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Microscopic calculation of fission product yields for odd-mass nuclei
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Fission data are essential inputs to reaction networks involved in nucleosynthesis simulations and nuclear
forensics. In such applications as well as in the description of multichance fission, the characteristics of fission
for odd-mass nuclei are just as important as those for even-even nuclei. The fission theories that aim at explicitly
describing fission dynamics are typically based on some variant of the nuclear mean-field theory. In such
cases, the treatment of systems with an odd number of particles is markedly more involved, both formally and
computationally. In this article, we use the blocking prescription of the Hartree-Fock-Bogoliubov theory with
Skyrme energy functionals to compute the deformation properties of odd-mass uranium isotopes. We show that
the resulting fission fragment distributions depend quite significantly on the spin of the odd neutron. By direct
calculation of the spin distribution of the fissioning nucleus, we propose a methodology to rigorously predict the
charge and mass distributions in odd-mass nuclei.
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I. INTRODUCTION

The theory of nuclear fission has a long and rich history
[1] and yet, it is still undergoing a spectacular renaissance
[2]. Thanks to the continuous increase in computing capabili-
ties, microscopic methods based on nuclear density functional
theory (DFT) have become very competitive with the phe-
nomenological models that were prevalent until now [3]. The
application of these techniques has given truly novel insights
into the fission process, such as unveiling the role of shell
effects in setting the dominant fission modes [4], analyzing the
dissipative nature of the fission process [5–8], and predicting
the spin of fission fragments [9–11]. These recent develop-
ments are all the more important as simultaneous progress
in simulations of nucleosynthesis have created a strong de-
mand for predictive and complete models of fission applicable
across the entire chart of isotopes [12–14]. A more predictive
model of fission may also be key to understanding the nu-
clear reactor antineutrino anomaly [15,16]. Such applications
make it especially important to build comprehensive models
of fission that can describe the entire chain of events occurring
in the process, from the formation of the compound nucleus
to the β decay and delayed emission of the fission products
[17–19].

Until now, the majority of fission studies, whether based on
DFT or phenomenological mean-field models, have been re-
stricted to even-even fissioning nuclei. There are a few notable
exceptions: in Refs. [20,21], fission barrier heights of 235U and
239Pu were computed in the Skyrme Hartree-Fock theory with
pairing correlations treated at the Bardeen-Cooper-Schrieffer
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(BCS) approximation, including a full treatment of the time-
odd terms for several different configurations of the odd
neutron. In Ref. [22], the one-dimensional fission path and
spontaneous fission half-life of 235U for two different values
of the spin projection K = 1/2 and K = 7/2 were computed
at the Hartree-Fock-Bogoliubov (HFB) approximation with
the Gogny force. This analysis was extended in Ref. [23],
where similar calculations were performed for the uranium
and plutonium isotopic chains. Even though the details of
these studies differ, they all highlighted the fact that fission
barrier heights, and by extension, the potential energy surface,
vary substantially with the configuration occupied by the odd
particle. While this has an obvious impact on calculated spon-
taneous fission half-lives, which are extremely sensitive to the
shape and height of the fission barrier, one should also expect
an effect on fission fragment distributions. Moreover, the spin
dependence of the potential energy surface in odd-mass nuclei
has an interesting consequence for neutron-induced fission
since upon formation the spin distribution of the compound
nucleus acquires a sizable spread. The characteristics of the
entrance channel should therefore have a visible impact on
the distribution of fission fragments.

The goal of this paper is to outline a theoretical frame-
work based on the HFB theory with blocking and the
time-dependent generator coordinate method with the Gaus-
sian overlap approximation (TDGCM+GOA) to compute the
charge and mass distributions of fission fragments for an odd-
mass compound nucleus. We confirm the important impact of
the blocked configurations on nuclear deformation properties.
By computing two-dimensional potential energy surfaces, we
give the first microscopic calculation of fission fragment
distributions for different blocked configurations. Finally,
we use the coupled channel reaction formalism to include
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information about the entrance channel in the determination
of the fission fragment distributions.

Section II gives an overview of the theoretical framework.
Most of it is well known and presented in textbooks [24].
The one exception is the generalization of the formula for the
collective inertia to the case of an odd nucleus. In Sec. III,
we summarize the results of static HFB calculations, both
one-dimensional fission paths and two-dimensional poten-
tial energy surfaces. Section IV discusses the methodology
adopted to incorporate calculated spin distributions of the
compound nucleus into predictions of fission fragment dis-
tributions and shows results for uranium isotopes.

II. THEORETICAL FRAMEWORK

In this article, we focus on calculations of fission prod-
uct yields from neutron-induced fission. After absorbing the
incident neutron, the resulting compound nucleus can decay
through different channels, either by emitting particles (pri-
marily neutrons or γ rays) or by fissioning. From a theoretical
point of view, fission is described as a large-amplitude collec-
tive motion that drives the nucleus from a near-spherical shape
to the scission point. Typically each fission event leads to a
pair of fission fragments; ternary fission will not be considered
here. We distinguish between the yields at two different times
following Refs. [25,26]. The fission fragment charge and mass
distributions that one would obtain immediately after scission
will be referred to as primary fission fragment distributions.
The term primary fission fragments means that the nuclear
species formed have yet to emit any prompt particles. One can
define primary charge Y (Z ), mass Y (A), or isotopic Y (Z, A)
distributions.

The prompt emission of neutrons and γ rays from the
fission fragments changes the relative abundance of each iso-
tope. At the end of this prompt de-excitation phase, which
typically takes of the order of 10−16 s after scission, the new
distributions of fission fragments are called the independent
yields. Again, one distinguishes between independent charge
Yind.(Z ), mass Yind.(A), and isotopic Yind.(Z, A) yields.

A. Treatment of the entrance channel

For the heavy systems we are addressing in this work, the
number of degrees of freedom involved in a neutron-induced
reaction is very large, as attested by the high level density
at the relevant excitation energies (typically of the order of
106 MeV−1 around the neutron separation energy). In this
regime, a statistical description of the process is known to
work well [27–31], and the states populated in the reaction
are described in terms of compound nucleus formation. In
particular, Bohr’s hypothesis is usually applied, according to
which the way a compound nucleus decays is independent of
how it was formed. Aside from the explicit consideration of
small deviations from this hypothesis in terms of the so-called
width fluctuations that correlate entrance and exit channels,
there is an important caveat: the energy, angular momentum,
and parity of the entrance channel are exactly preserved in the
exit channel. Since the decay branching ratios corresponding
to the different decay modes depend strongly on these con-

served quantities, it is essential to predict the population of
the compound nucleus states in terms of the energy, spin, and
parity distributions as the neutron is absorbed.

