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Quantum computing of the pairing Hamiltonian at finite temperature

Chongji Jiang1 and Junchen Pei 1,2,*

1State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
2Southern Center for Nuclear-Science Theory (SCNT), Institute of Modern Physics, Chinese Academy of Sciences, Huizhou 516000, China

(Received 16 December 2022; revised 10 March 2023; accepted 23 March 2023; published 14 April 2023)

In this work, we study the pairing Hamiltonian with four particles at finite temperatures on a quantum
simulator and a superconducting quantum computer. The excited states are obtained by the variational quantum
deflation. The error-mitigation methods are applied to improve the noisy results. The simulation of thermal
excitation states is performed using the same variational circuit as at zero temperature. The results from quantum
computing become close to exact solutions at high temperatures, and demonstrate a smooth superfluid-normal
phase transition as a function of temperatures as expected in finite systems.
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I. INTRODUCTION

The simulation of quantum many-body systems on quan-
tum computers has natural advantages by avoiding the
exponential scaling of computing costs on classical comput-
ers [1]. Atomic nuclei are strongly correlated finite quantum
many-body systems, for which the accurate treatment of
many-body correlations is essential. There are already several
applications of quantum computing in nuclear physics, such
as the implementation of coupled cluster method for light
nuclei [2], the Lipkin model [3,4], neutrino-nucleus scattering
[5], nuclear dynamics [6,7], the symmetry restoration [8], and
the nuclear shell model [9] on quantum computers. Presently
these applications in simplified many-body models paved a
route to practical quantum computing of small quantum sys-
tems such as light nuclei in the near future.

Actually small quantum systems have novel features com-
pared to large systems. For large systems the statistical
methods or mean-field theories are often suitable theoreti-
cal tools. In particular, there is a superfluid-normal phase
transition in large systems with increasing temperatures but
the phase transition is absent in finite small systems. In this
respect, the finite-temperature Bardeen–Cooper–Schrieffer
(BCS) or Hartree-Fock-Bogoliubov theory is breakdown
which results in a false pairing phase transition in nuclei [10].
With elaborate many-body approaches, such as the quantum
Monte Carlo [11] and particle number projections at finite
temperatures [12], the false phase transition is washed out.
In addition, the existence of a pseudogap phase in high-Tc

superconductors has been widely studied and the origin of
the pseudogap remains an open question [13,14]. Indeed, the
exact treatment of thermal excitations of quantum systems
has broad implications in static and dynamical observables.
The accurate descriptions of hot nuclei and nuclear matter
are relevant for descriptions of level densities [15], shape
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transitions [11,16], fission barriers [17], and equation of state
for neutron stars [18].

There are several quantum algorithms to simulate many-
body systems on quantum computers. The widely used
variational quantum eigensolver (VQE) is a robust and flex-
ible way to compute the ground state of a Hamiltonian [2,19].
The modified VQE, namely variational quantum deflation
(VQD), can be applied to excited states [20]. In addition, the
quantum phase estimation method can also solve the eigen-
state problems which requires deep circuits with ancilla qubits
[8]. On the other hand, the hybrid quantum and classical com-
puting has been extensively studied so that the optimization
of VQE is feasible [21]. Besides quantum algorithms, the
development of quantum computing hardware is fast and IBM
is expected to deliver a 4000-qubit system by 2025.

In this work, the ground state, excited states, and thermal
states of the pairing Hamiltonian are studied with the varia-
tional quantum computation. One of the key issues is to apply
VQD to solve excited states and their degeneracies. Although
the quantum computing of the pairing Hamiltonian and the
Lipkin model have been studied in the literatures [3,4,8],
a comprehensive study of eigenstates and thermal states is
still inspiring. The finite-temperature BCS results with a false
phase transition are also shown for comparison to emphasize
the significance of quantum computing. The calculations are
firstly performed with the simulator Qiskit [22]. Then practi-
cal quantum computing is performed on a superconducting
quantum computer provided by IBM. The error mitigation
methods for the noisy quantum computing have also been
discussed.

II. THEORETICAL FRAMEWORK

This work solves the pairing Hamiltonian in a degenerate
shell space, which has exact solutions for benchmark of differ-
ent methods. It is known that the fermionic operators can be
implemented on quantum computers with the Jordan-Wigner
transformation [2,8,23,24]. For the pairing Hamiltonian, it is
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TABLE I. The exact solution in the qubit basis space for the pairing Hamiltonian with N = 4 particles in a degenerate shell space of � = 3
and � = 4. In the table, S0 denotes the z component of the total spin and s denotes the seniority number based on the seniority model.

