited γ -ray energy of 200 keV was used for all modules.

All signals arriving within a 6 ns coincidence window were
considered to belong to the same event, which is characterized
by the corresponding neutron energy, obtained by the time-
of-flight technique, and number of firing crystals with the
energy deposited in each of them. Due to Compton scattering,
a single γ ray often deposits its energy in several, usually
neighboring crystals. All adjacent crystals that fired during an
event are therefore combined into a cluster and the number
of clusters that were hit is labeled as the cluster multiplicity
M. The cluster-related observables are used in this work as
the cluster multiplicity is closer to the emitted γ multiplicity
than the crystal multiplicity and some features of the decay are
more pronounced in the respective spectra. When a module of
DANCE triggers a channel in the data acquisition system, the
charge integral of the triggered channel is recorded for 1 µs,
and during this time the module cannot trigger again. This
effect leads to dead time that is monitored and the information
about busy modules is available during further analysis.

Only events corresponding to well-resolved resonances,1

identified from the time-of-flight spectrum, with sufficient

1For analysis of Riso also one off-resonance region was used.

044313-2



PHOTON STRENGTH FUNCTIONS, LEVEL DENSITIES, … PHYSICAL REVIEW C 107, 044313 (2023)

20 30 40 50 60 70 80 90 210 210×2 210×3
Neutron energy (eV)

3
10

410

5
10

In
te

ns
ity

 (
co

un
ts

 p
er

 b
in

)

Experiment J=3 J=4

FIG. 1. Experimental time-of-flight spectrum after transformation to neutron energy for events with M = 2–6 and E� = 7–8 MeV. The
hatched intervals of a given spin correspond to neutron energy regions used in the analysis. There are 2500 logarithmic bins per decade.

statistics were analyzed; see Fig. 1. The spins of these res-
onances are unambiguous [27,28]. Special care was taken to
avoid the neutron energy domains with, on average, too high
number of busy modules, effectively preventing us to gather
information from the strongest resonances at low neutron en-
ergies. It was verified that the spectra from these regions are
distorted [29].

C. Sum-energy and multistep cascade spectra

Spectra of sums of deposited γ -ray energies within an
event, hereafter called the sum-energy spectra, are shown in
Fig. 2 for two resonances of each spin and M = 2–5. The
spectra are normalized to the same total number of events
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FIG. 2. Experimental background-subtracted sum-energy spec-
tra for two Jπ = 3+ and two 4+ neutron resonances and multiplicities
M = 2–5. The red band illustrates the interval E� = 7–8 MeV used
to construct the MSC spectra.

for M = 2–6 in the sum-energy range E� = 7–8 MeV, which
corresponds (within the detector resolution) to the reaction
Q value given practically by the neutron separation energy
Sn = 7.771 MeV [17]. For the resonances under consideration
(En < 1 keV), the incident neutron energy does not signifi-
cantly impact the sum-energy.

The sum-energy spectrum from the 167Er(n, γ ) reaction
consists of (i) the full-energy peak at E� ≈ Sn, corresponding
to events where all the energy of a γ cascade was detected, (ii)
a peak at E� ≈ 6.5 MeV from the cascades feeding the isomer
at 1.094 MeV, (iii) a peak at E� ≈ 1.1 MeV in M = 2 from
the isomeric decay, and (iv) lower-energy tails corresponding
to each of these peaks (i)–(iii), originating from events where
a part of the γ -ray energy escaped the detection. The vast
majority of the cascades going through the isomer are detected
as two separate events corresponding to the feeding and the
decay, as its T1/2 = 109 ns is much longer than the adopted
coincidence window.

In reality, there is a small background contribution in the
sum-energy spectra originating from two different sources.
First, signals from natural β radioactivity in the BaF2 crystals
are observed for low M for E� < 3 MeV. Second, neutrons
scattered from the sample and captured in the BaF2 crystals
give a contribution for low M. As two isotopes of Ba have
Sn > 8.5 MeV, the full-energy peaks from these reactions are
above the full-energy peak from the 167Er capture and indi-
cate the level of background. These background contributions
were subtracted using the spectra from the neighboring off-
resonance regions.

From the events in the E� = 7–8 MeV range (depicted in
Fig. 2 as red bands) we construct the multistep cascade (MSC)
spectra, which correspond to spectra of individual γ -ray en-
ergies deposited within M clusters. Examples of the MSC
spectra from individual resonances are shown in Fig. 3. The
background subtraction in the MSC spectra was performed
analogously to the sum-energy spectra. The presented MSC
spectra inherit the normalization of the sum-energy spectra.
The bin width of 100 keV was chosen for both aforementioned
types of spectra, as it is close to the energy resolution for
low γ -ray energies. To facilitate the comparison of experi-
mental data with model predictions we constructed the mean
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FIG. 3. Experimental background-subtracted MSC spectra for
two Jπ = 3+ and two 4+ neutron resonances and multiplicities M =
2–5.

experimental MSC spectra from 12 resonances with Jπ = 3+
and 15 resonances with Jπ = 4+. In accord with Refs. [10,30],
we computed the mean experimental intensity Iexp and the
fluctuation of the experimental intensity φexp for each bin
using a maximum likelihood fit considering the experimental
uncertainties. In Figs. 6–9 the uncertainty of Iexp is represented
by a full rectangle, while the φexp is displayed as a larger error
bar. Further details can be found in Refs. [10,30].

In principle, we could produce the MSC spectra not only
for transitions with E� = 7–8 MeV but also for other ranges.
The range of E� ≈ 6–7 MeV could be of special interest as
a fraction of the cascades therein corresponds to the decay
of neutron resonances to the isomeric state. However, simula-
tions described below indicated that the contribution of the
cascades feeding the isomeric state to the total number of
detected cascades within E� ≈ 6–7 MeV is smaller than about
20% for each M and the MSC spectra are thus dominated by
the cascades ending at the ground state. We can thus hardly
learn anything important from this E� range and decided not
to present the spectra here. We only note that the comparison
of MSC spectra for this lower E� range gives information
consistent with that presented in this paper; see Ref. [31].

Spectra for M = 1 were not considered in the data analysis
as they are often strongly dominated by background. There
are virtually no events with M > 6 spectra.

D. Determination of isomeric ratio

An interesting feature of 168Er that should allow an ad-
ditional check of applicability of the statistical model and
possibly different PSFs and NLD models is the population
of the Jπ = 4− K-isomeric state at 1.094 MeV. The iso-
meric ratio for states with lifetimes of tens to hundreds ns

and detectable deexcitation (presence of a γ -ray with Eγ �
150 keV) is accessible with reasonable accuracy using
DANCE, as demonstrated by Denis-Petit et al. [20] for iso-
mers of 177Lu.