The absorption process is described within a direct reaction
scheme in terms of a coupled-channels reaction formalism.
Under the assumption that the target nucleus is described by a
rigid rotor Hamiltonian (see, e.g., [32]), the incident neutron is
coupled to the intrinsic structure of the target nucleus through
the imaginary part of the optical potential, as well as through
the direct excitation of the members of the ground-state ro-
tational band. The wave function of the composite system
formed by the incident neutron and the target is expanded in
terms of the states �In (ξ ) of the target ground-state rotational
band with spin In,

�JM (r, ξ ) =
∑

n

∑
jnln

4π

knr
φn(r)

[
χ jnln (r̂, σ )�In (ξ )

]J

M, (1)

where r is the neutron-target relative coordinate and ξ de-
notes the set of coordinates associated with the target. We
note n ≡ {n; JM jnln}, where n indexes the components of its
(J, M ) channel, J and M are the total spin and its projection,
jn and ln are the total and orbital angular momentum of the
neutron, and kn its wave number. The radial part of the channel
wave function is noted φn(r) while χ jnln (r̂, σ ) refers to its
angular and spin part (σ is the neutron spin). The square
brackets indicate angular momentum coupling of jn and In to
total spin and projection J, M. The set of coupled differential
equations obeyed by the channel wave functions φn(r) can
be obtained by projecting the many-body Schrödinger equa-
tion on the target rotational states [33],

h̄2

2m

(
d2

dr2
+ ln(ln + 1)

r2
+ U (r) − k2

n

)
φn(r)

= −
∑
m �=n

Vnm(r; β)φm(r), (2)

where U (r) is a complex optical potential. For a rigid rotor,
the coupling potentials Vnm(r; β) depend on the deformation
parameters β ≡ {β2, β4, β6} of the mean-field potential in the
target. Since we are using the coupling scheme developed in
[34] restricted to transitions within the ground state rotational
band, thus neglecting transitions between bands, we will only
consider here deformations with even multipolarity. The cou-
pling potentials thus read

Vnm(r; β) =
∑

λ

vλ(r; βλ) Bλ(n, m) Aλ(n, m), (3)

where Bλ(n, m) and Aλ(n, m) are geometrical coefficients de-
pending on the spins of the states n and m (see [33]),

Aλ(n, m) = 1√
4π

(−1)J− 1
2 −Im+ jn+ jm+ 1

2 (lm−ln )

×
√

(2 jm + 1)(2 jn + 1)

〈
jn jm − 1

2

1

2

∣∣∣∣λ 0

〉

× W ( jnIn jmIm; Jλ), (4)

Bλ(n, m) =
√

(2In + 1)〈Im λ M 0|In M〉. (5)
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The functions vλ(r; βλ) are the coefficients of the multipole
expansion of a deformed Woods-Saxon potential with stan-
dard real and imaginary surface terms, as well as a real
spin-orbit term; for details, see [34]. The geometry and energy
dependence of this potential, as well as the deformation pa-
rameters β, were fitted to reproduce neutron elastic scattering
and total reaction cross sections in actinides [34].

The set of coupled differential equations (2) is solved for
the neutron wave functions φn(r). The phase shifts δlJ cor-
responding to the elastic wave function are then obtained by
matching the components φ0(r) of the partial wave expansion
of the elastic scattering wave at a large enough radius R to the
spherical Bessel [ jl (r)] and Neumann [yl (r)] functions,

φ0(R) = cos(δlJ ) jl (R) + sin(δlJ )yl (R). (6)

The radius R should be larger than the range of the nuclear in-
teraction between the target and the neutron, in our numerical
calculations we have used R = 20 fm.

The scattering matrix Sl,Jπ = e2iδlJ for each spin J and
parity π , and partial wave l , can then be used to determine
the transmission coefficient TJπ associated with the formation
of the compound nucleus according to the expression

TJπ = 1 −
∑

l

|Sl,Jπ |2. (7)

In Sec. IV A this transmission coefficient will be taken as the
probability Pth.(Jπ ) of having the compound nucleus in a state
with spin J and parity π .

B. Large-amplitude collective motion for odd nuclei

One of the main goals of this work is to determine the
primary fission fragment distributions Y (Z ) and Y (A) of an
odd-mass fissioning nucleus. To this end, we work within
the global framework of the energy density functional (EDF)
theory [24]. Fission fragment distributions are computed in
a three-step process: (i) the potential energy surface (PES)
of the nucleus is computed in a small space of collective
variables within the static HFB theory; (ii) the time-evolution
of a collective wave packet on this PES is simulated with
the time-dependent generator coordinate method under the
Gaussian overlap approximation [35]; (iii) the actual fission
fragment charge and mass distributions are extracted by com-
puting the flux of the collective wave packet through the
scission line or surface. This approach was first proposed
in the 1980s at CEA Bruyères-le-Châtel [36–38] with early
applications in the 2000s [39–41] and it is presented in great
detail in Refs. [42–45]. In the following, we only describe the
extension of this formalism to odd-mass nuclei.

1. Blocking prescription

Nuclei with odd numbers of particles are computed at the
HFB approximation with the blocking prescription [46–48].
The ansatz for the many-body state thus reads

|�〉 = β†
α

∏
k

βk |0〉 , (8)

where |0〉 is the particle vacuum and βk are the quasiparti-
cle annihilation operators as determined by the Bogoliubov

transformation. In practice, the HFB equation with block-
ing is solved by substituting the column vectors (Uα,Vα ) ↔
(V ∗

α ,U ∗
α ) for the quasiparticle α one wishes to block [24,46].

This procedure is performed at each iteration of the self-
consistent loop. The density matrix and pairing tensor in
configuration space become

ρB,α
i j = (V ∗V T )i j + UiαU ∗

jα − V ∗
iαVjα, (9a)

κB,α
i j = (V ∗U T )i j + UiαV ∗

jα − V ∗
iαUjα. (9b)

The exact implementation of the blocking prescrip-
tion breaks time-reversal symmetry and depends on the
self-consistent symmetries [49]. For this reason, one of-
ten employs the equal filling approximation (EFA) where
time-reversal symmetry is explicitly enforced [50]. Detailed
comparisons of the energies of blocking configurations near
the Fermi level showed that the error incurred when using the
EFA does not exceed a few keV [48,49]. As demonstrated in
Ref. [50], the EFA can be thought of as a special statistical
mixture of one-quasiparticle states. The density matrices are
thus modified to read as

ρEFA,α
i j = (V ∗V T )i j + 1

2 (UiαU ∗
jα − V ∗

iαVjα

+ UiᾱU ∗
jᾱ − V ∗

iᾱVjᾱ ), (10a)

κEFA,α
i j = (V ∗U T )i j + 1

2 (UiαV ∗
jα − V ∗

iαUjα

+ UiᾱV ∗
jᾱ − V ∗

iᾱUjᾱ ). (10b)

In this work, the selection of quasiparticle states to block
follows the automated procedure outlined in Ref. [51]. From
the HFB solution in the even-even neighbor, the code iden-
tifies an initial set B of blocking candidates α within a small
energy window around the Fermi energy by imposing the con-
dition |Eα − E0| � �E , where E0 is the energy of the lowest
quasiparticle and �E is the energy window. This procedure is
applied for each � block. At each iteration n, the code com-
putes the overlap Oαα′ between the blocked state α ≡ α(n−1) at
the previous iteration and each quasiparticle state in the same
� block, Oαα′ = ∑

i (UiαUiα′ + ViαViα′ ). The quasiparticle α′
with the maximum overlap defines the updated version of α at
iteration n, α(n) = α′.

Applying this blocking prescription at each point q of
the PES gives a set of Nq blocking potential energies, Sq ≡
{Vα (q)}α=1,...,Nq . Note that the number Nq of such configu-
rations is not the same everywhere on the PES, since the
blocking criterion is based on a fixed energy window �E .
Similarly, the numbers of blocked states N� with � = 1/2,
� = 3/2, . . . , within a given set Sq are not identical. Often
the number of blocked states is such that N1/2 � N3/2 � . . . .

2. Time-dependent generator coordinate method

In this work, we assume that the large-amplitude collective
dynamics of the fissioning nucleus can be approximated by
the time-dependent generator coordinate method (TDGCM)
under the Gaussian overlap approximation (GOA). Let us re-
call that the fundamental hypothesis of this method is that the
quantum state |GCM(t )〉 that describes the fissioning system
is a time-dependent linear superposition of static states at
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different deformations

|GCM(t )〉 =
∫

dq |�(q)〉 f (q, t ), (11)

where f is a complex-valued function that defines the su-
perposition at each time t and |�(q)〉 is a constrained HFB
state. Using the additional hypotheses of the GOA, the
TDGCM+GOA equation of motion reads

ih̄
∂g(q, t )

∂t
= [Hcoll.(q) + iAcoll.(q)] g(q, t ), (12)

where the complex-valued function g(q, t ), equivalent to
f (q, t ), contains all the information about the dynamics of the
system and Acoll.(q) is a real-valued field that is added to avoid
reflection on the boundaries of the deformation domain [52].
The collective Hamiltonian Hcoll.(q) is a local linear operator
acting on g(q, t ),

Hcoll.(q) ≡ − h̄2

2γ 1/2(q)

∑
μν

∂

∂qμ

γ 1/2(q)Bμν (q)
∂

∂qν

+ V (q)

(13)

with Bμν (q) the components of the collective inertia tensor,
V (q) the potential energy, which is the sum of the HFB energy
and some zero-point energy corrections, and γ is the GCM
metric [53].