(�, N ) S0 Basis Eigenstates s Eigenvalue

1√
3
(|↑↑↓〉 + |↑↓↑〉 + |↓↑↑〉) 0 −4G

(3,4) 1
2 |↑↑↓〉, |↑↓↑〉, |↓↑↑〉 1√

2
(|↑↑↓〉 − |↑↓↑〉)

2 −G1√
6
(−|↑↑↓〉 − |↑↓↑〉 + 2|↓↑↑〉)

1√
6
(|↑↑↓↓〉 + |↑↓↑↓〉 + |↓↑↑↓〉 +
|↑↓↓↑〉 + |↓↑↓↑〉 + |↓↓↑↑〉)

0 −6G

(4,4) 0 |↑↓↓↑〉, |↓↑↓↑〉, |↓↓↑↑〉, 1√
2
(|↓↑↑↓〉 − |↑↓↓↑〉)

|↑↑↓↓〉, |↑↓↑↓〉, |↓↑↑↓〉 1√
2
(|↓↓↑↑〉 − |↑↑↓↓〉) 2 −2G

1√
2
(|↓↑↓↑〉 − |↑↓↑↓〉)

1
2 (|↑↓↑↓〉 − |↓↑↑↓〉 − |↑↓↓↑〉 +

|↓↑↓↑〉) 4 0√
3

3 (|↑↑↓↓〉 + |↓↓↑↑〉) −√
3

6 (|↓↑↑↓〉 + |↑↓↓↑〉 + |↑↓↑↓〉 +
|↓↑↓↑〉)

more efficient to map the pairs with the quasispin operators
[25,26]. In this work, the pairing Hamiltonian is rewritten with
the quasispin operators as [27]

H = −G
∑

m,m′>0

a+
m′a+

−m′a−mam = −G
∑

m,m′>0

s(m′ )
+ s(m)

− (1a)

with

s(m)
+ = a+

ma+
−m, s(m)

− = a−mam, (1b)

where two orbitals of (m,−m) form a pair. The quasispin
operators s+, s− have the commutation properties of angular
momentum operators.

It is convenient to map the transformed pairing Hamilto-
nian in the quasispin basis into qubit basis

H = −G
∑

p,q>0

s(p)
+ s(q)

− , (2a)

where the operators can be represented by Pauli matrices

s(p)
+ s(p)

− → 1
2

(
I (p) + σ (p)

z

)
, (2b)

s(p)
+ s(q)

− → 1
2

(
σ (p)

x ⊗ σ (q)
x + σ (p)

y ⊗ σ (q)
y

)
. (2c)

A. Details of the pairing Hamiltonian

In the following part, we describe the pairing Hamiltonian
being mapped into the qubit basis. We study N = 4 parti-
cles in a (2 j + 1)-fold degenerate j shell corresponding to
� = 3 and � = 4, where �= j + 1

2 is the number of pairs.
In the shell model, the configuration spaces for � = 3 and
� = 4 are C4

6 = 15 dimensional and C4
8 = 70 dimensional,

respectively. The complexity of classical computing increases
exponentially with the shell space of �. The half-occupied
configuration space leads to the largest computing costs. We
will show that the pairing Hamiltonian can be simulated with
three qubits for � = 3 and with four qubits for � = 4 and so
on, which is irrespective of the number of particles.

For the case of � = 3, the pairing Hamiltonian
can be constructed on three qubits. The transformed
pairing Hamiltonian is represented in terms of Pauli
matrices according to Eq. (2). The pairing Hamiltonian
of � = 3 can be solved in the qubit basis space of
{|↑↑↑〉, |↑↑↓〉, |↑↓↑〉, |↑↓↓〉, |↓↑↑〉, |↓↑↓〉, |↓↓↑〉, |↓↓↓〉}.
For N = 4 and � = 3, the eigenspace can be reduced to
{|↑↑↓〉, |↑↓↑〉, |↓↑↑〉} since the number of particles is
related to the z component of total spin. For � = 4 and
N = 4, the pairing Hamiltonian can be represented on four
qubits in a reduced eigenspace of (|↑↑↓↓〉, |↑↓↑↓〉, |↓↑↑↓〉,
|↑↓↓↑〉, |↓↑↓↑〉, |↓↓↑↑〉). The exact solutions of the pairing
Hamiltonian of � = 3 and � = 4 with four particles are
given in Table I.