The half-life of the isomeric state allows detection of its
decay separately from, yet in correlation with, the prompt cas-
cade. To determine the isomeric half-life and ratio, we define
a prompt γ cascade in a way to include the cascades feeding
the isomer and a delayed γ cascade mostly corresponding to
the isomeric decay. We postulate specific cuts on the event
observables in order to flag events as the prompt, delayed, or
other γ cascades. The prompt γ cascade events are those with
M = 2–6 and E� = 5–8 MeV, while the delayed γ cascade
events fall within E� = 0.4–1.0 MeV. We then construct spec-
tra of the time differences between the delayed and the prompt
γ cascades. These spectra are to be fitted by a sum of the iso-
meric exponential decay and a second exponential describing
the accidental coincidences, as not all the cascades falling into
the prompt and delayed cuts originate from the isomer-related
cascades. The half-life and the number of detected isomeric
decays Niso are obtained from the fit [31]. The isomeric ratio
is then calculated from Niso as

Riso = Niso

εfeed εiso
× εpr

Npr
, (1)

where Npr is the number of detected prompts, which is given
by a simple experimental counting. The efficiencies are de-
rived from simulations described in Sec. III. The εiso is the
probability of detecting the isomeric decay as the delayed γ

cascade, the εpr is the efficiency of detecting any cascade as
the prompt γ cascade, and εfeed corresponds to the probability
of detecting a cascade feeding the isomer as the prompt γ

cascade.

III. STATISTICAL MODEL SIMULATIONS

The sum-energy and MSC spectra are products of a com-
plicated interplay between the NLD, PSFs, and nontrivial
detector response. Consequently, NLD and PSFs cannot be
directly extracted from the experimental spectra. We adopted a
trial-and-error approach of comparing experimental spectra to
their simulated counterparts assuming various models of NLD
and PSFs. This allows us to reject many model combinations
and select those giving a reasonable agreement with the exper-
iment. In general, the simulations provide any decay-related
quantity. From quantities of interest, we check the MSC spec-
tra, the isomeric ratio Riso, and the total radiative width 
γ for
individual models in this work.

A. Algorithms

The γ cascades following resonance neutron capture on
167Er were generated under various assumptions about the
NLD and PSFs using the DICEBOX code [32,33]. The response
of the DANCE detector, calculated using a Monte Carlo code
[25] based on the GEANT4 package [34], was subsequently
applied to simulated γ cascades.

In the DICEBOX algorithm, below some critical energy Ecrit ,
the complete decay scheme is taken from existing experi-
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mental data; we adopted those evaluated in Ref. [17]. Above
Ecrit up to the capturing state individual levels and their de-
cay properties are generated using an a priori chosen NLD
function ρ and PSFs S(XL), where X denotes the type (elec-
tric, X ≡ E , or magnetic, X ≡ M) and L the multipolarity
of the transition, XL = E1, M1, and E2. A contribution of
higher multipolarities was neglected. The Porter-Thomas (PT)
fluctuations [35], as well as the internal electron conversion,
are correctly considered in simulations of individual partial
radiative widths 
iγ f ; see [10,32,33].

The set of randomly generated levels and their partial ra-
diative widths is called a nuclear suprarealization (NS). In
reality, decays of various neutron resonances of the same spin
and parity differ only in intensities of primary transitions. To
mimic this behavior we randomly generate the intensities of
primary transitions within a given NS. Each set of primary
decay branching intensities within a given NS is denoted as
a nuclear realization (NR). During the search for appropriate
models of PSFs and NLD (in Sec. IV) we typically simulated
2 × 105 cascades in 20 independent NSs with only one NR
for each model combination. As indicated in Sec. IV D, this
approach seems to be fully justified. The MSC intensities
in the individual bins of MSC spectra were obtained in the
same way as their experimental counterparts including the
normalization.

To check the population of the isomeric state we performed
simulations with a broad range of Ecrit up to 2.418 MeV to
include as many experimentally known levels as possible.
With the highest adopted Ecrit there are already 57 tentative,
10 uncertain, and 3 unknown Jπ assignments out of 130 levels
[17]. This approach is contradictory to our usual method in
which we require at maximum a few uncertain properties
of the low-lying levels below Ecrit , which would be about
2.0 MeV in 168Er. The tentative Jπ assignments were taken
as suggested; for the remaining 13 levels, Jπ was estimated
based on their decay. Nonetheless, after our tests of other
possibilities, it turns out that these uncertainties in the adopted
level scheme do not have significant influence on our results.
A change of Ecrit between about 2.0 and 2.418 MeV has
only a small impact on produced MSC spectra. However,
the reproduction of structures clearly visible in M = 2 and
3 MSC spectra just below 2 MeV is better with higher Ecrit .
As a result, with the exception of the isomeric ratio, we only
present simulations with the highest adopted Ecrit .

We stress that the predicted spectra are not sensitive to the
absolute values of PSFs if the Eγ -dependent ratios of PSFs
for different transition types are kept the same. Therefore we
can probe the Eγ dependence of the PSFs and their relative
contributions rather than the absolute PSF values. The only
quantity obtained from the simulations that depends on the
absolute PSF values is the total radiative width 
γ .

B. Nuclear level density models

Many NLD models are available in the literature. We tested
two different phenomenological models given by closed form
formulas: (i) the back-shifted Fermi gas (BSFG) model and
(ii) the constant-temperature (CT) model. Each of these mod-
els includes adjustable parameters. Two sets of parameters

FIG. 4. Level density models of 168Er tested in our simulations,
summed over all spins and parities. BSFG and CT models for two
different parametrizations (vEB06 from [36] and vEB09 from [37])
are shown together with the HFB calculations [41]. The experimen-
tal NLD data from (3He,3 He′γ ) 166Er were extracted by the Oslo
method [12] The known levels are taken from the ENSDF evaluation
[17].

were tested for each model, corresponding to two different
parametrizations from the works of von Egidy and Bucurescu
[36,37].

In the majority of the simulations, we assumed no par-
ity dependence of the NLD above Ecrit . However, we also
tested the influence of a possible parity dependence using
the formula and parameters from Ref. [38], where the parity
asymmetry disappears around 3 MeV. We further tested the
effect of the even-odd staggering in the spin distribution of
even-even nuclei in the form presented in Ref. [39]. The
staggering was assumed to linearly decrease with excitation
energy and vanish at 4.0 MeV.

Furthermore, we tested the NLD based on the microscopic
calculation within the Hartree-Fock-Bogoliubov (HFB) ap-
proach plus combinatorial method [5,40,41], labeled as the
HFB model below. The calculated level densities usually can-
not reproduce the number of low-lying levels and the average
neutron resonance spacings, therefore the suggested renor-
malization was used [41]. The resulting NLD are spin and
parity dependent and exhibit a much wider spin distribution
than all the above-mentioned models, with the even-odd stag-
gering persisting up to energies near Sn.

The energy dependence of tested NLD models is shown
in Fig. 4 together with the Oslo data for 166Er [12]. Note
that partial NLD of all tested models matches the s-wave
resonance spacing [27].

C. Photon strength function models

The γ decay of neutron resonances is dominated by dipole
transitions. The tested models of dipole PSFs are described
below. In the simulations, we also consider E2 transitions, but
we verified they play a negligible role in the statistical decay
of the nucleus. In all model combinations presented below
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we used the single-particle model of E2 PSF, S(E2) = 1 ×
10−11 MeV−5.

1. Electric dipole PSF

Electric dipole (E1) transitions play a major role for ener-
gies above Sn due to the presence of the GEDR. It is widely
assumed the S(E1) at these energies for axially deformed nuclei
is consistent with the sum of two Lorentzian terms that form
the standard Lorentzian (SLO) model [5]. The GEDR parame-
ters are usually deduced from a fit of the (γ , xn) data. We used
parametrizations based on natEr data. In practice, there are at
least two available GEDR parametrizations of this data, one
in the compilation of Dietrich and Berman [42], the other in
RIPL-3 [5] and a recent review [43]; the latter will be referred
to as RIPL-3 below. These two parametrizations significantly
differ in the absolute value, but their Eγ dependence is almost
identical below Sn. To apply the SLO (or in general any)
model to the γ decay, we need to make assumptions about the
PSF among the excited states. The so-called Brink hypothesis
[44] stating that the PSF depends only on Eγ is invoked for
the SLO model.