Equation (12) is derived from the Hill-Wheeler-Griffin
equation of the GCM after applying the GOA [35]. The
derivation does require that the generator states |�(q)〉 are
pure states with the structure of quasiparticle vacuum [24].
In the EFA, this is not satisfied since the system is in fact
described by a (very specific) statistical density operator.
However, it is possible to compute every ingredient of Eq.(13)
(potential energy, zero-point energy corrections, and collec-
tive inertia) for statistical ensembles through the extension
of the adiabatic time-dependent Hartree-Fock-Bogoliubov
(ATDHFB) at finite temperature. Therefore, we adopt the
pragmatic point of view of using Eq. (12) as the equation of
motion with inputs determined from the finite-temperature
ATDHFB theory—with statistical occupations given by the
EFA prescription. Since the (TD)GCM formalism has not
been extended to finite temperature yet, this is a reason-
able compromise that has already been applied to study the
structure of the collective inertia mass tensor as a function
of temperature [54], thermal spontaneous fission rates [55],
the dependency of primary fission fragment distributions on
excitation energy [56], and to estimate dissipation effects in
fission fragment distributions [57]. In spite of these examples,
the full derivation of the ATDHFB collective inertia tensor
Bi j (q) at finite temperature has never been presented. The
special case of the ATDHFB+BCS inertia was derived in
Refs. [58,59] by replacing expectation values of observables
in the zero-temperature cranking model formula by ensem-
ble averages and the full, correct ATDHFB result was given
without proof in Ref. [54]. Therefore, we demonstrate below
how to obtain the formula for the finite-temperature ATDHFB
collective inertia tensor.

(a) ATDHFB equations. The starting point of the deriva-
tion is the Liouville equation for the density operator

D [60]. Applying the statistical Wick theorem yields the
finite-temperature time-dependent Hartree-Fock-Bogoliubov
(TDHFB) equation, which is formally equivalent to the zero-
temperature TDHFB equation, ih̄Ṙ = [H,R] [61]. Following
the ideas of ATDHF [62], we then write the TDHFB gen-
eralized density R(t ) = eiχ (t )R(0)(t )e−iχ (t ), where χ (t ) is a
quadratic form of single-particle creation and annihilation
operators [61]. Assuming the operator χ (t ) is small, one can
make a Taylor expansion of the TDHFB generalized den-
sity matrix, R(t ) = R(0)(t ) + R(1)(t ) + R(2)(t ), for example,
R(1) = i[χ (t ),R(0)(t )]. Plugging these two Taylor expansions
into the finite-temperature TDHFB equation and separat-
ing contributions that are time-even from the ones that are
time-odd gives a set of coupled equations that are formally
analogous to the zero-temperature ATDHFB equations

ih̄Ṙ(0) = [H(0),R(1)] + [H(1),R(0)], (14a)

ih̄Ṙ(1) = [H(0),R(0)] + [H(0),R(2)]

+[H(1),R(1)] + [H(2),R(0)]. (14b)

In Eqs. (14a)–(14b), the matrices H(n) represent the finite-
temperature HFB (FT-HFB) matrices at order n, i.e., they
depend on the order-n density matrices ρ (n)(t ) and κ (n)(t ) that
enter the generalized densities R(n)(t ),

R(0)(t ) =
(

ρ (0) κ (0)

−κ (0)∗ 1 − ρ (0)∗

)
, (15)

R(n)(t ) =
(

ρ (n) κ (n)

−κ (n)∗ −ρ (n)∗

)
. (16)

We now introduce the TDHFB quasiparticle basis, which
diagonalizes at each time the zero-order, finite-temperature
R(0)(t ) density matrix. In that basis, R(0)(t ) takes the form

R̃(0)(t ) =
(

f (t ) 0
0 1 − f (t )

)
(17)

with fkl (t ) the statistical occupation factors. In the following,
the tilde indicates that a matrix is written in the TDHFB
quasiparticle basis.

(b) Energy to second order. The next step is to obtain a
closed-form expression for the total energy of the system that
only depends on the operator χ (t ). This is achieved by first
expanding the TDHFB energy in terms of the matrices R(n).
One obtains

E = EHFB + 1
2 tr(H(0)R(2) ) + 1

4 tr(H(1)R(1) ). (18)

We can then use the commutators that relate each of the
R(n) to χ (t ) to obtain an expression of E as a function of
χ (t ) only. Even when working in the TDHFB quasiparticle
basis, the full calculation is rather lengthy because of the
term proportional to H(1), which depends on R(1) indirectly
through its components ρ (1) and κ (1) and corresponds to the
off-diagonal terms of the FT-QRPA matrix [60]. Since we
work at the cranking approximation, we neglect it. It is then
relatively straightforward to show that the total energy reduces
to

E = EHFB + 1
4 
χ†M 
χ, (19)

044312-4



MICROSCOPIC CALCULATION OF FISSION PRODUCT … PHYSICAL REVIEW C 107, 044312 (2023)

where 
χ is the linearized version of the matrix of the operator
χ in the TDHFB quasiparticle basis,

χ̃ =
(

χ̃11 χ̃12

χ̃21 χ̃22

)
⇒ 
χ =

⎛
⎜⎜⎜⎝

χ̃11

χ̃12

χ̃21

χ̃22

⎞
⎟⎟⎟⎠, (20)

and M is the FT-QRPA matrix in the cranking approximation.
In that same linearized TDHFB basis, it can be written M =

EF with

E =

⎛
⎜⎜⎝

(Ek − El )
(Ek + El )

−(Ek + El )
−(Ek − El )

⎞
⎟⎟⎠

and

F =

⎛
⎜⎜⎝

−( fk − fl )
(1 − fk − fl )

−(1 − fk − fl )
( fk − fl )

⎞
⎟⎟⎠.

In these last two expressions, terms like Ek − El stand for the
matrix Ẽ with elements Ẽkl = Ek − El with Ek the quasiparti-
cle energies.

(c) Adiabatic approximation. Starting from Eqs.(14a),(14b)
and continuing to work in the TDHFB quasiparticle basis, one
can show that

h̄ 
̇R(0) = EF 
χ = M 
χ, (21)

where 
̇R(0) is, again, the linearized matrix of the operator Ṙ(0)

in the TDHFB basis. The total energy thus reads

E = EHFB + h̄2

4

̇R(0)†M−1 
̇R(0). (22)

As is customary in practical applications of the ATDHF
or ATDHFB theory [62], we then introduce a (small) set
of collective variables q ≡ (q1, . . . , qN ) and assume that the
densities R(0)(t ) vary in time only through changes in these
collective variables,

Ṙ(0) =
∑

μ

q̇μ

∂R(0)

∂qμ

. (23)

In physics terms, this statement is the equivalent of the
Born-Oppenheimer approximation: the nuclear dynamics is
confined to a collective space. Additionally, we approximate
the solutions of the finite-temperature HFB equation con-
strained on the expectation value q of the collective variables
by the static densities R(0). In other words, the collective
space that contains the nuclear dynamics is precalculated as
a series of FT-HFB calculations. Let us emphasize here that
these approximations are exactly the same as the ones un-
derpinning the zero-temperature expressions of the ATDHFB
collective inertia that are commonly used in the literature.