B. State preparation

Next we prepare the trial state on the quantum circuits. To
simplify the quantum circuits, the symmetry of particle num-
ber conservation is exploited. For � = 3 with N = 4 particles,
the ansatz wave function with two variational parameters is
represented as

|ψ〉t = sin
θ

2
|↑↑↓〉 + cos

θ

2
sin η|↑↓↑〉 + cos

θ

2
cos η|↓↑↑〉.

(3)

FIG. 1. Quantum variational circuit for � = 3 and N = 4 on
three qubits, in which the Y (θ ) gate performs a rotation of θ around
the Y -axis direction.
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FIG. 2. Quantum variational circuit for � = 4 and N = 4 on four qubits, which includes five two-qubit building blocks.

The quantum circuit of � = 3 is shown in Fig. 1. The rotation
angles η, θ correspond to the variational parameters.

For � = 4 with four particles, the trial wave function in
computational basis can be expressed by variational rota-
tion angles θ0, . . . , θ4. The associated quantum circuit with
four qubits is shown in Fig. 2. For � = 4 with six par-
ticles, the circuit can be much simpler with a reduced
eigenspace. The circuit for � = 4 is constructed according to
the ansatz that preserves the number of particles, as presented
in Refs. [28–30]. This circuit employs five two-qubit build-
ing blocks as shown in Fig. 2. Each building block U (θ ) is
written as

U (θ ) =

⎛
⎜⎜⎝

1 0 0 0
0 sin θ cos θ 0
0 cos θ − sin θ 0
0 0 0 1

⎞
⎟⎟⎠, (4)

which is a unitary variational transformation but preserves
the number of particles. In this way, the circuit is rather low-
depth and results from quantum computing are less noisy. The
circuits for systems with a larger � can also be constructed
efficiently using the two-qubit building blocks.

C. VQD for excited states

First the ground state solution is obtained by adjusting the
variational parameters in the Hamiltonian

E (λ) ≡ 〈ψ (λ)|H |ψ (λ)〉. (5)

The ansatz state |ψ (λ)〉 is prepared with variational parame-
ters λ, which are the rotation angles in quantum gates of the
circuit. The ground state corresponds to the minimum energy
by making measurements of Pauli terms of the pairing Hamil-
tonian. For circuits with multiple parameters, the optimized
numerical method is needed to search the minimum.

VQD is a modification of VQE and can be applied to
compute excited states [20]. For the kth excited state, the vari-
ational parameters λk for the ansatz state ψ (λk ) are obtained
by minimizing the extended cost function as

E (λk ) ≡ 〈ψ (λk )|H |ψ (λk )〉 +
k−1∑
i=0

βi|〈ψ (λk )|ψ (λi)〉|2. (6)

This means that ψ (λk ) is required to be orthogonal to lower
states. This is equivalent to solve an effective Hamiltonian
H (k) for kth excited states |k〉 as follows:

H (k) ≡ H +
k−1∑
j=0

β j | j〉〈 j|. (7)

Here, H represents the pairing Hamiltonian, |0〉 represents the
ground state, and | j〉 represents jth excited state. The excited
states are solved successively with increasing excitation ener-
gies. The parameters β j are large values that shift lower states
to higher energies. The excited states and ground state share
the same basis and the same circuit with different variational
parameters.

To implement VQD, it is crucial to calculate the wave func-
tion overlap |〈 j|k〉|2, which is realized by |〈0|U †( j)U (k)|0〉|2
[20]. We can prepare the state U †( j)U (k)|0〉 using the trial
state circuit followed by the inverse of the previously com-
puted state. The overlap is obtained by measuring the final
probability of |↑↑↑〉. This method requires the same number
of qubits as VQE and at most twice the circuit depth. Note
that there are several methods to compute excited states such
as the quantum phase estimate method [1,8,31], the quantum
Lanczos method [26,32], and the quantum equation of motion
[4,33]. VQD has been widely applied in quantum chemistry
[34–36]. In addition, VQD requires low resources to compute
excited states. In applications of the VQD method, one should
be cautious since errors would be accumulated due to the
successive solving procedure and become larger for higher
states. The detailed analysis of error accumulation in VQD
has been discussed in Ref. [20].

III. SYSTEMS AT FINITE TEMPERATURES

A. Seniority model

The exact eigenvalues of the degenerate pairing Hamilto-
nian with N particles can be obtained by the seniority model
as [27]

Es
N = −G

4
(N − s)(2� − N − s + 2), (8)

where s is the seniority quantum number representing the
number of unpaired nucleons.

The eigenstates are usually degenerate except for the
ground state. The degeneracy of excited states is related to
s as [27]

ds =
(

�

s/2

)
−

(
�

s/2 − 1

)
, (9)

while s satisfies s � N . It is consistent with the results of exact
diagonalization of pairing Hamiltonian shown in Table I.