The validity of the SLO model for the S(E1) below neutron
separation energy is highly questionable in well-deformed
rare-earth nuclei [9–12] and many different models for this
Eγ region were proposed.

We tested several of these models. One of them was pro-
posed by Kadmenskij, Markushev, and Furman (KMF model)
[45] for spherical and weakly deformed nuclei. Although there
is no theoretical justification for the use of this model in
well-deformed nuclei, it is often adopted also in these cases.
The KMF model introduced a weak PSF dependence on ex-
citation energy of the final level Ex (or nuclear temperature
T = √

(Ex − �P )/a, where �P is the pairing correction and
a is the NLD parameter; both were taken from [37]), violating
the strict form of the Brink hypothesis [44].

A modification of the KMF model, where the temperature
was assumed to be constant (T ≈ 0.3 MeV) was used in
several rare-earth isotopes for PSFs extracted from the 3He
induced reactions by employing the Oslo method [11,12,46].
This model, denoted as KMF-T, also allows the reproduction
of the two-step cascade (TSC) [47] and MSC [9,48] spectra in
other rare-earth nuclei.

Further, the GLO model was introduced for spherical nu-
clei by Chrien [49] to describe the low-energy PSF behavior
by the KMF shape while keeping the SLO dependence near
the GEDR maxima. This model was later generalized by
Kopecky et al. [50] for deformed nuclei by adopting an ad
hoc parameter k, which depends on the nucleus mass. The
recommended value of this parameter was based on the re-
quirement to match the total radiative widths 
γ of the neutron
resonances. As this quantity strongly depends on the NLD
model along with the PSFs for other transition types, we
treated k as a free parameter in our simulations. This model
is known as the enhanced generalized Lorentzian (EGLO)
model. The modified generalized Lorentzian (MGLO) model
was proposed [48] as an alternative to the EGLO model and
employs the same parameter k. MGLO exhibits a significantly
smaller preference for low-energy transitions compared to the

EGLO model and it provided a good agreement with the MSC
spectra for Gd and Dy isotopes [8–10,48]. The MGLO model
is similar to the KMF one for k ≈ 1.5–2. From the above-
discussed list of models, only the SLO and KMF-T follow the
strict form of the Brink hypothesis.

Next we tested two models available in the recent PSF re-
view [4], which provide both S(E1) and S(M1): namely, the PSF
model labeled as QRPA+D1M+0lim based on QRPA (quasi-
particle random-phase approximation) calculations with the
D1M Gogny interaction complemented with a phenomeno-
logical nonzero limit S0lim for Eγ → 0, and the simplified
modified Lorentzian (SMLO) model [51]. We also tested ad-
ditional PSFs based on the QRPA calculations using several
different forms of Skyrme effective interaction [52–54]; for
a brief description of these PSFs see the Appendix. We also
checked the impact of adding the same S0lim as used in [4] to
these calculations.

The γ -ray energy dependence for several S(E1) models is
shown in Fig. 5. Two curves for the MGLO and SMLO model
illustrate their dependence on the nuclear temperature, the
lower curve corresponds to T = 0 (transitions to the ground
state) and the upper one represents primary transitions. PSFs
from QRPA-based models with different interactions can then
be found in Fig. 14.

2. Magnetic dipole PSF

Magnetic dipole (M1) transitions also play an important
role in the γ decay of deformed rare-earth nuclei below Sn.
The impact of M1 transitions is especially due to the pres-
ence of the scissors mode. The SM as a concentration of the
ground-state M1 strength was envisaged from theory [6,7,55]
and discovered in (e, e′) measurements [56,57]. A wealth of
information on the SM was gathered especially in nuclear
resonance fluorescence (NRF) experiments [14,58], which de-
termine the individual reduced transition probabilities B(M1).
The manifestation of the SM in the decay of excited states
(at least approximately obeying the Brink hypothesis) was
then reported from TSC [47,59], MSC [8–10,48], and Oslo
[11,46,60] experiments; the first two techniques confirmed the
M1 character of the mode.

With the exception of the PSF given by the QRPA cal-
culations [51–54] and the SMLO model [51], we described
S(M1) with a composite model S(M1) = S(M1)

SM + S(M1)
SF + S(M1)

SP ,
with the first two terms representing the scissors and spin-flip
(SF) modes of the Lorentzian shape, and the last term the
possible single-particle (SP) contribution, a constant PSF. In
our simulations, the SM was exclusively represented with
a single-resonance term, and the SF with a double-peaked
structure, based on the (p, p′) data [61]. The composite model
aims to describe a potentially complicated behavior of the M1
PSF.

In addition, a strong low-energy PSF enhancement—
reported before from Oslo-type experiments only in lighter
nuclei—was recently observed also in heavier nuclei, in-
cluding rare-earth ones [62]. A possible influence of this
phenomenon was tested as well. A strict validity of the Brink
hypothesis was assumed for all adopted S(M1) models.
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FIG. 5. Photon strength functions as a function of γ -ray energy
for some of the models tested in our simulations. For the Oslo
model (KMF-T) with T = 0.31 MeV the corresponding M1 param-
eters were taken from [12]. The parameters of SM+SF are ESM =
3.2 MeV, 
SM = 1.0 MeV, σSM = 0.5 mb and ESF,1 = 6.2 MeV,

SF,1 = 1.0 MeV, σSF,1 = 1.7 mb and ESF,2 = 7.7 MeV, 
SF,2 = 1.8
MeV, σSF,2 = 2.6 mb. (a) Commonly used E1 and M1 models. The
two curves for MGLO and SMLO models reflect the temperature
dependence of the models, the lower curve corresponds to T = 0
and the upper one to T = √

(Sn − Eγ − �P )/a. (b) The sum of E1
and M1 models from the upper panel. The experimental data on
(3He, 3He

′
γ ) 166Er are from Ref. [12].

D. Efficiencies needed for isomeric ratio

Experimental determination of Riso in Eq. (1) requires
the knowledge of three different efficiencies. All three were
obtained from the GEANT4 simulations of detector response
to individual simulated cascades using the above-specified
conditions. The best models reproducing the MSC spectra to
the ground state were adopted for calculation of εpr and εfeed.
We verified that different models which acceptably describe
the MSC spectra give very similar values of the required
efficiencies. Note that the last efficiency, εiso, is independent
of the used model as it is given by the decay of the isomeric
state adopted from literature [17].

IV. TESTS OF NLD AND PSF MODELS
USING MSC SPECTRA

We compared the mean experimental MSC spectra with
their simulated counterparts to draw conclusions about the

predictions of different NLD and PSFs models. The results
for the available model combinations from the literature
are discussed in Sec. IV A, the spectra for PSFs based on
QRPA calculations with Skyrme interaction are presented in
Sec. IV B, and a search for the optimal combination of NLD
and PSFs is then described in Sec. IV C.

As discussed in detail below, we are very sensitive to some
of the SM properties, especially to its energy ESM. All PSF
models that do not have the scissors mode energy in a narrow
range of ESM ≈ 2.9–3.3 MeV will not be able to provide
satisfactory description of experimental spectra.