(d) Local approximation. The final stage of the derivation
consists in expressing ∂R(0)/∂qμ locally at point q. Since
we have assumed that the density R(0) is the solution of
the FT-HFB equation with constraints q, it satisfies [H(0) −∑

μ λμQ̂μ,R(0)] = 0 with λμ the Lagrange parameter asso-
ciated with the constraint operator Q̂μ. We collect all such
parameters into the vector λ = (λ1, . . . , λN ). We then express

that this equation must be satisfied for small variations of the
density, that is, when

R(0) → R(0) + R(1),

H(0) → H(0) + H(1),

λμ → λμ + δλμ.

Introducing these expansions into the FT-HFB equation with
constraints and taking advantage of the quasiparticle basis,
some simple algebra leads to the following relation: 
R(1) =
−δλ · E−1F 
Q, where 
Q ≡ ( 
Q1, . . . , 
QN ) is a vector contain-
ing the linearized matrix 
Qμ of the constraint operator in the
TDHFB quasiparticle basis. To clarify, the condensed notation
stands for


R(1) = −δλ · E−1F 
Q

= −
∑

μ

δλμ

∑
kl

[
fk − fl

Ek − El
Q̃11

μ;kl − 1 − fk − fl

Ek + El
Q̃12

μ;kl

− 1 − fk − fl

Ek + El
Q̃21

μ;kl+
fk− fl

Ek−El
Q̃22

μ;kl

]
.

We apply the chain rule to write

∂R(0)

∂qμ

=
∑

α

R(0)

λα

λα

qμ

. (24)

At this point, we identify the small variations of the general-
ized density with the first-order variations R(1), i.e., δR(0) =
R(1). We then obtain the variations δλa simply by recalling
that in the TDHFB quasiparticle basis,

qμ = 1
2 tr(Qμ) + 1

2 tr(QμR(0) ) ⇒ δqμ = 1
2 tr(QμR(1) ). (25)

The variation can also be written δqμ = 1
2


Q†
μ


R(1). Using the

previous relationship between 
R(1) and 
Q, we can find that

δλν = 2
∑

α

[M]−1
να δqα (26)
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with the moments M(K ) ≡ 
Q†E−KF 
Q, that is,

M(K )
μν =

∑
kl

[
Q̃11∗

μ;kl

fl − fk

(Ek − El )K
Q̃11

ν;kl + Q̃12∗
μ;kl

1 − fl − fk

(Ek + El )K
Q̃12

ν;kl

]
.

+ Q̃21∗
μ;kl

1 − fl − fk

(Ek + El )K
Q̃21

ν;kl + Q̃22∗
μ;kl

fl − fk

(Ek − El )K
Q̃22

ν;kl

]
.

The time variations of R(0) thus become


̇R(0) = 2
∑
αβ

q̇β[M(1)]−1
αβE−1F 
Qβ (27)

leading to the total energy taking the form

E2 = 1

2

∑
μν

Mμν q̇μq̇ν (28)

with

M = 2h̄2[M(1)]−1M(3)[M(1)]−1
. (29)

Apart from a factor of 2, this formula is the same as the zero-
temperature result. The main difference lies in the definition
of the moments M(K )

μν , which depend explicitly on the Fermi-
Dirac statistical occupations. In the case of the EFA, we recall
that fk = 0 except fα = fᾱ = 1/2.

III. STATIC POTENTIAL ENERGY SURFACES

As mentioned earlier, we assume in this work that axial
and time-reversal symmetries are conserved. In addition to
accelerating calculations substantially, this hypothesis greatly
facilitates the implementation of the blocking prescription
as discussed in Sec. II B 1. Enforcing axial symmetry has
two main consequences: (i) K-mixing between states is not
possible and (ii) the height of the first fission barrier will be
systematically overestimated by about 1–1.5 MeV [63–69].

All calculations were performed with the code HFBTHO

[70]. We use a deformed harmonic oscillator (HO) basis con-
taining up to Nshells = 30 and truncated to Nstates = 1100. The
HO spherical frequency ω0 and its axial deformation β2 were
adjusted based on the value of the quadrupole moment q20

following the empirical formula presented in [69]. We used
the SkM* parametrization of the Skyrme functional [71] and a
surface-volume, zero-range, density-dependent pairing inter-
action with a cut-off Ecut = 60 MeV. The neutron and proton
strengths of the pairing force were adjusted to the three-point
odd-even binding-energy difference for neutrons and protons
separately in 236U: Vn = −255.250 MeV and Vp = −325.594
MeV.

A. One-dimensional fission paths

We begin by recalling the role of quasiparticle blocking on
one-dimensional fission paths. Calculations of fission barriers
in odd-mass nuclei were first reported within the microscopic-
macroscopic model using the blocking prescription [72–75].
Fully self-consistent calculations of fission paths in odd nuclei
were performed for the Gogny force [22,23]. Most of these
calculations focused on which K value gives the lowest fission
barrier or lowest energy fission path. In Refs. [72,73], the

FIG. 1. Potential energy curves in 239U as a function of the
axial quadrupole moment q20 for different blocking configurations
K = 1/2, . . . , 9/2. The dashed line corresponds to a HFB calcula-
tion without the blocking prescription where the average number of
particles is set to Z0 = 92 and N0 = 147.

authors investigated how changes in the blocking configura-
tion affected the height of the barrier in a few select cases.
Similar calculations were performed in the Hartree-Fock plus
BCS formalism in Refs. [20,21], where the authors men-
tioned the consequences of the variations in fission barriers on
quantities such as fission penetrabilities, which enter fission
cross-section models.

In this section, we perform a more systematic exploration
of the dependency of the full potential energy curves, from
the ground state to the scission point, on different values of
K . Figure 1 shows the example of blocking calculations in
239U. For all K values included in the figure, the curve shows
the energy of the lowest blocked configuration having that
given K as a function of the expectation value of the axial
quadrupole moment q20. For comparison, we also show the
result obtained in the no-blocking approximation, where the
HFB solution for the odd nucleus has K = 0 because it is
by construction a fully paired solution, only with the average
particle number constrained to an odd value, here 〈N̂〉 = 147.
We first note that the spin of the ground state (g.s.) is K = 5/2,
which agrees with experimental assignment [76]. For 237U, we
found K = 1/2 for the g.s., which is also in agreement with
experimental results. As already noticed in Refs. [22,23], the
potential energy of blocked configurations is systematically
higher than the no-blocking ones, which is a manifestation of
the ‘specialization’ effect [21].

The comparison of the fission paths for different values of
K show significant differences of the order of up to several
MeV. Table I lists the height of the first fission barrier (EA) and
second fission barrier (EB) as well as the excitation energy of
the fission isomer (EFI) for both 237U and 239U. The maximum
difference reaches 1.28 MeV for EA, 1.45 MeV for EB, and
1.90 MeV for EFI for 237U, and 2.05 MeV for EA, 2.39 MeV
for EB, and 1.54 MeV for EFI for 239U. Interestingly, and
perhaps coincidentally, for both nuclei the mean value of EA,
EB, and EFI over the range of K values is quite close to the
no-blocking result. These results confirm the conclusions in
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TABLE I. Characteristic points of potential energy curves in
237U and 239U: height of the first barrier (EA), of the second barrier
(EB), and excitation energy of the fission isomer (EFI). The first
five columns correspond to blocking configurations characterized by
the K quantum number; the last column stands for the no-blocking
option. All values are given in MeV.

K 1/2 3/2 5/2 7/2 9/2 no blck.