The system at a finite temperature kT is described by the
canonical ensemble. The partition function can be written as

Zc =
∑

s

ds exp
[− β

(
Es

N − E0
N

)]
, (10)

044308-3



CHONGJI JIANG AND JUNCHEN PEI PHYSICAL REVIEW C 107, 044308 (2023)

where β = 1/kT and k is the Boltzmann constant. The pairing
energy at the finite temperature kT is given by

〈H〉 = 1

Zc

∑
s

dsE
s
N exp

[− β
(
Es

N − E0
N

)]
. (11)

B. Finite temperature BCS theory

The finite temperature BCS (FT-BCS) or Bogoliubov the-
ory has been widely used for descriptions of compound nuclei
[10]. The partition function is based on quasiparticle excita-
tions. Within the FT-BCS theory, the pairing gap equation is
written as [10]

	 = 	0 tanh
(

1
2β	

)
, (12)

where 	0 = G�
2 is the BCS gap at zero temperature. The

expectation value of the pairing Hamiltonian is

〈H〉FT−BCS = −G
N2

4�
− 	2

G
. (13)

Within FT-BCS, there is a “phase transition” from a paired
state to a normal state at a critical temperature corresponding
to kTc = 1

2	0 [10]. The critical temperature is around 0.7
MeV for compound nuclei [16,37].

C. Thermal states by VQE

Thermal excited states are mixed states which can be de-
scribed by the density matrix

ρβ = 1

Zc

∑
i

e−βEi |ψi〉〈ψi|, (14)

note that ψi is the eigenstate of Hamiltonian. The expectation
value of an observable Ô is defined by 〈Ô〉 = Tr(ρβÔ). The
pairing energy can be calculated by

〈H〉 = 1

Zc

∑
i

e−βEi〈ψi|H |ψi〉 ≡ 〈ψc|H |ψc〉, (15)

while |ψc〉 ≡ 1√
Zc

∑
i e−βEi/2|ψi〉. Actually |ψc〉 is not known

as a priori and is supposed to be determined by VQE. The
preparation of thermal equilibrium states with unitary quan-
tum operations is not trivial. It is known that a mixed thermal
state can be generated by thermofield double states [38],
however, it is difficult to be applied to a general Hamilto-
nian. Besides, the quantum imaginary time evolution has only
been applied to geometric local Hamiltonians for thermal
states [32]. The quantum computing of zeros of the partition
function is an alternative way to study phase transitions and
thermodynamic quantities [39]. In our case, it is possible to
construct a superposition of eigenstates without off-diagonal
elements to simulate the mixed thermal states.

Based on VQE, the thermal state can be determined by
minimizing the free energy F :

F = 〈H〉 − T S. (16)

It is easy to calculate the first term 〈H〉 based on the variational
wave function. In regard to a mixed state, which is described
by ρ = ∑

i pi|ψi〉〈ψi|, the definition of its Von Neumann
entropy is −k

∑
i pi ln pi. The probability pi is the overlap

between |ψi〉 and |ψc〉. The second term of free energy can
be expressed as

T S = −kT
∑

i

|〈ψi|ψc〉|2 ln |〈ψi|ψc〉|2, (17)

while |ψi〉 are previously computed eigenstates of the pairing
Hamiltonian at zero temperature. Finally, the cost function can
be written as

〈ψ (λ)|F |ψ (λ)〉 = 〈ψ (λ)|H |ψ (λ)〉
+ kT

∑
i

|〈ψi|ψ (λ)〉|2 ln |〈ψi|ψ (λ)〉|2,

(18)

where ψ (λ) is the trial wave function of ψc. The quantum
computing of overlaps is described in the implementation
of VQD. The variational parameters are obtained by mini-
mizing the free energy in case eigenvalues are not known
or not precise. The variational measurements of 〈H〉 can be
implemented on the same variational circuit without accurate
knowledge of eigenstates. The solving procedure at finite tem-
peratures can be summarized as

(1) a circuit to get each state ψi (including ground state)
using the VQD method;

(2) a VQE circuit to compute 〈H〉 for ψc with varying
parameters;

(3) a circuit to compute the overlaps |〈ψi|ψc〉|2 as described
in the VQD method;

(4) an iterative minimization of the cost function of free
energies at different temperatures. Note that the error accumu-
lation by the VQD method has no influence in calculations of
〈H〉, but it would affect the precision of entropy. The precision
of entropy relies on the precision of eigenfunctions and their
orthogonal properties. In this work, the entropy is calculated
with the knowledge of eigenfunctions, and this is not very
efficient for large systems. This method can be improved in
the future if the entropy can be obtained with more efficient
methods by exploiting the advantages of quantum computing.

