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Neutrinoless ββ-decay nuclear matrix elements from two-neutrino ββ-decay data
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We study two-neutrino (2νββ) and neutrinoless double-β (0νββ) decays in the nuclear shell model and
proton-neutron quasiparticle random-phase approximation (pnQRPA) frameworks. Calculating the decay half-
life of several dozens of nuclei ranging from calcium to xenon with the shell model, and of ββ emitters with a
wide range of proton-neutron pairing strengths in the pnQRPA, we observe good linear correlations between
2νββ- and 0νββ-decay nuclear matrix elements for both methods. We then combine the correlations with
measured 2νββ-decay half-lives to predict 0νββ-decay matrix elements with theoretical uncertainties based
on our systematic calculations. Our results include two-body currents and the short-range 0νββ-decay operator.
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I. INTRODUCTION

Atomic nuclei can double-β (ββ) decay by turning two
neutrons into two protons while emitting two electrons. There
are two possibilities: either to emit two antineutrinos as well,
as observed in a dozen nuclei [1], by the two-neutrino double-
β (2νββ) decay or to decay without emitting neutrinos by the
yet-unobserved neutrinoless (0νββ) mode. The latter violates
lepton number conservation and the balance of matter and
antimatter—only two electrons are emitted—and occurs only
if neutrinos are their own antiparticles [2,3]. Thus, detecting
0νββ decay would establish the nature of neutrinos and shed
light on the matter dominance in the universe. Answering
these fundamental physics questions drives ambitious world-
wide 0νββ-decay searches [4–15].

The 2νββ- and 0νββ-decay half-lives depend on well-
known phase-space factors [16] and nuclear matrix elements
(NMEs) [17]. Additionally, 0νββ decay depends on a pa-
rameter encoding physics beyond the standard model of
particle physics (BSM) leading to lepton-number violation.
Hence, 0νββ-decay NMEs are key to anticipating the reach
of planned experiments in the BSM parameter space [18]
and also to analyzing eventual 0νββ-decay signals. For 2νββ

decay, NMEs can be extracted from measured half-lives [1],
but NMEs for 0νββ decay are poorly known: differences
between state-of-the-art calculations exceed a factor of 3 and
theoretical uncertainties are mostly ignored [3,17].

Recent theoretical works shed light on 0νββ-decay NMEs.
The lightest ββ emitter, 48Ca, has been studied with different
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ab initio many-body methods [19–21]. First ab initio results
for heavier emitters are also available [21], complementing
more phenomenological approaches that typically describe
the nuclear structure of the initial and final nuclei very well
[22–29]. These approaches can cover a wide range of ββ

nuclei, but they lack the consistency that allows ab initio
methods to reproduce β-decay rates [30] without additional
adjustments—usually known as “quenching.” Two key as-
pects are to include two-body currents, which may suppress
0νββ-decay NMEs as well [31], and additional nuclear cor-
relations [30]. On the other hand, Refs. [32,33] introduce a
new short-range NME for 0νββ decay, with an associated
hadronic coupling estimated within quantum chromodynam-
ics (QCD) [34–36]. This leads to a significant enhancement
of the 48Ca NME [37], while the impact in heavier nuclei
suggested by using approximated couplings may be similar
[38].

However, a better understanding of 0νββ-decay NMEs
likely requires information beyond nuclear theory to guide
calculations. The structure of the initial and final ββ-decay
nuclei has received attention [39–49], as well as Gamow-
Teller strengths which probe similar physics to β decays
[50–52]. These properties are valuable tests of the many-body
calculations, but do not show an apparent correlation with
0νββ decay. In contrast, two observables not measured so
far show good correlations with 0νββ-decay NMEs: double
Gamow-Teller (DGT) [53,54] and double magnetic dipole
transitions [55].