237U EA 9.17 7.89 9.09 9.00 8.17 8.54
EB 7.77 6.58 8.03 7.68 7.05 7.32
EFI 3.63 2.83 3.56 4.62 2.72 3.45

239U EA 9.31 8.00 10.05 9.30 9.27 9.17
EB 7.78 6.63 8.99 7.83 7.88 7.94
EFI 2.86 2.34 3.49 3.88 2.67 3.09

Ref. [21]: since fission barrier heights enter in the form of an
exponential in standard formulas for either spontaneous fis-
sion half-lives or fission cross sections [1,77], such differences
are actually considerable.

There were many studies of the evolution of fission barriers
with angular momentum [47,78–83]. Irrespective of the de-
tails of the theoretical model employed, all results pointed to
the gradual decrease of the barriers due to the damping of shell
effects. However, these analyses were focused on the total
angular momentum J of even-even nuclei in a rather high-spin
regime. Our axially symmetric blocking calculations only pro-
vide the eigenvalue K of Ĵz and we have J � K . Even though
the K dependency of fission barriers in odd-mass nuclei as
captured by blocking calculations is nonlinear—the height of
the barrier is maximum at K = 1/2 for 237U but at K = 5/2
for 239U—one cannot exclude that full angular momentum
projection would restore the order that one might expect from
even-even nuclei (EA(J = 1

2 ) � EA(J = 3
2 ) � · · · ).

While relative differences, as quantified by the height
of fission barriers, are large, absolute differences are much
smaller: the energy at the top of the first barrier does not
vary by more than 180 keV in 237U and 280 keV in 239U.
In contrast, Fig. 1 shows that the energy in the ground-state
potential well at q20 ≈ 30 b, or in the descent from saddle to
scission for q20 > 170 b, varies by up to several MeV. If such a
pattern holds for multidimensional potential energy surfaces,
these results suggest that blocking different K values could
have an impact on the fission fragment distributions, not just
fission probabilities.

Before finishing this section, we should point out a very
general limitation of the blocking prescription in such poten-
tial energy surface calculations (even if it were implemented
exactly by breaking time-reversal symmetry and axial symme-
try). As recalled in Sec. II B 1, blocking calculations require a
reference state, which is typically chosen as the neighboring
even-even nucleus with either N − 1 or N + 1 particles, or
sometimes the HFB solution for the no-blocking approxima-
tion. This prescription works very well everywhere except
near scission. In one- or two-dimensional collective spaces,
scission often takes the form of a discontinuity in the PES, as
seen at q20 ≈ 325 b in Fig. 1. If this discontinuity occurs at,
say qdisk.

20 = q0 for the reference states, then the discontinuity

FIG. 2. Two-dimensional potential energy surface in 239U as a
function of the expectation value of the axial quadrupole (q20) and ax-
ial octupole (q30) moments for the K = 1/2 blocking configuration.

for all blocking configurations and K values built on these
reference states must be such that qdisk.

20 � q0. In other words,
the blocking scheme cannot produce a PES for some K value
where scission would occur at larger values of q20 than in the
reference state. The only case when such a situation is possible
is if the collective space is large enough that scission takes
place along a continuous path.

B. Two-dimensional potential energy surfaces

The one-dimensional potential energy curves of Sec. III A
can provide useful information such as barrier heights for
the calculation of spontaneous fission half-lives or fission
cross sections. However, the determination of fission fragment
distributions requires more collective degrees of freedom. In
Fig. 2, we show the two-dimensional PES for the K = 1/2
configuration in 239U. For this nucleus, blocking calculations
for all K values at the point q = (q20, q30) were initialized
from the time-even reference state in 238U at the same point
q. As mentioned in the previous section, this implies that con-
figurations that are beyond scission in 238U are also beyond
scission in 239U. In practice, we also found that for nearly
all blocking solutions in 239U, the scission line is identical
to the one in 238U. For this reason, the PES for K = 1/2
is, visually, nearly indistinguishable from the ones for K =
3/2, . . . , 9/2—the color scale would not allow distinguishing
differences in energy of the order of an MeV—so we choose
to show only one such PES.

This PES is typical of most actinides [69,84–88]: the
ground state is reflection-symmetric and located at around
q20 ≈ 30 b and the fission isomer at q20 ≈ 80 b (details depend
on the nucleus and the EDF). The second fission barrier is
octupole-deformed and leads to the main fission valley. An
additional fission path at much higher energy goes through
very asymmetric shapes associated with cluster radioactivity.

The choice of the time-even reference solutions to initialize
blocking calculations has another consequence. To generate
the PES for 237U, there are three obvious choices: start from
the the PES of 236U; from the PES of 238U; or from the PES of
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FIG. 3. Isoline with qN = 6.5 in the two-dimensional potential
energy surface of 236U (blue circles) and 238U (orange crosses).

237U obtained without blocking. It is important to realize that
the scission line in each of these three PES may be different.
This is illustrated in Fig. 3, where the scission lines of both
236U and 238U are represented in the same figure. In this par-
ticular example, we adopted the condition qN = 6.5 to define
scission. The most likely fission fragments—the ones near the
peaks of the fission fragment distribution–correspond to the
region around q20 ≈ 300–350 b and q30 ≈ 40 b3/2, i.e., to the
right-hand side of the figure. Because scission configurations
are not identical in each nucleus, blocking calculations in 237U
will give slightly different results depending on whether the
PES for 237U is initialized from the one in 236U or 238U.

These differences are minor, as illustrated in Figs. 4 and
5. Figure 4 shows the axial quadrupole and octupole defor-
mation β2 and β3 of the fission fragments as a function of
their mass. The deformations are defined from the multipole
moments as βλ = 4π/(3ARλ)Qλ0 with R = 1.2A1/3. Black

FIG. 4. Axial quadrupole (β2) and octupole (β3) deformation in
the fission fragments in 237U for K = 1/2. Black squares represent
blocking calculations initialized from the PES in 236U and blue
crosses represent the ones initialized from the PES in 238U. The
vertical dashed line separates the light from the heavy fragments.

FIG. 5. Ratio of neutron over proton numbers in the fission frag-
ments of 237U as a function of the charge number of the fragment for
K = 1/2. Black squares represent blocking calculations initialized
from the PES in 236U and blue crosses represent the ones initialized
from the PES in 238U. The dashed line corresponds to the ratio
N0/Z0 = 145/92 of the fissioning nucleus.

squares correspond to blocking calculations initialized from
the PES of 236U, blue crosses to calculations initialized from
the PES of 238U. To increase statistics, we have retained all the
configurations such that 1 � qN � 8 that have at least one of
their nearest neighbors with qN < 1. The ensemble of all such
points give a very conservative estimate of the scission region.
Overall, there are relatively few differences between both sets
of deformations. As expected, we find that nearly all the heavy
and the light fragments are octupole-deformed with values of
β3 of opposite signs for the light and heavy fragment. This
implies that the two fragment smaller edge face each other,
which simply results from the Coulomb repulsion that pushes
protons apart from one another. Our results confirm earlier
studies of fission in even-even actinide nuclei [84,85]. We also
note the presence of very deformed fragments around Af ≈
125–145, such configurations are located near q20 ≈ 400 b
and q30 ≈ 25–30 b3/2 in a region plagued by discontinuities
in the PES. We do not consider them truly physical.

Figure 5 completes this picture by showing the ratio of
the number of neutrons to the number of protons in the frag-
ments as a function of the charge number of said fragment.
The dashed line represents the same ratio in the fissioning
nucleus, N0/Z0 = 145/92. Results clearly show a charge po-
larization in the fission fragments, that is, the average number
of neutrons deviates quite significantly from the unchanged
charge distribution (UCD) approximation, which postulates
that Nf/Zf = N0/Z0. This justifies microscopically the empir-
ical models used to simulate the charge polarization [89].