In practical calculations, the number of variational param-
eters can be reduced by considering the degeneracy of excited
states. For � = 3, the eigenspace is three-dimensional, as
shown in Table I. To describe the superposition state, we
need at least two parameters. Considering the degeneracy, the
parameter space can be reduced to one-dimensional, such as
ψ (α) = cos α|0〉 + sin α√

2
(|1〉 + |2〉). The state preparation cir-

cuit for calculating excited states can also be used for thermal
states, in which the two variational parameters satisfy the
relation

η = −π

4
+ arctan

(
2 cot α − 1√

3

)
, (19a)

θ = 2 arccos

(
cos α + sin α√

3

)
. (19b)

For � = 4 and N = 4, the eigenspace is six-dimensional
as shown in Table I and five variational parameters
are needed. By considering the degeneracy, we construct
the trial wave function in a two-dimensional parameter
space {α, β}, |ψ〉 = cos α|g.s.〉 + sin α cos β√

3

∑
i=0,1,2 |E1〉i +
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TABLE II. The solved eigenspace of the pairing Hamiltonian for � = 3. This table also lists the eigenvalue of the ground state (g.s.),
the first degenerate excited states (1st es) from the Qiskit simulator, raw quantum computing energies from IBM_oslo, the readout error-
mitigated energies (R-Miti), the zero-noise extrapolation energies (ZNE), and energies from combined readout error-mitigation and zero-noise
extrapolation. See text for details.

Eigenstate |ψ〉 E (Qiskit) E (IBM_oslo) E (R-Miti) E (ZNE) E (R-Miti+ZNE)

g.s. 0.588|↑↑↓〉 + 0.554|↑↓↑〉 + 0.590|↓↑↑〉 −4.013 −3.751 −3.871 −3.919 −4.123

1st es 0.309|↑↑↓〉 + 0.651|↑↓↑〉 − 0.693|↓↑↑〉 −1.024 −1.126 −1.107 −1.093 −1.064
0.809|↑↑↓〉 − 0.569|↑↓↑〉 − 0.146|↓↑↑〉 −1.004 −1.109 −1.086 −1.006 −0.978

sin α sin β√
2

∑
j=0,1 |E2〉 j , in which |g.s.〉, |E1〉i and |E2〉 j are the

eigenstates of the ground state, the first, and second excited
states, respectively. The two parameters α, β can be related to
the rotational parameters in the circuit.

IV. COMPUTING EIGENSTATES

In this work, the quantum simulations are performed on
the open platform Qiskit [22]. The practical quantum com-
putations are performed on the superconducting quantum
processor IBM_oslo, which has seven qubits. Its median CNOT

error is about 8.3 × 10−3 and its median readout error is about
2.2 × 10−2. In addition to the number of CNOT gates, the struc-
ture of the circuit and the architecture of quantum processor
could also affect the accuracy. The transpiler can optimize the
executing circuit according to the hardware architecture. The
calculations used 15000 shots for each measurement.

A. � = 3

First the ground state of � = 3 with four particles is
solved by the quantum simulator. The eigenspace is three-
dimensional as shown in Table I. There are two variational
parameters η, θ . The expectation value of the Hamiltonian
given by the quantum simulator is −4.013, while the the
exact value is −4.0. The resulted variational parameters are
θ = 1.62π, η = 1.26π . The wave function of the ground state
is |gs〉sim = 0.588|↑↑↓〉 + 0.554|↑↓↑〉 + 0.590|↓↑↑〉, which
is quite close to the exact wave function 0.577(|↑↑↓〉 +
|↑↓↑〉 + |↓↑↑〉), as their overlap is 0.9994.

The excited states are simulated with the same circuit as for
the ground state. After the wave function of the ground state
is obtained, the effective Hamiltonian of excited states is con-
structed according to Eq. (7). Then excited states are solved
by VQD with two variational parameters. Note that the first
excited state have a double degeneracy. The two solutions cor-
respond to parameters as {1.8π, 1.76π} and {1.4π, 0.42π},
respectively. The resulted excited energies are −1.024 and
−1.004, respectively, while the exact value is −1.0. Note that
wave functions of degenerate states are not uniquely deter-
mined. The degenerate states are solved successively and the
second degenerate state is obtained by VQD after the first state
is shifted out of the eigenspace via Eq. (7).