In this paper, we study the correlation between the NMEs
of the two ββ-decay modes for nuclei across the nuclear
chart. The 2νββ and 0νββ decays share initial and final states
but differ on their momentum transfers (p) and intermedi-
ate states. Previous studies have found a correlation between
the two ββ-decay NMEs in 48Ca [56] and a relation be-
tween their radial transition densities in all nuclei [57]. 2νββ
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decay has also been used to estimate improved 0νββ-decay
matrix elements [58]. Also, 2νββ-decay data is commonly
used to adjust the proton-neutron quasiparticle random-phase
approximation (pnQRPA) model parameters [59–63]. Here
we perform systematic pnQRPA and nuclear shell-model cal-
culations, with various proton-neutron pairing strengths in the
pnQRPA, and covering a wide range of nuclei and interactions
in the shell model. Since 2νββ-decay half-lives are known, a
correlation between ββ NMEs can lead to 0νββ-decay NMEs
based on 2νββ-decay data.

II. DOUBLE-β DECAY OPERATORS

The 2νββ-decay half-life, to a very good approximation,
depends on a single NME [63]:

M2ν =
∑

k

(0+
f || ∑a τ−

a σa||1+
k )(1+

k || ∑b τ−
b σb||0+

i )

[Ek − (Ei + E f )/2]/me
, (1)

where indices a and b run over all nucleons, the isospin op-
erator τ− turns neutrons into protons, σ is the spin operator,
and the denominator involves the energies E of the initial state
(i), the final state ( f ), and each kth intermediate 1+ state. The
electron mass me makes M2ν dimensionless. We solve Eq. (1)
directly with both the pnQRPA and the shell model. For the
latter framework we use the Lanczos strength function method
[64], which typically gives converged matrix elements after 50
iterations.

For 0νββ decay, we focus on the best motivated light-
neutrino exchange mechanism [3]. The decay rate is usually
written in terms of a NME with three spin structures:

M0ν
L = M0ν

GT − M0ν
F + M0ν

T , (2)

called Gamow-Teller (M0ν
GT), Fermi (M0ν

F ), and tensor (M0ν
T )

according to the operators OF
ab = I, OGT

ab = σa · σb, and
OT

ab = 3(σa · r̂ab)(σb · r̂ab) − σa · σb entering the definition

M0ν
K =

∑
k,ab

(
0+

f ||OK
ab τ−

a τ−
b HK (rab) f 2

SRC(rab)||0+
i

)
, (3)

where rab is the distance between two nucleons. In the pn-
QRPA, we sum over all intermediate states, while in the shell
model we directly compute NMEs between the initial and final
states in the closure approximation. In both methods, fSRC

corrects for missing short-range correlations (SRCs) using
two parametrizations [65]. The neutrino potentials are defined
as

HK (rab) = 2R

πg2
A

∫ ∞

0

hK jλ(p rab) p2d p

EK
, (4)

with EK = p[p + Ek − (Ei + E f )/2], gA = 1.27, and R =
1.2A1/3 fm with nucleon number A. The spherical Bessel func-
tion j0 enters all terms except the tensor where λ = 2. In the
shell model, we use closure with two alternative denominators
EK = p(p + 1.12A1/2 MeV) [66] and EK = p2 [32]. For the

FIG. 1. Relative impact of two-body currents on the function
hGT(p2), with respect to the one-body values.

dominant GT term we have

hGT =g2
A(p2) − gA(p2)gP(p2)p2

3mN
+ g2

P(p2)p4

12m2
N

+g2
M(p2)p2

6m2
N

, (5)

and other terms are defined likewise [17]. The leading
parts are proportional to the axial coupling gA(p2)—with a
dipole form factor [67]—and the pseudoscalar one gP(p2) =
2mNgA(p2)(p2 + m2

π )−1. Here gM is the magnetic coupling,
and mN and mπ are the nucleon and pion masses, respectively.