For the sake of completeness, we also computed the quan-
tum localization indicator � of the blocked quasiparticle (only
in the case of 237U) following the definitions in Refs. [69,90].
Although our results suggested that the percentage of well-
localized blocked quasiparticles seemed to increase with K ,
they were not conclusive enough without a comprehensive
study of scission configurations that would go beyond the
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scope of this paper. Among the points worth investigating are
possible differences between the quantum localization of the
blocked quasiparticle and the one of other quasiparticles near
the Fermi surface, and how results are dependent upon the
definition of the scission configurations or the application of
a unitary transformation on quasiparticles to approach asymp-
totic conditions.

IV. FISSION FRAGMENT DISTRIBUTIONS

This section summarizes our results on the fission fragment
charge and mass distributions of the 236,238U(n, f ) reactions.
Primary fission fragment distributions are extracted from the
solution to the TDGCM+GOA equation (12) of Sec. II B.
However, in the case of an odd-mass system, the application
of the blocking procedure leads to a multisheet PES—one
sheet for each K = 〈Ĵz〉. We discuss how to set up the
TDGCM+GOA equation in such a case and how to combine
calculations for different K values to extract the yields. We
then use the code FREYA [91,92] to model the de-excitation
of the fission fragments and calculate the independent fission
fragment mass and charge distributions.

A. Initial fission fragment distributions

Fission fragment distributions are extracted from the flux
of the collective wave packet solution to Eq. (12) according
to the general procedure described in detail in Ref. [52].
However, a few additional steps are needed to account for
the fact that the compound nucleus can have different spin
projections and that the probability of occupation of each
of these configurations is given by the characteristics in the
entrance channel.

In Sec. II B 1, we denoted by VK (q) the potential energy
surface for the spin projection K of the odd nucleus. Since
the collective nuclear Hamiltonian is rotationally invariant,
we can compute the time-evolution using the TDGCM+GOA
equation of motion for each K independently, that is,

ih̄
∂g(K )(q, t )

∂t
= [

H (K )
coll.(q) + iA(K )

coll.(q)
]

g(K )(q, t ). (30)

To infer the fission fragment distributions from the set of g <

K > (q, t ), we need to determine the initial probability that
the compound nucleus is populated with spin projection K . In
addition, solving Eq. (30) requires setting the initial state for
the time evolution, i.e., g < K > (q, t = 0).

1. Initial conditions

The initial probability Pth.(Jπ ) to populate a given to-
tal angular momentum J and parity π is determined using
the coupled channel code FRESCO [93] which is part of the
Lawrence Livermore National Laboratory–developed Hauser-
Feshbach code YAHFC (version 3.67) [31]. The set of rotational
states, potentials, and deformation parameters needed to
define the coupled channels calculation were taken from
Ref. [34]; see Sec. II A. The probability p(Jπ , K ) to populate
each K is determined using the equidistribution of the proba-

FIG. 6. Initial probability p(K ) to populate a given spin projec-
tion K in the 238U(n, f ) reaction as a function of the incident neutron
energy En. Vertical dashed lines represent the energies considered in
this work.

bilities

p(Jπ , K ) = Pth.(Jπ )

2J + 1
. (31)

The probability of populating a given K is the sum of the prob-
abilities for all valid J and π . Since we have −J � K � J , we
get

p(K ) =
Jmax∑

J=|K|

Pth.(J−) + Pth.(J+)

2J + 1
. (32)

In principle, p(K ) should be obtained for Jmax → +∞. In
practice, we use a truncation of Jmax = 33

2 , which is high
enough to obtain a good approximation of the error associ-
ated with the other truncation in K . With this expression, we
trivially have p(K ) = p(−K ).

The nuclear Hamiltonian Ĥ is time-reversal invariant. Con-
sequently, we get the same time-evolution and the same
associated fission yields on a potential energy surface with
values of K that differ by only a sign. Thus, we determine the
time-evolution only for K > 0 with the population probabil-
ity p±(K ) = p(K ) + p(−K ) = 2p(K ). The probability p(K )
we obtain with our approach is presented in Fig. 6 for the
238U(n, f ) reaction. We see that the contribution from con-
figurations associated with K > 7/2 is always below 11% for
the six neutron energies En considered here.

We define the initial state for the TDGCM+GOA time-
evolution for each K using the prescription of Ref. [52]. We
recall that this consists in first determining quasibound states
g(K )

n located in the ground-state potential well, defined as so-
lutions of the static GCM+GOA equation in an extrapolated
potential, and then build the initial state as a superposition
of these states, where the weights of the superposition are
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FIG. 7. Spectrum of quasi-bound states for each spin projection
K obtained by solving the static GCM+GOA equation within the
extrapolated ground-state potential well; see Ref. [52] for details.
The red dashed line corresponds to the energy at the saddle point,
which defines the barrier.

Gaussian functions of the energy

g(K )(q, t = 0) =
∑

n

exp

[(
E (K )

n − Ē (K )
)2

2σ 2

]
g(K )

n (q) , (33)

where E (K )
n is the energy of g(K )

n . We show in Fig. 7 the spectra
of such quasibound states for 237,239U.

The width σ is a model parameter that controls the spread
of the initial collective wave packet. In this work, we set
σ = 0.5 MeV. We determined the level density of quasibound
states to be approximately 4 MeV−1 at the energy of the
barrier and about 7 MeV−1 at 5 MeV above the fission barrier.
Thus, we have between 20 and 40 quasibound states con-
tributing to the initial state. The parameter Ē〈K〉 is adjusted
iteratively in order to ensure that the energy of the initial
collective wave packet matches the physical energy E0 of the
compound nucleus. It is convenient to write

E0 = Ebind. + Ex , (34)

where Ebind. corresponds to the minimum of the saddle point
energies over all K ,

Ebind. = min
K

(
E (K )

bind.

)
, (35)

and Ex = 0, 1, 2, 3, 4, 5 MeV represents the excitation energy
with respect to this minimum saddle configuration.

2. Calculation of the collective flux

We have simulated the large-amplitude collective motion
of the fission process all the way to the formation of the
fragments with the computer code FELIX [52]. For each PES
with spin projection K , the absorption field Acoll. ≡ Acoll.〈K〉
in Eq. (30) is parametrized by the absorption rate r and width
w, which is equivalent to

Acoll.(q) = 4r

w3
x3(q) , (36)

where x(q) is zero if q corresponds to a nonscissioned config-
uration, and is equal to the Euclidean distance to the scission
line otherwise. We fix the ratio 4r

w3 = 0.04 MeV. The scission
line is defined as an isoline of the expectation value qN of the
Gaussian neck operator. In this work, we fixed qsciss

N = 6.5.
We use the collective inertia tensor defined in Sec. II B 2.

The zero-point energy correction is extracted from the
GCM+GOA width and the inertia tensor through ε = 1

2�M−1

in the perturbative cranking approximation of the GCM [3].
The collective wave function g〈K〉 is discretized using a rect-
angular cell mesh with a finite element basis of degree 4,
where the nodes are located on the zeros of the Gauss-Lobatto
quadrature of order 5. We use a timestep of �t = 2×10−25 s
and run the simulation up to tmax = 3×10−20 s.

To determine the yields, we first decompose the scission
line S into small segments ξ . We model the probability
PR(A, ξ ) for the right fragment at the segment ξ to have mass
A as an integrated Gaussian,

PR(A, ξ ) =
∫ A+ 1

2

A− 1
2

da

σA

√
2π

exp

[
− (a − AR(ξ ))2

2σ 2
A

]
, (37)

where AR(ξ ) is the average number of particles in the right
fragment and σA is a parameter of our model that represents
the particle-number dispersion in the right fragment and a
mass resolution of the experimental data we use to compare
with our results. Following earlier studies [45], we use σA =
4.0. We then determine the integrated flux F (ξ ) across the
element ξ ∈ S according to the implementation in [43]. We
recall that the integrated flux reads

F (ξ ) = lim
T →∞

F (ξ, T ) (38)

with

F (ξ, T ) =
∫ T

0
dt

∫
q∈ξ

J(q, t) · dS . (39)

In that expression, J(q, t ) is the instantaneous flux at a point
q and time t and is determined using

J(q, t ) = h̄

2i

√
γ (q)B(q)[g∗(q, t )∇g(q, t )−g(q, t )∇g∗(q, t )] .