Quantum computing of ground state and excited states of
� = 3 are also displayed in Table II. To compare with the
simulation results, the same variational parameters are used
in quantum computing. For the ground state, the obtained
energy is −3.751 with IBM_oslo, which has a deviation due

to the noisy hardware about 6% compared to simulations. The
degenerate energies of the first excited states are −1.126 and
−1.109, respectively. The quantum-noisy deviations of ex-
cited states are about 13% with comparison with simulations.
The deviations are mainly come from the noisy CNOT gates
and the decoherence in readout measurements.

B. Error mitigation

Next we applied the error mitigation of readout measure-
ments of eigenstates of � = 3 with IBM_oslo. The detailed
results are listed in Table II. For each qubit, there is a readout
error probability of P(0|1) and P(1|0). The measurement error
can be mitigated by applying the inverse of the error matrix of
kth qubit [6,30]

Sk =
(

Pk
0,0 Pk

0,1

Pk
1,0 Pk

1,1

)
. (20)

Note that such readout error mitigation is performed for in-
dividual qubits. The readout error mitigation is demonstrated
to be very useful to improve the quantum computing accuracy
with a large number of qubits [30]. In our case, the ground
state energy after the error mitigation is −3.871, while the
raw value is −3.751. The error-mitigated first excited state
energies are −1.107 and −1.086, while the raw values are
−1.126 and −1.109. We see that the readout error mitigation
is significant for the ground state but has minor influences for
excited states.

We also applied the zero-noise extrapolation [6] for the
error mitigation of CNOT gates. For each measurement on
IBM_oslo, we add two and four additional CNOT gates. Note
that the product of two CNOT gates is the identity. Based
on these results, corresponding to one, three, and five CNOT

repetitions, the polynomial fitting can extrapolate the error
mitigated results with zero CNOT gate. This procedure of
error mitigation has been widely adopted [2,3,6,40]. The
higher-order extrapolation with more CNOT repetitions could
be too noisy to be helpful. The linear fit is applied to get
the error-mitigate results. The ground state energy is −3.305
and −2.664 with two and four additional CNOT gates. The
zero-noise extrapolation is −4.015 with four CNOT gates and
−3.919 with two CNOT gates. Actually, the output eigenvec-
tors with four additional CNOT gates have serious decoherence.
The zero-noise extrapolation for the degenerated excited
states with two additional CNOT gates are −1.093 and −1.006,
respectively. The zero noise extrapolation method is a phe-
nomenological error mitigation but can improve the accuracy
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TABLE III. The eigenvalues of the pairing Hamiltonian for � =
4 from practical quantum computing. The readout error-mitigation
(R-Miti) and zero-noise extrapolation (ZNE) results are also shown.

Eigenstate E (Qiskit) E (IBM_oslo) E (R-Miti) E (ZNE)

g.s. −5.958 −4.534 −4.754 −5.376

1st es −2.020 −2.108 −2.124 −2.055
−2.000 −1.963 −1.976 −1.895
−2.004 −2.071 −2.097 −2.107

2nd es −0.064 −0.809 −0.728 −0.620
−0.015 −0.655 −0.559 −0.233

remarkably. The results in Table II show that the combination
of the readout error mitigation and zero-noise extrapolation
does not improve the accuracy.

C. � = 4

The problem of � = 4 is much more complex than that
of � = 3. For � = 4 with four particles, the eigenspace is
six-dimensional and five variational parameters are needed.
In this case, the circuit becomes complicated because we
have to realize the entanglement of six basis on four qubits.
With five variational parameters, we have to employ classical
optimization methods to find the global minima. We have
applied the Nelder-Mead method which is a widely used
derivative-free optimization method for finding multidimen-
sional global minima [41]. The Nelder-Mead method is based
on the transformation of multi-dimensional simplex. Note
that the hybrid quantum-classical computation as a promis-
ing direction has been extensively studied [4,21,30,42], since
quantum computing is only superior on specific tasks. The
simulation with Qiskit results in an energy of −5.958 for the
ground state, while the exact value is −6.0. Here the deviation
is originated from statistical fluctuations and the multidimen-
sional optimization. Similar to � = 3, the excited states are
solved successively by VQD. The calculated energies of the
first degenerate excited state are −2.020, −2.000, −2.004,
respectively, while the exact values are −2.0. The energies of
the second degenerate excited state are −0.064 and −0.015,
respectively, while the exact values are 0.0. It can be seen that
accumulated deviations increase for higher states. The over-
laps between eigenstates are also checked. The orthogonality
is satisfactory and this is crucial for simulations of thermal
states.