To correctly quantify the degree of agreement between the
simulated and experimental MSC spectra, enormously time-
consuming simulations with an extremely large number of
NRs would be needed as the contents of individual bins in
the MSC spectra are mutually correlated in a very compli-
cated fashion and the corresponding correlation matrix is a
priori not known. We tested a simple numerical goodness-
of-fit scoring function, but such a criterion was found to be
largely inconclusive. As a consequence, within the search for
suitable PSFs and NLD models, the degree of agreement was
checked visually. However, we stress that the high sensitivity
of our experimental observables enables us to reject many
models and significantly restrict the parameter space using
this method.

The simulated spectra are plotted as a band, where the
center corresponds to the average value over the set of 20
NSs. The width of the band is given by two standard devia-
tions of the set (the average ±1σ ). Only spectra for M = 2–4
are shown below as there are no visible structures for Eγ �
1 MeV (as indicated for M = 5 in Fig. 3).

A. Model combinations from literature

Predictions of the two models proposed in the recent
PSF review [4], the QRPA+D1M+0lim and the SMLO, are
compared to the average experimental spectra in Fig. 6; the
NLD model, indicated in the figure caption, gives the best
reproduction of experiment. Although the overall description
of the spectra might look reasonable, the agreement is far
from perfect. Specifically, the QRPA+D1M+0lim model has
a problem with the reproduction of Eγ ≈ 2–4 MeV for M = 3
and 4. This is a consequence of the properties of the S(M1) in
the SM region, in particular the aforementioned misalignment
of ESM. The SMLO model predictions yield a different type
of inconsistency: while the SM region in M = 3 and 4 is
described better, the predicted MSC intensities in the center of
M = 2 spectra are considerably larger than the experimental
ones.

Although there are no experimental data from the Oslo
method for 168Er, they exist for the neighbor even-even nu-
cleus 166Er. Similar deformation of the two nuclei should lead
to very similar PSFs in them. We thus decided to test the
PSFs proposed for 166Er in Ref. [12], given by the KMF-T
E1 and SM+SF M1 contributions (we assumed the M1 origin
of “pygmy resonance” near 3 MeV). The use of experimental
NLD from the Oslo measurement [12] is problematic, as the
one proposed for 166Er does not reproduce the resonance
spacing in the 168Er compound nucleus, the Oslo NLD seems
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FIG. 6. Mean experimental MSC spectra for Jπ = 3+ (left) and
4+ (right) neutron resonances and multiplicities M = 2 − 4 com-
pared to the simulated MSC spectra using the QRPA+D1M+0lim
[51] (gray) and the SMLO [51] (blue) PSF models. The HFB calcu-
lated NLD [41] was used for the QRPA+D1M+0lim, and the BSFG
NLD model [37] was used for the SMLO. The mean experimental
intensities and their uncertainties are shown as full red rectangles.
The red error bars correspond to the fluctuation of the intensities. The
simulated MSC spectra are drawn as gray and blue bands correspond-
ing to a two-standard-deviation corridor centered at the average.

to be consistent with BSFG model therein. The predicted
MSC spectra in combination with the BSFG NLD can be
found in Fig. 7. The reproduction of the experimental spectra
with Oslo-based PSFs is better than with the models from
review [4]; the only clear disagreement is visible in M =
2 spectra: the most pronounced difference is the overesti-
mation of intensities from J = 3 resonances for Eγ ≈ 2.5–
5 MeV.

B. PSFs based on QRPA with Skyrme interaction

In addition to the QRPA+D1M+0lim we simulated MSC
spectra also for PSFs based on QRPA calculations with sev-
eral Skyrme effective interaction parametrizations described
in the Appendix; see Fig. 7 and additional figures in [31]. We
decided to check these PSFs in three different ways: (i) by
adopting the exact results of the calculations, (ii) by shifting
the calculated M1 strengths by �E in a way that the strongest
predicted bump below 5 MeV has its centroid at Eγ ≈
3.2 MeV, and (iii) by adding the empirical S0lim to the cal-
culated PSFs.
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FIG. 7. Mean experimental MSC spectra for Jπ = 3+ (left) and
4+ (right) neutron resonances and multiplicities M = 2–4 com-
pared to the simulated MSC spectra using the Oslo [12] (gray) and
QRPA + SkM∗ (blue) PSF models. The HFB calculated NLD [41]
was used for the QRPA + SkM∗, and the BSFG NLD model [37] was
used for the Oslo model. The meaning of the symbols is analogous
to the Fig. 6.

As is evident from Fig. 14 in the Appendix only the SkM∗

interaction predicts the position of the SM in the aforemen-
tioned required range just above 3 MeV. We verified that only
this parametrization can acceptably reproduce the SM region
in M = 3 spectra; all others significantly underestimate the
intensity there. Application of �E improves the agreement
with the experiment near 3 MeV in M = 3 spectra but we have
never reached a simultaneous reproduction of MSC spectra
for all M with any used parametrization; the best reached
agreement is shown in Fig. 7. Predictions are very similar with
both the HFB and BSFG NLD models.

Adding S0lim typically leads to an improvement by re-
duction of the predicted intensity in the center of M = 2
MSC spectra, but it leads to the reduction of the intensity
around Eγ ≈ 3 MeV in M = 3 MSC spectra that worsens the
agreement. The problem with reproduction of the peak near
3 MeV in M = 3 MSC spectra, observed for the majority
of parametrizations without S0lim and for all of them with
S0lim, results from a relative deficit of SM strength around
3 MeV. Note that the two parametrizations that are able to
reproduce the 3-MeV peak in M = 3 MSC spectra without
S0lim, SkM∗, and Vba do not show any peak near 2 MeV in
S(M1); this lower-energy peak from the other parametrizations

044313-8



PHOTON STRENGTH FUNCTIONS, LEVEL DENSITIES, … PHYSICAL REVIEW C 107, 044313 (2023)

5

10

M = 2

20

40

M = 3

+ = 3πJ

2 4 6

20

40

60

80

M = 4

exp.
BSFG
CT

5

10

M = 2

20

40

M = 3

+ = 4πJ

2 4 6

20

40

60

80

M = 4

In
te

ns
ity

 (
ar

b.
 u

ni
ts

)

-ray energy (MeV)γ

FIG. 8. Mean experimental MSC spectra for Jπ = 3+ (left) and
4+ (right) neutron resonances and multiplicities M = 2–4 compared
to the simulated MSC spectra using the BSFG NLD model [37]
(gray) and CT NLD model [37] (blue). The MGLO(k = 3) S(E1)

model and the composite S(M1) model with the adjusted SM param-
eters were used in the simulations. The meaning of the symbols is
analogous to Fig. 6.

surely reduces the 3-MeV peak strength in S(M1). The same
happens if S0lim is considered.

C. Search for optimal PSFs and NLD

The above-tested models do not perfectly reproduce ex-
perimental MSC spectra: there are problems especially with
reproducing the M = 2 central region and the exact position
of the Eγ ≈ 3 MeV structure in M � 3. We thus performed a
search to obtain a better description via sampling of the S(M1)

SP

and S(M1)
SM parameters in combinations with several different

S(E1) and NLD models. The results from this search related
to individual involved quantities are presented below. Simi-
larly to the aforementioned comparisons, we typically have
a problem with simultaneous reproduction of spectra from
both resonance spins and, especially for spectra from J = 3
resonances, with reproduction of the central part of M = 2
and Eγ ≈ 2–3 MeV region in M = 3.