(40)
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TABLE II. Values of Cflux(T → ∞) for the two reactions
236,238U(n, f ). All values are given in percent.

Ex [MeV]

Target K 0 1 2 3 4 5

236U 1/2 23.9 27.4 25.9 26.0 26.2 25.1
3/2 23.9 24.2 23.0 23.5 22.9 22.5
5/2 18.1 20.2 16.2 14.2 12.4 13.8
7/2 15.7 13.5 14.3 16.6 19.5 18.3

238U 1/2 21.5 25.0 22.9 21.8 20.3 20.9
3/2 17.9 19.0 19.5 19.0 18.5 20.8
5/2 9.3 8.5 10.2 10.4 13.6 13.6
7/2 21.2 21.8 23.3 23.5 24.3 23.7

Finally, we can determine the primary fission fragment mass
distributions Y (A) through

Y (A) =
∑
ξ∈S

F (ξ ) PR(A, ξ ) . (41)

Finally, we noticed that the determination of the fission
fragments by integration of the flux across the scission line
could include spurious negative contributions caused by a part
of the wave packet going back through the scission line from
the opposite direction. We quantify this effect using

Cflux(T ) =
∫ T

0 dt
∫
S dξ max(−F (ξ, t ), 0)∫ T

0 dt
∫
S dξ |F (ξ, t )|

. (42)

The results for the reactions 236,238U(n, f ) are collected in
Table II for the scission configurations defined by the condi-
tion qsciss

N = 6.5. We find a value around 25%. However, an
important proportion of it probably comes from tiny oscil-
lations around the scission line, which would not drastically
impact the fission fragment mass distributions. Although a
more in-depth analysis of this effect is needed, we use this
criteria as an upper bound for the error.

We must also associate the different values of Ex with
the energy of an incoming neutron in order to be able to
compare our results with experimental data. For fissionable
isotopes, fission only occurs when the incident neutron en-
ergy is higher than some threshold E f

n . Measurements suggest
E f

n ≈ 0.7 MeV for the 236U(n, f ) reaction [94] while E f
n ≈ 1.2

MeV for the 238U(n, f ) reaction [94,95]. In such cases, we
can assume that our results at Ex = 0 should be compared
with En = E f

n , and this leads to the simple generalization at
higher incident energies: En = E f

n + Ex. One of the limitations
in this work is that we assume axial symmetry: as mentioned
in the introduction to this section, fission barriers are therefore
systematically overestimated. We account for this effect by
assuming a generic offset �Etriax. = 1 MeV. This leads to the
approximate conversion between incident neutron energy and
collective energy,

En = E f
n + �Etriax. + Ex. (43)

Note that Eq. (43) implicitly depends on the neutron separa-
tion energy of the target. Indeed, for a fission reaction with an

FIG. 8. The first four K components of the mass distribution
of the light fission fragment in the 238U(n, f ) reaction, before
prompt emission, at incident neutron energy En = 2.2 MeV (left) and
En = 7.2 MeV (right). Each curve has been independently normal-
ized to 200%.

energy threshold E f
n such as 237U(n, f ), we must have S(N ) +

E f
n = EA, where EA is the fission barrier height. Hence, E f

n =
S(N ) − EA in this case. However, we can also write the total
energy of the fissioning system as E = Eg.s. + EA + Ex =
Eg.s. + S(N ) + E f

n + Ex as well as E = Eg.s. + S(N ) + En.
Thus, equating the right-hand side of both definitions, we can
simplify by Eg.s. + S(N ) which removes the dependency in
Eg.s. and S(N ) in the relation between En and E f

n . In contrast,
reactions such as 235U(n, f ) and 237U(n, f ) fission already
occurs for thermal neutrons [96,97], hence the threshold for
fission is E f

n = 0 MeV. It means that S(N ) > EA, and thus we
cannot use S(N ) in the same way to relate the neutron energy
En with the excitation energy Ex. Instead, we can write that
the energy of the fissioning system after neutron absorption is
E = Eg.s. + S(N ) + En = Eg.s. + EA + Ex. Thus, we get En =
EA + Ex − S(N ).

3. Analysis of 238U(n, f )

In this section, we focus on the case of the 238U(n, f )
reaction to analyze the impact of the prescription outlined
in the two previous sections on the primary fission fragment
distributions. Figure 8 shows the primary mass distributions of
the light fragment produced in the fission of 239U for different
spin projections K and at two different incident neutron en-
ergies. The differences between the curves for each K value
are meaningful since all the ingredients in the calculation
(definition of the scission configurations, characteristics of the
TDGCM+GOA, post-processing of the collective flux, etc.)
are identical in all four cases: the only differences are the
values of the potential energy and collective inertia tensor.
Although Fig. 6 shows the population probability of K = 1

2 is
about twice that of K = 3

2 , the probability of populating states
with higher K is not negligible and so the differences in mass
distributions are important. As the incident neutron energy
increases, the probability to populate states of higher K also
increases, further magnifying the importance of considering
the contributions of different spin projections.

To study the impact of these specific fission-spin chan-
nels on the primary mass distribution Y (A) we look for the
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available experimental data. Mass distributions from fission
reactions induced by fast neutrons are limited and only avail-
able for some standard fission reactions important for nuclear
technology. One example is the primary mass distributions
of the 238U(n, f ) reaction from E (exp)

n = 1.2 to 5.8 MeV
[98]. The energies of the two fragments after prompt particle
emission were measured with a dual Frisch-grid ionization
chamber and the primary fragment masses were determined
using the double-kinetic energy technique. Provisional masses
of the two fragments were estimated based on conservation
of momentum and the assumption that the fragments were
detected back-to-back. Then, the energy of the primary frag-
ments (before neutron emission) was computed based on the
expected number of neutrons emitted by each fragment ν(A).
The provisional masses were updated based on the preneu-
tron energies, and this was repeated until the change in the
fragment masses from one iteration to the next was less than
some fraction of a mass unit. The authors of Ref. [98] assumed
a sawtooth-like shape for ν(A); however, the shape of the
neutron distribution as well as the average total number of
emitted neutrons as a function of incident neutron energy
have been estimated based on available data from neighboring
fissioning systems. Since the number of neutrons emitted by
each fragment is unknown, the mass of the fragments in a
single event cannot be determined more accurately than 4–5
mass units [full width at half-maximum (FWHM)]. It should
also be noted that using this technique the primary mass yields
in light and heavy groups are symmetric relative to half of the
mass number of the fissioning nucleus (A = 239 in this case).

In Fig. 9 we compare our calculation of these primary
mass distributions of 239U (for the light fragment) with
the available experimental dataset of the 238U(n, f ) reaction
[98] for several incident neutron energies up to the onset
of second-chance fission. The error band was obtained by
considering an error of ±1 MeV in the relation given by
Eq. (43). Overall, the comparison is rather satisfactory for
a “first-principles” approach to the calculation of the mass
distribution, especially since potential energy surfaces in two-
dimensional (q20, q30) spaces are known to exhibit several
spurious discontinuities [99], the removal of which would re-
quire increasing the number of collective variables [100–102].
In addition, it was also shown that, at least in two dimensions,
calculations with collective variables based on the expecta-
tion value of multipole moments could not map all possible
fragmentations [41].