In addition to the standard shell-model and pnQRPA
NMEs, we consider two additional contributions to 0νββ

decay. First, we estimate the effect of two-body currents
from chiral effective field theory approximated as effective
one-body operators via normal ordering with respect to a spin-
isospin symmetric Fermi gas reference state as in Ref. [68].
The resulting current reads

Jeff
i,2b(ρ, p) = gAτ−

i

[
δa(p2)σ i + δP

a (p2)

p2
(p · σ i )p

]
, (6)

with two-body δa(p2) and δP
a (p2) functions dependent on the

Fermi-gas density ρ and low-energy couplings c1, c3, c4, c6,
and cD, for which we take the same values as in Ref. [68]. This
leads to the replacement

gA(p2, 2b) → gA(p2) + δa(p2), (7)

gP(p2, 2b) → gP(p2) − 2mN

p2
δP

a (p2), (8)

where the δa and δP
a two-body corrections reduce β-decay

NMEs by 20%–30%, thus contributing to their quenching.
Normal-ordered currents approximate well the full two-body
β-decay results [30]. Figure 1 shows the combined effect
of two-body currents in the integrand of the GT neutrino
potential, hGT. At the relevant momentum transfers p ≈ 100–
200 MeV, the suppression of the neutrino potential is rather
constant, ≈30%–50%.

Second, we also calculate the recently acknowledged short-
range 0νββ-decay NME [32], M0ν

S . This two-body term,
obtained from Eq. (3) with OS

ab = I but without summing
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FIG. 2. 2νββ-decay (M2ν) vs standard 0νββ-decay (M0ν
L ) NMEs obtained with (a) the pnQRPA with different isoscalar pairing gT =0

pp values
(adjusted to 2νββ-decay data for the black diamonds) and (b) the nuclear shell model (NSM) with different interactions for three regions of
the nucleon number A. M0ν

L results are multiplied by A−1/6, and the denominator q2 notes the need to quench M2ν values. Solid and dashed
lines correspond to linear fits and their 68% CL prediction bands, respectively.

over intermediate states, directly adds to the long-range part in
Eq. (2). Because of its short-range character, it follows from
HS(rab) in Eq. (4) with E0ν

S = 1 and j0. We use

hS = 2gNN
ν e−p2/(2	2 ), (9)

with couplings gNN
ν and regulators 	 taken from the charge-

independence-breaking terms of several nuclear Hamiltonians
as in Ref. [38]. This approximates the two couplings entering
ββ decay to be equal, which for 48Ca gives a relative short-
range NME contribution consistent with the ab initio result
based on gNN

ν from QCD [37].

III. MANY-BODY METHODS

We perform nuclear shell-model calculations for the de-
cays of a large set of nuclei in the mass range 46 � A � 136,
covering three different configuration spaces with the fol-
lowing harmonic-oscillator single-particle orbitals—for both
protons and neutrons—and isospin-symmetric interactions:
(i) 0 f7/2, 1p3/2, 0 f5/2, and 1p1/2 with the KB3G [69] and
GXPF1B [70] interactions for the decay of 46−58Ca, 50−58Ti,
and 54−60Cr; (ii) 1p3/2, 0 f5/2, 1p1/2, and 0g9/2 with the
GCN2850 [71], JUN45 [72] and JJ4BB [73] interactions for
72−76Ni, 74−80Zn, 76−82Ge, and 82,84Se; and (iii) 1d5/2, 0g7/2,
2s1/2, 1d3/2, and 0h11/2 with the GCN5082 [71] and QX [74]
interactions for 124−132Sn, 130−134Te, and 134,136Xe. We use the
shell-model codes ANTOINE [64,75] and NATHAN [64].

In addition, we study the decays of 76Ge, 82Se, 96Zr,
100Mo, 116Cd, 124Sn, 128,130Te, and 136Xe with the spherical
pnQRPA method. We use large no-core single-particle bases
in a Coulomb-corrected Woods-Saxon potential [76] and ob-
tain the BCS quasiparticle spectra for protons and neutrons
separately. We use interactions based on the Bonn-A potential
[77], with proton and neutron pairing fine-tuned to the em-
pirical pairing gaps. For the residual interaction, we fix the
particle-hole parameter to the GT giant resonance and the
isovector particle-particle one via partial isospin-symmetry
restoration [62]. As usual, we adjust the isoscalar particle-
particle parameter to 2νββ-decay half-lives. Additionally, we
also explore an alternative approach and consider the range

gT =0
pp = 0.6–0.8, which gives reasonable pnQRPA NMEs for

β and ββ decays [61,78].