1. Level density

The experimental MSC spectra cannot be reproduced with
the CT model for any tested combination of PSF models. A
very different SM strength was required to describe M = 2
and M > 2 spectra with this NLD model. Figure 8 illustrates
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FIG. 9. Mean experimental MSC spectra for Jπ = 3+ (left) and
4+ (right) neutron resonances and multiplicities M = 2–4 compared
to the simulated MSC spectra using the HFB NLD model [41] (gray)
and the BSFG NLD model [37] with LEE contribution [62] to S(M1)

(blue). The MGLO(k = 3) model for S(E1) and a composite model for
S(M1) with the SM parameters ESM = 3.2 MeV, 
SM = 1.0 MeV, and
σSM = 0.6 mb and zero SSP were used; see also Fig. 5. The meaning
of the symbols is analogous to Fig. 6.

the case where the strong postulated SM leads to a good
agreement for the latter spectra but completely fails in the
reproduction of M = 2. On the other hand, the BSFG and the
HFB models yielded a much better agreement. The best over-
all reproduction was reached with the model based on HFB
calculations [41], which is shown in Fig. 9; predicted spectra
with the BSFG model are very similar (see Fig. 8). The only
deviation for the HFB model from the experimental shape was
observed in M = 2 spectra for spin J = 4, where the central
part of Eγ ≈ 3–5 MeV is underestimated in the simulations.
The BSFG model then slightly overestimates experimental in-
tensities for M > 4 spectra. The results with the BSFG model
were virtually independent of the adopted parametrizations
[36,37] and of the checked even-odd staggering and parity
dependence [38] described in Sec. III B.

2. E1 PSF

We were unable to reproduce the MSC spectra with any
model combination including SLO S(E1), as we cannot match
the experimental multiplicity distribution; in particular, it sig-
nificantly overestimates the central part of M = 2 spectra.
Further, the predictions with the EGLO S(E1) model yield a too
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strong contribution of higher M compared to the experiment
as a result of a large S(E1) at low Eγ .

A reasonable reproduction was achieved only with the
KMF, KMF-T (T = 0.3–0.35 MeV), and MGLO(k = 2–3)
models. Probably the best overall agreement is given by the
MGLO(k = 3) S(E1); see Figs. 8 and 9. The acceptable models
indicate that we cannot confirm or reject the strict validity of
the Brink hypothesis.

3. M1 PSF

The reproduction of bumps near 2.5 MeV in M = 3 and
4 MSC spectra requires a resonance structure in S(M1) near
3 MeV; tests with a resonance in S(E1) never worked. Satisfac-
tory reproduction was provided by ESM = 3.1–3.3 MeV and

SM = 0.8–1.3 MeV almost independently of the employed
E1 PSF model. Especially the sensitivity to the resonance
position is remarkable.

As our simulations are mainly sensitive to the relative
Eγ dependence of the PSFs, the allowed SM strength (given
usually by the maximum cross section σSM) scales with the
absolute value of S(E1). The allowed σSM in combination with
the MGLO(k = 3) in the parametrization from Dietrich and
Berman [42] is σSM = 0.4–0.6 mb. For further discussion of
the SM strength see Sec. V B. The SP part of the composite
S(M1) must be very weak, S(M1)

SP � 2 × 10−9 MeV−3. A larger
S(M1)

SP shifts the multiplicity distribution towards too high val-
ues.

In order to examine the possibility of a low-energy en-
hancement (LEE) of S(M1), we adopted the LEE part of S(M1)

in the same form as proposed by Simon et al. [62]. We were
not able to reproduce the experimental MSC spectra, as the
LEE introduces a large amount of low-Eγ transitions that
result in lack of intensity for low M; see Fig. 9. The LEE part
of S(M1) was also proposed in Ref. [4], albeit more than two
orders of magnitude weaker. Our data are insensitive to such
low LEE.

D. Fluctuations of MSC spectra

In the statistical model, strong fluctuations of individual
decay intensities are assumed for levels above Ecrit; they are
governed by the PT distribution. Within our approach, this
assumption can be tested by comparing the experimental and
simulated fluctuations of the MSC spectra. Such a fluctuation
analysis has already been performed for two even-even Dy
isotopes [10] and 196Pt [30].

The number of observed resonances allowed us to perform
a similar analysis also for the decay of 168Er. For this purpose
we have run extended simulations with 50 NRs within each of
50 NSs for the model reasonably describing MSC spectra to
the ground state, shown in Fig. 10. From these simulations we
determine for the MSC intensity its mean value, μ, the average
expected fluctuations over different NRs within a NS, φ, and
total fluctuations from all NRs and NSs, φT . These quantities
are shown in Fig. 10.

In accord with the Dy and Pt results, the analysis indicates
that the fluctuations among different NRs within a fixed NS,
φ, are dominant and the fluctuations of averages from different
NSs are much smaller. This feature justifies the above-applied
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FIG. 10. Comparison of MSC intensities and their fluctuations
from experiment and extended simulations for both resonance spins
Jπ = 3+ (left) and Jπ = 4+ (right) and M = 2–3. The model combi-
nation labeled HFB in Fig. 9 was used. The experiment is plotted
as in Fig. 6: the green band corresponds to average fluctuations
over NRs (μ ± φ) and the blue band indicates the total fluctuations
(μ ± φT ); for details see Sec. IV D.

use of only one NR from several different NSs for testing the
adequacy of different PSFs and NLD models.

Assuming that the fluctuations are correctly described in
our simulations, we should not only require agreement be-
tween the mean experimental and simulated MSC intensity
but also the estimate of φ should be comparable to φexp. From
Fig. 10 it is clear that φexp < φ for the majority of the bins,
with a typical ratio of about 2, similar to our results in Dy and
Pt.

Although the difference in fluctuations might indicate their
inadequate treatment in the simulations, we have a couple of
comments on the results. First, the tested model combination
does not reproduce experimental spectra perfectly. It is ex-
pected that simulated fluctuations do depend on the adopted
combination of PSFs and especially NLD models; a different
number of simulated levels in the excitation energy interval
corresponding to the Eγ range can significantly change the
simulated fluctuations. Note that even in M = 2 MSC spectra,
Eγ does not directly correspond to the excitation energy. Fur-
thermore, while the assumptions used in the DICEBOX code
seem to be well justified for highly excited states such as
neutron resonances, there might be additional nonstatistical
effects in the decay of levels at energies just above Ecrit , which
might also be responsible for our inability to perfectly repro-
duce the MSC spectra. As a result, it seems rather difficult
to make any definite conclusions about the validity of the
PT fluctuations of individual transition intensities in 168Er.
Nevertheless, the similarity of results in all tested cases points
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TABLE I. Total radiative width of s-wave resonances 
γ based
on the GEDR parametrization from natEr [42]. The parametriza-
tions from [37] were used for the BSFG and CT NLD; 
γ with
parametrizations from [36] are very similar, they differ at most by
3%. Note that rescaling of S(E1) by a constant factor implies the same
rescaling of S(M1), and hence also of 
γ .

Model 
γ

PSF NLD (meV)

QRPA+D1M+0lim [4] HFB 121(3)/82(2)a

SMLO [4] BSFG 115(2)
Oslo [12] BSFG 86(3)
MGLO(k = 3) HFB 138(3)/93(2)a

MGLO(k = 3) CT 56(1)
MGLO(k = 3) BSFG 125(3)
MGLO(k = 3) rescaled BSFG 91(2)
MGLO(k = 2) BSFG 102(2)

Compilation [27] 91.0(16)

aTwo values correspond to 
γ for resonances with spin 3 and 4,
respectively.

out a common issue in the current use of the statistical model,
which needs to be further investigated.