B. Independent yields

As mentioned in Sec. II, the primary fission fragments
will be sufficiently excited to evaporate neutrons in less
than 10−15 s. These very short times mean that in any ex-
periment the nuclei that are detected are not the primary
fragments, but instead THE secondary fragments resulting
from the emission of a varying number of neutrons. As dis-
cussed in the previous section, the “experimental” primary
yields presented in Fig. 9 were reconstructed from measure-
ments of independent yields following a model-dependent
procedure.

FIG. 9. Mass distribution of the light fission fragment in the
238U(n, f ) reaction, before prompt emission, as a function of incident
neutron energy. Experimental data are taken from Ref. [98].

However, independent yields can also be computed from
the primary ones by simulating the emission of prompt
neutrons and photons. As is commonly known, the main draw-
back of doing so is that one needs to completely characterize
the fission fragments at scission: not just their distribution
Y (Z, A) but also their excitation energy E∗, spin-parity dis-
tribution p(Jπ ), and level density ρ(E∗, Jπ ). In spite of very
encouraging progress in recent years, a predictive model of
all such quantities does not yet exist [1]. Evaluations of fission
product yields typically rely on various empirical models with
parameters adjusted to data. We adopt a similar strategy here:
the prompt emission of particles is simulated with the event
generator FREYA [91,92].

By default, FREYA can calculate fission events of the
238U(n, f ) reaction; various model parameters have already
been adjusted to reproduce experimental data. Therefore, we
used the default FREYA setup to process our 238U(n, f ) primary
yields with only two modifications: (i) we replaced the default
five-Gaussian parametrization of the primary mass distribu-
tion with our calculated ones at En = 2.2 MeV; and (ii) we
changed the parameter dTKE, which is an overall energy shift
to the total kinetic energy. FREYA determines the total kinetic
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FIG. 10. Fission fragment mass distribution of the 238U(n, f ) re-
action after neutron emission for an incident neutron energy En = 2.2
MeV. The present results are compared with a GEF-2021/1.1 [103]
empirical model calculation at En = 2.2 MeV and the following
evaluations for fast-neutron-induced fission: ENDF/B-VIII.0 [96],
JEFF-3.3 [104], and JENDL-5 [105].

energy for a pair of fragments using experimental data, and
the shift dTKE is tuned to reproduce the prompt neutron
multiplicity, ν̄. We adjusted dTKE for En = 2.2 MeV from
its default value of 1.0 MeV to 0.698 MeV in order to match
the ENDF/B-VIII.0 value ν̄ = 2.605.

Figure 10 compares our calculations with several evalua-
tions of the independent mass yields in the reaction 238U(n, f )
at an incident neutron energy of En = 2.2 MeV. The agree-
ment with the data is rather good considering that the primary
mass distribution comes from a model prediction rather than
an empirical fit. The main limitation is that the distance be-
tween the two peaks is slightly too wide. This is most likely
caused by the fact that the mass of the heavy fragments is
overestimated. We note that symmetric and very asymmetric
fission are also overestimated.

FREYA has not been tuned for the 236U(n, f ) reaction, so
we added that reaction and generally kept the default values of
any of the model parameters. As for the case of 238U(n, f ), we
replaced the default primary mass yields with our calculated
fission fragment mass distribution, this time at En = 1.7 MeV.
Pre-equilibrium neutron emission was disabled since there is
no available data for this process for this reaction. There is
also no suitable experimental database or evaluation for the
total kinetic energy as a function of fragment mass for the
236U(n, f ) reaction. For this reason, we took the experimen-
tal data from the 235U(n, f ) reaction instead. The parameter
dTKE was set to −1.480 MeV to reproduce the ENDF/B-
VIII.0 value ν̄ = 2.545 for En = 1.7 MeV.

As shown in Fig. 11, results for 236U(n, f ) are some-
what similar to 238U(n, f ). Again, both symmetric and very
asymmetric fission are overestimated. This time, however, the
centroids of the light and heavy mass peaks are much closer
to the evaluated values. The yields we compute are slightly
lower than the evaluated one, especially in the heavy peak.
This may be caused by the fact that our scission configurations

FIG. 11. Fission fragment mass distribution of the 236U(n, f )
reaction after neutron emission for an incident neutron energy En =
1.7 MeV. The present results are compared with a GEF-2021/1.1
[103] empirical model calculation at En = 1.7 MeV and the fol-
lowing evaluations for fast-neutron-induced fission: ENDF/B-VIII.0
[96], JEFF-3.3 [104], and JENDL-5 [105].

near the most likely fission lack some fragmentations around
AH ≈ 135. This problem is reminiscent of issues identified
earlier in potential energy surfaces obtained with constraints
on standard multipole moments [41,106].

V. CONCLUSIONS

In this work, we established a rigorous procedure to
compute the fission fragment mass distributions before the
emission of prompt neutrons within the general framework of
nuclear energy density functional theory. Our method assumes
that the nuclear shape is axially symmetric and requires three
ingredients: (i) the spin distribution of the fissioning nucleus,
which we obtain from the coupled-channel formalism; (ii)
the potential energy surfaces for different spin projections
K , which are computed within the Hartree-Fock-Bogoliubov
theory with the equal filling approximation of the blocking
prescription; and (iii) the collective inertia tensor determined
by the finite-temperature extension of the adiabatic time-
dependent Hartree-Fock-Bogoliubov theory. For the latter, we
sketched the complete derivation of the formulas used without
proof so far in the literature.

We tested our approach on the 236U(n, f ) and 238U(n, f )
fission reactions, which leads to the odd-mass compound
nuclei 237U and 239U, respectively. We confirmed that the
choice of the blocking configuration has a major impact on
deformation properties: fission barrier heights, which are key
ingredients in the evaluation of fission cross sections and
probabilities, can vary by up to 1–2 MeV depending on the
choice of blocked quasiparticle [21]. We also showed that the
fission fragment distributions obtained for different K con-
figurations are significantly dissimilar and that the different
population probabilities of each spin channel can magnify
these differences. We emphasized that mapping the collective
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wave packet’s energy with the incident neutron’s kinetic en-
ergy is much more challenging in odd-mass systems since
each spin channel has a different barrier height. We simu-
lated the prompt emission of particles with the code FREYA

to compare our calculations with experimental data. Overall,
the agreement between our model and experimental data is
satisfactory.

Combining our microscopic approach of computing pri-
mary fission observables with the fission simulation model
FREYA opens up the possibility to study the impact of differ-
ent entrance channels on fission-fragment mass distributions.
A systematic comparison of fission-product yields emerging
from different angular momenta transfer to the compound
system is now potentially feasible. We have also provided
a framework for large-scale fission calculations of odd-mass
nuclei involved, e.g., in r-process nucleosynthesis, for which
no experimental data exists. As often in self-consistent cal-
culations, our two-dimensional potential energy surfaces are
plagued by several discontinuities. To turn our theoretical
framework into a competitive evaluation tool, one must en-
large the collective space and develop algorithms capable of
eliminating spurious discontinuities. Only then will a proper
quantification of theoretical uncertainties associated with,
e.g., the definition of scission configurations or the choice of

the inertia tensor or zero-point energy contributions, will truly
make sense.

In the particular case of odd-mass nuclei, it could be worth-
while to study the impact of the blocking approximation itself,
especially as it pertains to the collective inertia tensor. In this
work, we used the cranking approximation in its perturbative
version, where the quasiparticle random phase approximation
(QRPA) matrix is diagonal and all derivatives are computed
locally. The analysis of Ref. [107] showed considerable differ-
ences between such a cranking approximation and the “exact”
calculation. Since solving the QRPA involves the time-odd
channel of the functional, this suggests that there could be
a sizable effect of time-reversal-symmetry breaking in the
collective inertia tensor—hence in the collective dynamics—
which might be further magnified in odd-mass systems.
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