IV. CORRELATION BETWEEN 2νββ- AND
0νββ-DECAY NMES

Figure 2 illustrates the connection between 2νββ- and
0νββ-decay NMEs, where the latter only include the stan-
dard contributions in Eq. (3) without two-body currents or
the short-range operator. To remove its mass dependence, we
multiply M0ν by a factor of A−1/6 [79]. Figure 2 shows good
linear correlations for both the pnQRPA and the shell model.
In the latter, the correlation depends on the nuclear mass,
with a steeper slope in lighter nuclei in the 48Ca region and a
flatter one for heavier systems such as 136Xe. For intermediate
masses like 76Ge, the slope is in between but closer to the one
for heavy nuclei. The different slopes are related to the typical
energies of the intermediate states that contribute the most to
the 2νββ-decay NME, lower for p f -shell nuclei and higher
for heavier nuclei studied in the sdg configuration space. This
resembles the correlation of 0νββ- and γ γ -decay NMEs [55],
even though for the latter the correlation becomes common to
all nuclei with A � 72 due to the additional contribution of the
orbital angular momentum operator. Nonetheless, the shell-
model correlation is common for a given configuration space.
The pnQRPA correlation is the same for all ββ emitters, and
in this method the energies of the intermediates contributing
most to 2νββ-decay NMEs are generally higher than those
in the shell model [80]. In both models, 2νββ-decay NMEs
are computed without quenching, overestimating the results.
Thus, we denote them in Fig. 2 by M2ν/q2, where q is a
quenching factor. The symbols represent central values from
the individual M0ν results obtained with the two different SRC
parametrizations and the two denominators EK . Table III in the
Appendix gives a sample of our NME ranges.

We fit a linear function M2ν/q2 = a + bA−1/6M0ν to the
central values in our NME calculations. Figure 2 shows the
best fits and the 68% confidence level (CL) prediction bands.
The correlation fit coefficients are r = 0.84 for the pnQRPA
and for the shell model they are r = 0.86, r = 0.95, and
r = 0.97 for the lighter, intermediate, and heavier nuclei, re-
spectively. The pnQRPA NMEs obtained with smaller (larger)
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FIG. 3. Standard 0νββ-decay NMEs obtained from the correla-
tions in Fig. 2. The narrow error bars come from the 68% CL bands
of the linear fits, while the wide ones also contain uncertainties in the
NME calculations. Bands (crosses) show the literature NME ranges
(individual values), shell model (NSM) in red [23–27,38], QRPA in
blue [38,63,90,91,94,95].

values of gT =0
pp generally lie on the upper (lower) end of the

band, while for the shell model the results calculated with
different interactions are distributed rather homogeneously.
Heavy nuclei are an exception, with larger (smaller) NMEs
corresponding to GCN5082 (QX). The width of the predic-
tion bands stems from the details of each NME for a given
nucleus and interaction. Since our bands cover dozens of such
calculations, their width can be considered as a measure of the
statistical uncertainty of the results.

We correct for the overestimation of the 2νββ-decay
results by considering the following shell-model quench-
ing ranges based on β- and ββ-decay studies: q = 0.65–
0.77 for 46 � A � 60 [81–85], q = 0.55–0.64 for 72 �
A � 84 [86–88], and q = 0.42–0.72 for 124 � A � 136
[23,80,88,89]. In the pnQRPA, we assume the typical q =
0.79 (geff

A = 1.0) [62,90,91]. It is not straightforward to quan-
tify the quenching needed in the pnQRPA, since in the
standard way of adjusting the model parameters to measured
ββ, β or EC half-lives, geff

A and gT =0
pp depend on each other

[61,92,93]. The correlation band, obtained with different gT =0
pp

values, can be considered to contain the uncertainty coming
from varying the quenching.

Then, we combine the 68% CL prediction bands of the
linear fits with the empirical NMEs taken from 2νββ-decay
measurements [1] to obtain 0νββ-decay NMEs with un-
certainties. In addition, we also consider the uncertainty in
the quenching needed to describe the 2νββ-decay NMEs
(in the pnQRPA, we consider this to be included in the width
of the band). Finally, the total uncertainty adds quadratically
the one from the width of the correlation prediction bands and
the error in the NME results (see Table III in the Appendix).
Table IV in the Appendix gives the NME ranges for each
0νββ decay.