V. COMPARISON WITH OTHER DATA

The proposed PSF and NLD models are similar to those
reproducing the MSC spectra in several well-deformed even-
even rare-earth nuclei [8–10] with different neutron separation
energies and from resonances of different spins and parities.
We thus have a high confidence that the used trial-and-error
approach yields models that are very close to reality.

A. Total radiative width of neutron resonances

The total radiative width 
γ is the only detector-
independent quantity simulated in DICEBOX that depends on
the absolute values of PSFs. Experimentally observed differ-
ences in the individual 
γ from resonance shape analysis of
neutron resonances are caused by fluctuations of intensities
of primary transitions and reach at most a few percent of the
average value 
γ . The calculated values of 
γ for several
model combinations are listed in Table I together with value
from Mughabghab’s compilation [27].


γ is given by a sum of contributions from each type
and multipolarity; in DICEBOX it is approximated by 
γ =

(E1)

γ + 
(M1)
γ + 
(E2)

γ . It turns out that the dominant contri-
bution comes from E1 transitions. The contribution of the
scissors mode is about 15%. The combined contribution of
SF and the E2 transitions reaches at most ≈5%.

As can be seen in Table I, the value of 
γ further signif-
icantly depends on the adopted NLD model. This is due to
the number of levels available for primary transitions, and
the resonance spacing D0. In practice, the NLD models are
typically fixed to experimental D0, hence there is effectively
no dependence on D0. For a given set of PSF models, the
BSFG NLD gives about two times higher 
γ than the CT

one (independently of the checked NLD parametrization). For
these two NLD models the difference in 
γ between two
s-wave resonance spins is smaller than 3%. The HFB model
then yields very different 
γ for resonances of each spin:
for J = 3 ones 
γ is higher by about 10% than the BSFG
NLD prediction, while for J = 4 it gives about 75% of this
value. This difference, presented in Table I, comes from the
very different spin behavior of the HFB model, which shows
significant even-odd spin staggering even at Sn, and is in very
strong disagreement with compiled data [27].

As mentioned in Sec. III C, there are two available GEDR
parametrizations, which significantly differ in the absolute
PSF values below Sn, they thus lead to very different 
γ .

The RIPL-3 parametrization [5,43] yields a simulated 

(E1)
γ

larger by about a factor of 1.35 than the one from Dietrich and
Berman [42]. Their parametrization for natEr is much closer to
the 160Gd one [42], which was used in the studies of the MSC
spectra for well-deformed Gd and Dy isotopes. The RIPL-3
parametrization [5,43] is inconsistent with the original work
[63] and the expectation that the GEDR parameters change
slowly in nuclei of similar mass and deformation, which indi-
cates that the RIPL-3 parametrization should be revisited. As
a result, the 
γ values presented in Table I are calculated with
the natEr GEDR parametrization from Dietrich and Berman
[42].

The model combinations, including MGLO(k = 3) S(E1),
best describing the MSC spectra (see Figs. 8–10), overesti-
mate 
γ . This indicates that actual absolute scale of PSFs
below Sn is not appropriate and/or that the actual NLD model
behaves differently, perhaps in a more complicated fashion
than given by traditionally used models. As mentioned above,
the MSC spectra are not sensitive to the absolute values
of PSFs if their energy-dependent ratios are kept the same.
Hence, ad hoc rescaling of the MGLO(k = 3) S(E1) and corre-
sponding S(M1) below Sn by a factor 0.728 can provide perfect
agreement of 
γ ; see Table I.

B. SM strength

The scissors mode strength can be compared to those from
the NRF and Oslo-type experiments. It is calculated from
S(M1), which best reproduces the MSC spectra. For this com-
parison we adopted the S(M1) deduced in conjunction with
MGLO(k = 3) S(E1) using the natEr GEDR parametrization
from Dietrich and Berman [42]. The absolute scale of both
PSFs and hence strength of the SM are at question because of
the inability to reproduce 
γ ; see our comments in Sec. V A.
As a result, we present the SM strength with and without the
above-mentioned ad hoc rescaling of the PSFs.

To compare our strength to the NRF ones, we calculated
the total M1 contribution

∑
B(M1) as an integral of S(M1)

in the energy region Eγ = 2.7–3.7 MeV. The comparison of
the strength for well-deformed Gd, Dy, and Er even-even
isotopes is given in Fig. 11. Our deduced values

∑
B(M1) =

3.23(88)μ2
N and 2.33(63)μ2

N with and without rescaling, re-
spectively, follow the trend observed in the NRF analyses
[14,58]. Note that the SM contributes to our derived M1
strength by ≈90%.
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FIG. 11. Upper panel: Comparison of the total M1 strength in
the 2.7–3.7 MeV range,

∑
B(M1), for even-even isotopes of Gd, Dy,

and Er as a function of mass number A. Lower panel: Comparison
of the total SM strength

∑
BSM integrated for Eγ = 0–10 MeV.

Our values from analysis of the MSC spectra for 168Er are plotted
together with analogous Gd [8,9] and Dy [10] results, data from
(γ , γ ′) measurements [14,58], and Oslo method results for 166Er [12]
and Dy [64].

Furthermore, we determined the total SM strength
∑

BSM

as an integral of SSM over the range 0–10 MeV and compared
it to the results from Oslo experiments for the Dy and Er
even-even isotopes; see Fig. 11. The only Oslo result for
Er is available for 166Er. Our values,

∑
BSM = 5.20(162)μ2

N
and 3.74(116)μ2

N with and without rescaling, respectively, are
consistent with the value obtained for 166Er [12].

VI. ISOMERIC RATIO

A. Experimental isomeric ratio

Determination of the Riso required resonances with suffi-
cient statistics and that are well separated in time of flight to
avoid the contribution of the decay from the neighboring ones.
We determined the Riso only for a fraction of the resonances
used in the analysis of the MSC spectra. In addition, we were
also able to obtain Riso for neutron energies En = 0.2–0.25 eV.
This range, with a contribution from both resonance spins
(about 23% of Jπ = 3+ based on [27]), offered very high
statistics and was used for the check of the method as it
allowed rather precise determination of the isomeric half-life.
The experimental values of the Riso obtained from Eq. (1)
together with the deduced half-lives for individual resonances
are presented in Table II. The given uncertainties come only
from the uncertainty of the fit. All but one values of half-life
are 2σ compatible with the literature value T1/2 = 109.0(7) ns
coming from the ENSDF evaluation of 168Tm ε decay [17].

The efficiencies needed for the determination of Riso [see
Eq. (1)] were estimated using the model combination labeled
HFB in Fig. 9; see also Fig. 5. The combined relative un-
certainty from all efficiencies is below 2%. All models that
reasonably reproduced the MSC spectra yielded efficiencies
consistent within this uncertainty.

TABLE II. The experimental results on the isomeric ratio. The
uncertainties are only from the fit.