For quantum computing of � = 4 eigenstates, the ground
state is maximally entangled and the result of the complex
circuit is −4.534. Its deviation is about 24%. The detailed
results are shown in Table III. The quantum computing of the
first degenerate excited states is rather satisfactory. However,
the results of the second degenerate excited states have large
deviations, since more computing basis are entangled com-
pared to the first excited states. Note that in the IBM_oslo
processor some qubits are not directly connected. The nonlo-
cal operations can result in large noise. For � = 4, the readout
error mitigation and zero-noise extrapolation have also been
performed. We see that results can be much improved by the
zero-noise extrapolation. The largest deviation for � = 4 after

the zero-noise extrapolation is about 0.6, which is much larger
than 0.1 for � = 3. The circuit in Fig. 2 works for both ground
state and excited states of � = 4. For testing calculations,
we also construct another circuit only for the first excited
state on four qubits. The first excited state only involve the
superposition of two basis as shown in Table I, so that the
circuit is much simpler. The resulted energy with IBM_oslo is
−1.97 ± 0.03, while the Qiskit value is −1.993. We see that
the reduced eigenspace can greatly improve the accuracy. In
Ref. [30], the first excited state of 6Li also employs a simpler
circuit and has a more accurate result compared to the ground
state considering their different eigenspaces.

V. RESULTS AT FINITE TEMPERATURES

The thermal excitation states can be constructed with the
eigenstates provided by zero-temperature calculations. These
eigenstates are almost completely orthogonal so that an en-
tanglement state can approximate the mixed thermal state.
The exact solutions are given by the seniority model. For
comparison, the FT-BCS results which are not suitable for
small systems are also shown.

A. � = 3

For � = 3 with N = 4 particles, the Qiskit simulations
of pairing energies as a function of temperatures are shown
in Fig. 3. The temperature is given in the scale of 	0.
With the FT-BCS approximation, there is a phase transition
around temperature kT = 0.5	0 as expected, which should be
smoothed out in finite systems. The BCS ground state energy
is −3.55. At high temperatures, the FT-BCS energy is −1.33
which is contributed from the Hartree term and the pairing gap
is vanished. We see there is a significant discrepancy between
FT-BCS and exact results. The exact energies show a smooth
transition as a function of temperatures. The FT-BCS results
are higher than exact results both at zero and finite tempera-
tures, since BCS includes insufficient many-body correlations.
With increasing temperatures, the pairs are breaking due to
thermal excitations. However, the pairs can not be fully broken
due to a restricted configuration space. At the limit of high
temperatures, the system would have the largest entropy and
eigenstates are equally mixed, and the energy limit should be
−2.0 rather than −1.33 as given by FT-BCS.

The false phase transition in FT-BCS demonstrates the
breakdown of the BCS approximation for small systems. Note
that BCS violates the conservation of particle number due to
the breaking of U(1) symmetry. The symmetry restoration by
particle number projection can improve the FT-BCS results
[12]. However, the results of projected FT-BCS at high tem-
peratures are close to FT-BCS [12], which is not consistent
with exact results of the seniority model. It is known that
FT-BCS with variation after projection can well reproduce the
nondegenerate pairing model [43]. The energy discrepancy
between exact solutions and FT-BCS at high temperatures
demonstrates an analogy existence of a pseudogap pairing
[13], i.e., a gap above Tc is needed in Eq. (13) to account for
the energy discrepancy. Here, the existence of the pseudogap
pairing at high temperatures is due to the symmetry constraint
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(a)

(b)

FIG. 3. (a) The pairing energies of � = 3 as a function of tem-
peratures obtained from FT-BCS and Qiskit. The original Qiskit and
smoothed simulation results are shown. (b) The same pairing ener-
gies and zero-noise extrapolation (ZNE) results obtained by quantum
computing.

of finite systems. This provides a clue for the origin of the
pseudogap phase in high-Tc superconductors which may be
induced by specific localized symmetries. The breakdown
of FT-BCS and the variation before projection on FT-BCS
implies the accurate treatment of many-body correlations in
such small thermal-excited systems is essential.