Figure 3 compares the shell-model (red) and pnQRPA
(blue) 0νββ-decay NMEs obtained from the correlation and
2νββ-decay data. The narrow error bars (marked by horizon-
tal lines) are derived from the 68% CL prediction bands of
the fits—and the much smaller uncertainties in the empir-
ical 2νββ-decay NMEs—while the wider bars (marked by
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FIG. 4. Radial distributions of the 0νββ- (a) and 2νββ-decay
(b) NMEs of 76Ge obtained with the pnQRPA. The 2νββ-decay
densities were obtained using the correct energy denominator for the
1+ states and the closure energy EGTGR = 11.4 MeV for the rest.

triangles) add these errors quadratically to the ones of the
individual NME results. The latter contribution is typically
the only one considered when giving theoretical 0νββ-decay
NME uncertainties, and it is always much smaller than the
error associated with the NME correlation. While pnQRPA
NMEs are larger than the shell-model ones, Fig. 3 shows
that considering error bars both methods are consistent. The
uncertainty is relatively larger in the pnQRPA because the
pnQRPA correlation coefficient is smaller than the shell model
ones. The shell-model error bars are larger for 130Te and 136Xe
due to the more uncertain quenching for heavy nuclei.

Figure 3 also compares our NMEs derived using the 2νββ-
0νββ correlation with previous shell-model [23–27,38] and
pnQRPA [38,63,90,91,94,95] results. There is generally a
good agreement: our error bars cover the range of earlier
results with only a few exceptions. For 76Ge, the shell-model
NME is somewhat larger than in previous works which un-
derestimate this nucleus’ 2νββ-decay NME. In the pnQRPA,
the 100Mo NME is also larger mainly because its excep-
tionally short half-life affects all intermediate states through
the correlation, but mostly 1+ states—sensitive to gT =0

pp —in
previous works. We note that while the literature band
comprises at most a handful of different calculations, our
uncertainty obtained from the correlation includes informa-
tion from systematic results for tens of nuclei using several
interactions. Moreover, our shell-model M0ν

L for 48Ca is in
excellent agreement with the statistical analysis of Ref. [56]
based on 20 000 calculations each performed with a different
variation of three independent shell-model interactions.

V. RADIAL DISTRIBUTIONS AND MULTIPOLE
DECOMPOSITION

In order to understand the origin of the correlation between
M2ν and M0ν , Fig. 4 shows the NME radial distributions for
76Ge obtained with the pnQRPA. The radial distributions for
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other isotopes are qualitatively similar. They satisfy

M0ν
L (1b) =

∫ ∞

0
C0ν (r)dr, (10)

M2ν =
∫ ∞

0
C2ν (r)dr, (11)

and they are defined as

C0ν (r) = C0ν
GT(r) − C0ν

F (r) + C0ν
T (r), (12)

C0ν
K (r)

=
∑
k,ab

(
0+

f ||OK
abτ

−
a τ−

b HK (rab) f 2
SRC(rab)δ(r − rab)||0+

i

)
,

(13)

and

C2ν (r) =
∑
k,ab

(0+
f ||σa · σbτ

−
a τ−

b δ(r − rab)||0+
i )

D(Jπ
k )/me

, (14)

D(Jπ
k ) =

{
Ek − (Ei + E f )/2 , if Jπ = 1+,

EGTGR = 11.4 MeV, if Jπ �= 1+ .
(15)

While M2ν gets contributions only from 1+ intermediate
states, all possible Jπ multipoles play a role in C2ν due to
the radial dependence of δ(r − rab) [57]. Nonetheless, when
integrated as in Eq. (11), Jπ �= 1+ contributions vanish. Since
M2ν does not depend on these multipoles, it is not clear
how to deal with their energy denominator in Eq. (14). Here
we take as closure energy EGTGR = 11.4 MeV, to which the
particle-hole parameter of the pnQRPA is adjusted [96], and
the correct energy denominator for 1+ intermediate states.
This guarantees that the integral of the distribution leads to the
correct value for M2ν . However, following Eq. (14), the shape
of C2ν is sensitive to the closure energy used, so that it comes
with some uncertainty. For example, varying the D(Jπ �= 1+)
by ±1 MeV decreases (increases) the short-range contribution
below r � 3 fm by some 5% and increases (decreases) the
long-range contribution accordingly. However, qualitatively
the distribution remains similar.