Jπ Eres (eV) T1/2 (ns) Riso (%)

3+ 22.02 112.4(28) 17.3(5)
39.43 103.0(31) 13.8(6)
42.23 107.4(41) 15.2(11)
59.96 109.8(46) 13.9(12)
85.42 106.9(118) 15.3(22)
107.6 109.8(28) 11.9(4)

4+ 50.19 105.8(34) 20.6(10)
69.43 117.4(46) 27.1(13)
91.20 119.1(61) 24.4(17)
184.7 123.1(61) 26.9(21)
217.2 121.4(76) 28.3(29)

0.2–0.25 109.2(18) 23.6(3)

As the individual values are expected to fluctuate, we de-
termined the mean value and the width of the distribution
considering experimental uncertainties (similarly to the con-
struction of the mean experimental MSC spectra). The mean
Riso are 14.5(8)% and 25.0(14)% and the widths of the dis-
tribution σRiso = 1.7(6)% and 2.5(10)% for Jπ = 3+ and 4+
resonances, respectively. Using these mean values we expect
the population about 22.6(11)% in the En = 0.2–0.25 eV,
consistent with the experimental value of 23.6(3)%. The Riso

determined from intensities of depopulating transitions re-
ported in the ENSDF (nth, γ ) evaluation is 26.6(10)% [17];
our mean values yield 21.4(10)% considering the contribu-
tions of each resonance spin to the thermal energy from
[27]. We have two comments on this. First, the ENSDF
gives intensities of the isomeric decay as the average from
two measurements [65,66]; the newer one reports intensities
systematically smaller by about 5–10% than the ENSDF av-
erage. The use of the intensities from Ref. [66] would thus
slightly reduce the reported depopulation in the thermal cap-
ture. Second, the isomeric ratio from individual resonances
shows fluctuations, and their estimate σRiso indicates that they
are rather large. The contributions of first three resonances
dominate the Riso values both at thermal energy and in the
En = 0.2–0.25 eV interval (with different contributions). The
Riso = 23.6% in the En = 0.2–0.25 eV interval implies that
Riso for 0.46 eV resonance is �25%. This value makes it
impossible to reach Riso ≈ 26% at thermal energy, because the
0.46 eV resonance dominates with 2/3 contribution at thermal
energy and all J = 3 resonances have lower Riso. We have not
found any solid explanation for this inconsistency.

B. Simulated isomeric ratio

Experimental Riso can be compared to the values obtained
from the DICEBOX predictions. Rich information on the levels
of 168Er at low excitation energy allowed us to check the
impact of the possible “nonstatistical” effects on Riso present
in the decay of levels up to about 2.4 MeV. Such a check was
performed using a series of simulations with different Ecrit;
the results are presented in Fig. 12.
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FIG. 12. Predicted Riso as a function of the critical energy for
capturing state spins J = 3 (upper panel) and 4 (lower panel) using
the model combination labeled HFB in Fig. 9; see also Fig. 5. For
simulations the fill corresponds to the width of the distribution of
values from individual NRs, while the error bar shows the overall
fluctuation over all NSs and NRs. The average experimental value
with its uncertainty is indicated by full and dashed lines, respectively.
The width of the distribution is shown as a red band. The excitation
energies of the isomer, isomer-feeding levels, and other levels are
marked by the blue, black, and magenta lines, respectively.

The predicted Riso is significantly lower than the actual one
if we completely neglect any “structural” effects above the
isomer (considering the lowest checked Ecrit). The observed
increase of the simulated Riso is then caused by the presence
of levels dominantly decaying to the isomer. Let us denote
such a level, which feeds not necessarily directly the isomer,
as an isomer-feeding level. In the case of 168Er the distinction
of the low-lying levels is often clear, e.g., the Jπ = 6− level
at 1760.8 keV decays (both directly and indirectly) mostly
to the two lowest-lying positive-parity rotational bands and
is definitely not an isomer-feeding level. On the other hand,
the 6− level at a very similar energy of 1773.2 keV decays
exclusively to the isomeric rotational band and is without any
doubt an isomer-feeding level; see Fig. 13. For more compli-
cated cases we have used an arbitrary criterion: if at least 80%
of the branching intensity feeds, not necessarily directly, the
isomer, the level is considered an isomer-feeding one. Based
on information from [17], there are 21 isomer-feeding levels
below 2.2 MeV, and 32 below 2.42 MeV.

Including an isomer-feeding level of suitable spin at low
energy can increase Riso by a few percent; see Fig. 12. On
the other hand, the population of a single level (within the
statistical model) near our highest Ecrit does not exceed 0.4%
and it exponentially decreases (halves in about 300 keV).
Therefore a single isomer-feeding level at higher excitation
energy does not induce such a strong effect, yet the abundance
of these levels does result in increasing Riso, clearly visible
from Fig. 12 at least for 4+ resonances up to the highest

FIG. 13. Schematic representation of 168Er low-lying level
scheme with the decay of the Jπ = 6− level at 1760.8 keV (magenta
arrows) and the 6− isomer-feeding level at 1773.2 keV (black ar-
rows). The isomer is drawn in blue, isomer-feeding levels in black,
and the other levels in magenta.

adopted Ecrit; no significant increase in Riso is visible for 3+
resonances above Ecrit ≈ 2.3 MeV. This feature means that
the statistical description of γ decay is not fully adequate for
levels at least up to excitation energies close to the highest
checked Ecrit . Higher values of Ecrit could not be tested as
the evaluated level scheme [17] starts to suffer from missing
levels (see Fig. 4) and missing information on level properties.

Such a result is in accord with the presence of structures
in M = 2–4 MSC spectra that cannot be described with Ecrit

lower than about 2.3–2.4 MeV. The absence of any narrow
structure in MSC spectra above Eγ ≈ 2 MeV could then in-
dicate that nonstatistical effects are much weaker at higher
excitation energies.

The dependence of Riso on Ecrit is very similar for all mod-
els that acceptably reproduce MSC spectra although there are
some differences in the Riso absolute value. The predicted Riso

with the BSFG NLD model are by about 10% smaller (for all
Ecrit) than those with the HFB model. As a consequence, we
have a problem with the exact simultaneous reproduction of
the isomeric ratio for both resonance spins: the predicted Riso

with the highest Ecrit is either already above the experimental
average for 3+ resonances (as shown in Fig. 12) or below the
experimental average for 4+ resonances; the deviations are on
the level of two to three standard deviations for the worse case.

VII. SUMMARY

The coincident measurement of γ rays from the radiative
neutron capture on 167Er was performed with the DANCE
detector array at the LANSCE spallation neutron source. De-
tected γ rays were used for the construction of the multistep
γ ray spectra for different multiplicities and for checking the
population of the 1094-keV T1/2 = 109 ns isomeric state in
168Er.

The MSC spectra were used to test the validity of various
PSF and NLD models via comparison of the simulated and
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experimental spectra. Although we were unable to find a
combination of models that would perfectly reproduce exper-
imental spectra, we can make the following restrictions.

The MSC spectra are reasonably described using the BSFG
[36,37] or the HFB [5,40,41] nuclear level density models.
The spin dependence of the HFB model is unrealistic, as the
predicted total radiative width of s-wave neutron resonances
significantly depends on their spin, which is at variance with
the available experimental data. The MSC spectra are virtually
insensitive to a possible parity dependence and staggering
between odd and even spins at low excitation energies.

A resonance-like structure in the M1 PSF with its centroid
between 3.1 and 3.3 MeV and a width of about 1 MeV,
which can be identified with the scissors mode, was found
essential for the description of the MSC spectra. The SM
strength is likely comparable to that from neighboring even-
even well-deformed nuclei. The KMF- or MGLO-like models
well describe the E1 PSF; it likely reaches a nonzero low-
energy limit. These PSFs are nicely consistent with the ones of
even-even Gd [8,9] and Dy [10] isotopes. On the other hand,
the PSF shape featuring a strong low-energy enhancement
[62] can be definitely ruled out.