With Qiskit simulations, the deviations caused by statisti-
cal fluctuations are much larger at finite temperatures than at
zero temperature. This is because the calculation of entropy
based on wave function overlaps adds more statistical noise.
In Fig. 3, to reduce the noise, only one variational parameter
is used considering the degeneracy of the first excited state.
The original Qiskit simulations show large deviations from
exact values. To this end, we applied numerical smoothing
and interpolation to smooth out the statistical fluctuations in
variational parameters. Then the smoothed results are close
to exact values at finite temperatures. As an example, the
variational free energy at kT = 2.7	0 is shown in Fig. 4.
We see that the Qiskit simulations have small fluctuations

FIG. 4. The simulated free energies of � = 3 as a function of
variational parameters at the temperature of kT = 2.7	0. The opti-
mized variational parameters from Qiskit simulations and smoothed
simulations are shown for comparison.

around exact free energies. This results in small deviations in
determining the variational parameter. However, the determi-
nation of pairing energies of thermal states is sensitive to these
variational parameters. Thus the smoothed VQE is necessary
to improve the accuracies of thermal quantum simulations.

The quantum computing results with IBM_oslo are shown
in Fig. 3(b). Note that in the quantum computing, the varia-
tional parameters are taken from Qiskit simulations to reduce
uncertainties. We can see that the quantum computing results
are slightly higher than exact values and also demonstrate a
smooth phase transition as expected. For each temperature,
we made five measurements and the hardware uncertainties
given by the standard variances are also shown. The earlier
described error mitigation by zero-noise extrapolation is also
applied at finite temperatures. The error mitigated results by
the zero noise extrapolation become close to exact values.

B. � = 4

For � = 4, the quantum simulations at finite tempera-
tures are more complex. We adopt two variational parameters

FIG. 5. (a) The contour of free energies with two variational pa-
rameters by quantum simulations at kT = 2.0	0 for � = 4. (b) The
smoothed contour around the minima.
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FIG. 6. The pairing energies and the zero-noise extrapolation
(ZNE) from quantum computing as a function of temperatures for
� = 4. The FT-BCS results and exact results are shown for compar-
ison. The smoothed simulation results by Qiskit are also shown.

considering the degeneracy of excited states. In principle there
are five variational parameters but the influences of statistical
noise would be very large. Figure 5 shows the Qiskit simula-
tions of free energies with two variational parameters. We see
notable fluctuations in the contour which would be difficult
for VQE to determine precisely the variational parameters.
Figure 5(b) shows the smoothed contour with the Fourier
expansion. The smoothing method can also be applied to
multidimensional parameter spaces.

The thermal excitation energies of the pairing Hamiltonian
of � = 4 at finite temperatures are shown in Fig. 6. The
FT-BCS results are also shown. It is known that the origi-
nal Qiskit results have notable fluctuations in free energies.
The smoothed simulations are necessary to obtain correct
variational parameters and thus correct pairing energies. The
quantum computing results and zero-noise extrapolation are
shown. The zero-noise extrapolation results are satisfactory
compared to exact solutions. In general, the quantum com-
puting results of � = 4 are less accurate compared to that of
� = 3. In both cases, the deviations of quantum computing
become smaller with increasing temperatures, due to the can-
cellation between errors of different states. This is promising
for quantum computing of thermal states although accumu-
lated errors by VQD increase at higher states. For even larger
systems or very high temperatures, a hybrid approach can be

used, in which low-lying states are computed by VQD and
high-lying states are computed by approximate methods such
as the mean-field approximation plus symmetry projections.

VI. CONCLUSION

We performed quantum computing of eigenstates and ther-
mal states of the pairing Hamiltonian in a degenerate shell.
For � = 3 and � = 4 with four particles, we show their
wave functions can be simulated on three and four qubits,
which correspond to much larger shell model spaces. We have
applied VQD for excited states that shifts lower states out of
the eigenspace successively. The quantum computing is per-
formed with a superconducting quantum processor provided
by IBM. The error mitigation of readout measurements and
the zero-noise extrapolation have been demonstrated to be
helpful to improve the accuracy. For � = 4, the entanglement
of six basis on four qubits is realized and the circuit is con-
structed using the two-qubit building blocks that preserve the
number of particles.

The mixed thermal state is simulated by the entanglement
of the orthogonal eigenspace with the same variational circuit
as at zero temperature. For comparison, the finite-temperature
BCS results are also shown, which has a false phase transition
from superfluid state to normal state. The quantum computing
demonstrates a smooth transition as expected in finite systems.
The FT-BCS is breakdown for small systems. In addition,
exact results are not close to FT-BCS at high temperatures,
indicating an analogy existence of pairing pseudogap. In our
approach, the thermal excitations can be simulated without
accurate knowledge of eigenvalues. The results from quantum
computing become close to exact solutions at high tempera-
tures. In the future, it is still desirable to develop an improved
quantum algorithm to compute the entropy more efficiently.
The accurate treatment of many-body correlations of finite
thermal systems has broad physics implications, for which
quantum computing has unique opportunities.
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