Figure 4 shows that long-range contributions can play an
important role in 2νββ decay, especially with small proton-
neutron pairing values: for gT =0

pp = 0.6 the contribution from
r � 3 fm is as much as 50%, with the same sign as the
short-range peak. However, for larger gT =0

pp values the long-
range part is less important and partially cancels with the
intermediate-range from 2.5 fm � r � 3.5 fm, so that the
NME is effectively driven by the short distances. In contrast,
Fig. 4(a) shows that 0νββ decay is always dominated by
shorter distances, being less sensitive to the value of the gT =0

pp
parameter.

These radial distributions C2ν resemble the ones of DGT
transitions, which are well correlated with 0νββ-decay NMEs
in the shell model, the EDF theory, and the IBM [53], as
well as in ab initio [54] calculations. For small gT =0

pp values,
the significant long-range contribution enhancing the NME
is similar to ab initio isospin-conserving DGT transitions,
which show a strong correlation with 0νββ-decay NMEs. On
the other hand, for smaller gT =0

pp values the distributions are
comparable to shell-model DGT ones, where the short-range

TABLE I. Correlation coefficients r for the linear relations be-
tween M2ν and the lowest multipole components M0ν (Jπ ). The
average share of M0ν for each multipole is also shown.

Jπ r Average M0ν (Jπ )/M0ν (%)

0+ 0.26 0.6
1+ 0.79 12.5
2+ 0.73 9.3
3+ 0.81 7.6
0− 0.77 0.7
1− 0.85 11.5
2− 0.73 9.3
3− 0.65 7.5

behavior leads to a good correlation with 0νββ decay [97,98].
We also note that our distributions C2ν do not show a dominant
long-range part canceling the short-range peak, a shape that
has been shown to degrade the correlation [54]. Hence, the
pnQRPA radial distributions show features similar to previous
studies that also showed good correlations with 0νββ-decay
NMEs. We are not able to study these distributions with the
shell model because we do not compute contributions from
each Jπ multipole. Furthermore, we study the correlation of
M2ν and the different Jπ multipoles contributing to M0ν :

M0ν
L (1b) =

∑
Jπ

M0ν (Jπ ). (16)

We explore these additional correlations with the pnQRPA
because our shell-model calculations use the closure approxi-
mation. Table I lists the correlation coefficients together with
the average share to the total M0ν of the lowest multipoles. For
the 1+, 2+, 3+, 0−, 1−, and 2− multipoles, which altogether

TABLE II. Parameters and correlation coefficient r of the linear
fits M2ν/q2 = a + bA−1/6M0ν . The first column indicates whether
the results include only M0ν

L (L) or both M0ν
L and M0ν

S (L+S) and
whether they cover only one-body currents (1b) or both one- and
two-body currents (2b). The correlations are shown in Figs. 2, 5–7
for the pnQRPA and the shell model (NSM).

M0ν Model a b r

L, 1b pnQRPA −0.201 0.157 0.84
L, 2b pnQRPA −0.227 0.256 0.84
L+S,1b pnQRPA −0.263 0.128 0.82
L+S, 2b pnQRPA −0.293 0.181 0.80
L, 1b NSM (p f ) −0.215 0.589 0.86
L, 1b NSM (p f g) −0.056 0.143 0.95
L, 1b NSM (sdg) −0.036 0.085 0.97
L, 2b NSM (p f ) −0.256 0.479 0.84
L, 2b NSM (p f g) −0.063 0.112 0.94
L, 2b NSM (sdg) −0.039 0.065 0.97
L+S, 1b NSM (p f ) −0.215 0.939 0.84
L+S, 1b NSM (p f g) −0.056 0.226 0.95
L+S, 1b NSM (gds) −0.036 0.134 0.97
L+S, 2b NSM (p f ) −0.268 0.677 0.81
L+S, 2b NSM (p f g) −0.065 0.159 0.94
L+S, 2b NSM (sdg) −0.040 0.089 0.97
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FIG. 5. 0νββ- vs 2νββ-decay NMEs and linear fits with 68%
CL prediction bands for the shell model (NSM, circles) and pnQRPA
(diamonds, for all gT =0