A very reasonable reproduction of the experimental MSC
spectra was achieved with the PSF for 166Er from the Oslo-
type experiment; such an agreement between these two
methods is not usual even in well-deformed nuclei; see for
example the case of 162Dy [10]. We also checked different PSF
models based on the QRPA calculations with Gogny D1M as
well as a few Skyrme interaction parametrizations. Cascades
generated with these models did not reproduce the measured
MSC spectra.

The number of resonances allowed us to analyze the fluctu-
ations of the MSC intensities. Similarly to the results from the
previous analyses of 162,164Dy and 196Pt, the observed fluctu-
ations among different neutron resonances of a given spin are
significantly smaller than the predicted ones for broad ranges
of γ -ray energies and multiplicities. This observation may
indicate the invalidity of the assumed Porter-Thomas distri-
bution of the primary transition intensities. Nevertheless, the
situation is more complicated due to the assumptions imposed
in the statistical model simulations, e.g., that all levels above
Ecrit decay statistically. In any case, further investigation of
this phenomenon is really necessary.

The presence of the narrow structures in the M = 2 MSC
spectra indicates that the statistical description of γ decay
is not fully adequate for levels below at least 2 MeV. This
behavior is confirmed by the analysis of the population of
the isomeric state that showed the presence of nonstatistical
effects up to even higher energy. Nonetheless, an overall rea-
sonable reproduction of the experimental MSC intensities for
both spins of the capturing states indicates that the widely
used description of γ decay within the statistical model and
the concept of PSFs is at least a very good approximation
at energies above about 2–2.4 MeV for deformed even-even
rare-earth nuclei.

In contrast to the previous analyses of the isomeric pop-
ulation of rare-earth nuclei (Hf [18], Lu [20]) from neutron
capture, our simulated Riso is compatible with the experi-
mentally determined one in 168Er if sufficiently high Ecrit ≈

2.4 MeV is used. To our knowledge, this is the first time the
reproduction of the Riso in rare-earth nuclei was achieved. The
reproduction was possible only due to extremely rich infor-
mation on levels at low excitation energies in this nucleus,
which is available up to an energy well above 2 MeV. If the
nonstatistical effects play a role up to similar energies in other
rare-earth nuclei, the reproduction of Riso based on statistical
decay models should not be expected.
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APPENDIX: PSFS FROM QRPA WITH THE SKYRME
EFFECTIVE INTERACTION

The excitation QRPA PSF, S(XL), is given by (see, e.g. [67])

S(XL)
gr→Jπ (Eγ , 
) =

+L∑

K=−L

∑

i

Bex(XL; gr → iEiKπ )
1

2π

× 


(Eγ − Ei )2 + 
2/4

→0−→

+L∑

K=−L

Bex

× (XL; gr → iEiKπ ) δ(Eγ − Ei ), (A1)

where

Bex(XL; gr → iEiKπ ) = ∣∣〈iEiKπ |M̂ (XL)
K |gr〉∣∣2

(A2)

is the reduced excitation probability of the XL transition
from the RPA ground state |gr〉 of the intrinsic Hamilto-
nian into the RPA one-phonon state |iEiKπ〉 = Q̂+

iπK |gr〉 with
the excitation energy Ei, angular momentum projection K ,
and parity π (index i enumerates individual solutions of
the QRPA equation for given K and π ). The symbol M̂ (XL)

K
represents the transition electromagnetic operator of type X
with multipolarity L and its projection K . 
 is the width
of the local Lorentzian energy spread of each solution of
the QRPA equation which takes into account two and more
phonon components and/or escape widths into a continuum.
The excitation-energy-independent width 
 = 1 MeV was
adopted for all XL for results presented in the paper, although
some tests with both smaller and larger widths were made.
Different 
 have never lead to a better description of the
experimental spectra.
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FIG. 14. PSFs from QRPA models. Lorentzian folding using

 = 1 MeV was applied to results with all Skyrme interaction
parametrizations. Data for the D1M interaction are from Ref. [4];
the impact of S0lim is indicated.

The PSFs based of the QRPA calculations with differ-
ent forms of the Skyrme effective interaction [52–54] were
tested. Specifically, we employed the SkI3 [68], SkM∗ [69],
SLy6 [70], Vba [71], and SkP [72] parametrizations. They
reproduce similarly well global nuclear characteristics (bind-
ing energy, radii) but each of them was adjusted considering
different quantities. As a result they cover a broad range of the
incompressibility of nuclear matter and the effective nucleon
mass [67]. In general, the outcomes of the QRPA calculations
with Skyrme-type interactions describe reasonably the posi-
tion (and above neutron separation energies also shape) of
the GEDR [67] and predict substantial orbital M1 strength
in the SM region [73], but the description of the SF M1
resonance region requires additional adjustments [73]. Note
that in the energy region of the SM (3–4 MeV) the interference
of the SM and the low-energy tail of the SF M1 resonance

TABLE III. Predicted quadrupole deformation β2 and energy of
the 4−

1 (isomeric) state, E4−
1

, obtained with various Skyrme interac-
tion parametrizations. Also shown is the energy shift �E needed for
reproduction of the experimental position of the SM.

Interaction SkI3 SkM∗ SLy6 Vba SkP Evaluation [17]

β2 0.352 0.348 0.350 0.339 0.341 0.34
E4−

1
(keV) 1015 1053 1047 1416 1403 1094

�E (MeV) −0.8 0 −0.5 −0.3 −0.5

is large and cannot be neglected [54]. Deduced PSFs for all
tested Skyrme-force parametrizations are shown in Fig. 14.
The strict form of the Brink hypothesis was assumed while
simulating the γ decay process.

An energy shift �E is often applied to the excitation
energies from QRPA calculations to match them with experi-
mental data. This is, for instance, the case of the PSF model
based on the QRPA+D1M calculations from review [4]. We
thus also tested PSFs based on calculated strengths shifted
by �E , applied in S(M1); no shift was applied to S(E1). This
shift moved the centroid of the strongest predicted bump in
S(M1) to Eγ ≈ 3.2 MeV; the reason for this shift is discussed
throughout Sec. IV. The applied �E is indicated in Table III.

As described in Sec. IV A, the PSF model based on the
QRPA+D1M calculations from review [4] features an empir-
ical low-energy PSF part S0lim. We also checked the impact
of adding the same S0lim also to calculations with the Skyrme
interaction parametrizations.

Table III gives tested shift �E as well as the equilibrium
quadrupole deformation β2 obtained from the minimum of
the quasiparticle mean field energy for each parametrization.
To indicate the quality of individual parametrizations we also
show predicted the energy of the first (isomeric) IπK = 4−4
state, observed experimentally at 1094 keV; SkI3, SkM, and
SLy6 predict the energy quite well, while Vba and SkP are off
by about 400 keV. The best agreement of calculated E4−

1
with

experiment was obtained for parametrizations with low values
of effective nucleon mass (m∗/m = 0.58, 0.79, and 0.69 for
SkI3, SkM∗, and Sly6, respectively).
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Phys. Rev. C 92, 064321 (2015).

[48] J. Kroll, B. Baramsai, G. E. Mitchell, U. Agvaanluvsan, F.
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