pp values in Fig. 2). For 0νββ decay, results
include two-body currents and short-range NMEs.

constitute on average 51% of the total NME, we find good
correlations with r > 0.70, and for 3−, which gives ≈7.5% of
the NME, the coefficient is still r = 0.65. Only the 0+ part
does not seem to be correlated with M2ν , yet its contribution
to M0ν is negligible. Hence, in the pnQRPA, M2ν is not only
correlated with M0ν but also with its most important multipole
components. This could also explain why in other many-body
methods DGT NMEs are correlated with M0ν , even if the
former only receive contributions from 1+ intermediate states
just like M2ν .

VI. TWO-BODY CURRENTS AND SHORT-RANGE
0νββ-DECAY NME

The effects of two-body currents on 0νββ-decay NMEs are
similar in the shell model and the pnQRPA: NMEs decrease
by 25%–45%. The range is mainly driven by the uncertain-
ties in δa and δP

a . This reduction is somewhat larger than
that in earlier studies [31,99] that neglect pion-pole diagrams
[100]. In contrast to Ref. [31], the effect of two-body currents
with these additional contributions is fairly constant at p ≈
100–250 MeV, relevant for 0νββ decay (see Fig. 1). Since
two-body currents impact all nuclei rather uniformly, we also
find a good linear correlation between 2νββ- and 0νββ-decay
NMEs in this case. Table II presents the parameters of all
NME correlations, where 46 � A � 60 nuclei are denoted by
p f , 72 � A � 84 isotopes by p f g, and 124 � A � 136 nuclei
by sdg. In particular, Table II shows that the correlation coeffi-
cients remain practically unchanged when two-body currents
are included.

Finally, we add the short-range operator into 0νββ-decay
NMEs. In the pnQRPA, this term typically amounts to some
30%–80% of the one-body M0ν

L value, and in the shell model
this fraction is about 15%–50%. Individual uncertainties are
now larger, dominated by the short-range coupling gNN

ν .
Figure 5 shows the corresponding correlations between the
2νββ- and 0νββ-decay NMEs, with symbols denoting central
NME values. The pnQRPA results include all gT =0

pp values
shown in Fig. 2. Here the correlation coefficients become

r = 0.80 in the pnQRPA and 0.81 � r � 0.97 in the shell
model (see Table II), smaller than in previous cases because
the short-range term has Fermi spin structure, which does
not contribute to 2νββ decay. Figure 5 also highlights that
the slope of the pnQRPA correlation is similar to that of the
shell-model one for 76Ge, and not very different from the one
for 136Xe—note that Fig. 5 does not show pnQRPA results for
nuclei as light as 48Ca. However, since the pnQRPA generally
predicts larger M0ν values than the shell model, its correlation
is shifted to the right.

Figures 6 (for the pnQRPA) and 7 (for the nuclear shell
model) show the different correlations we obtain between the
2νββ- and 0νββ-decay NMEs in terms of which components
of the 0νββ-decay NMEs we consider. For the sake of a
better comparison, panels (a) in Figs. 6 and 7 show the same
correlations in Fig. 2. Since adding the effective two-body
currents results in relative reduction of 0νββ-decay NMEs
by some 25%–45% for both many-body methods, the corre-
lations in panels (b) in Figs. 6 and 7 are shifted towards the
negative x axis and the slopes increase. On the other hand,
since the short-range NMEs enhance the 0νββ-decay NMEs,
adding this contribution to the 0νββ-decay NMEs shifts the
correlations in panels (c) in Figs. 6 and 7 towards the positive
x axis and decreases the slopes. Hence the two effects tend
to balance each other, and once both two-body currents and
the short-range 0νββ-decay NME are added in panels (d) in
Figs. 6 and 7, the correlations resemble those obtained with
M0ν

L (1b) only. Table II clearly highlights that the effects of
two-body currents and the short-range NME partially cancel,
and the best linear fits of the correlations of M2ν with M0ν

L (1b)
and M0ν

L (1b + 2b) + M0ν
S are relatively similar.

Figure 8 shows 0νββ-decay NMEs with two-body cur-
rents and short-range NMEs derived from the correlations
and 2νββ-decay data. Figure 8(a) shows that two-body cur-
rents reduce the NMEs (light bands correspond to the bands
in Fig. 3 for reference). In fact, especially pnQRPA but
also shell-model NMEs with two-body currents are notably
smaller than in previous works [31,99] (shown as dark bands)
mostly due to the more complete currents considered here.
The total error bars are wider than those in Fig. 3 because of
the uncertainties in δa and δP

a . Our shell-model M0ν
L (1b + 2b)

NMEs are in good agreement with ab initio results for 48Ca
[19–21] and 76Ge [21] within uncertainties, and for 82Se our
error bar is just above the ab initio value [21]. This suggests
that δa and δP

a effectively capture part of the missing many-
body correlations—note that ab initio 0νββ-decay NMEs do
not include two-body currents yet. Further, our shell-model
M0ν

L (1b + 2b) NMEs are consistent—with lower central val-
ues and larger uncertainties—with those of Ref. [101], which
follows a different approach for adding correlations into the
shell-model framework.

Figure 8(b) shows that when we include the short-range
operator, 0νββ-decay NMEs obtained from the correlation
and 2νββ-decay data become comparable with the standard
ones in Fig. 3 (again, light bands serve as a reference).
However, error bars become notably larger due to the siz-
able uncertainties especially in the short-range coupling gNN

ν ,
which are comparable to the uncertainties from the NME
correlation.

044305-6



NEUTRINOLESS ββ-DECAY NUCLEAR … PHYSICAL REVIEW C 107, 044305 (2023)

0 1 2 3 4 5
−0.2

0

0.2

0.4

0.6 (a)

pnQRPA

A−1/6M0ν
L (1b)

M
2
ν
/q

2
gT=0
pp : 0.6 0.7 0.8 2νββ

0 1 2 3 4 5

(b)

pnQRPA

A−1/6M0ν
L (1b + 2b)

0 1 2 3 4 5
−0.2

0

0.2

0.4

0.6 (c)

pnQRPA

A−1/6(M0ν
L (1b) + M0ν

S )

M
2
ν
/
q2

0 1 2 3 4 5

(d)

pnQRPA

A−1/6(M0ν
L (1b + 2b) + M0ν

S )

FIG. 6. Correlation between pnQRPA M2ν and M0ν NMEs with [panels (b) and (d)] or without [panels (a) and (c)] two-body currents and
with [panels (c) and (d)] or without [panels (a) and (b)] the short-range 0νββ-decay term.
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the short-range term. For comparison, light bands show the literature
bands of Fig. 3.

VII. SUMMARY

We perform shell-model and pnQRPA calculations for sev-
eral tens of ββ decays and nuclear interactions and observe
good linear correlations between 2νββ- and 0νββ-decay

NMEs. We also find good correlations when including two-
body currents and the short-range operator into 0νββ decay,
even though in these cases the uncertainty of the NME cal-
culations increases driven by uncertainties in the couplings
associated with these contributions. Using the correlations
and measured 2νββ decays, we obtain 0νββ-decay NMEs
with theoretical uncertainties based on systematic calculations
following the same correlation, rather than individual NME
results. Our nuclear matrix elements are generally in good
agreement with previous shell-model and pnQRPA studies.
While the theoretical uncertainties derived in this work can
be larger than the spread of previous shell-model and pn-
QRPA matrix elements, we stress that our strategy is based on
correlations built from dozens of decays and may, therefore,
be considered more reliable than individual NME calcula-
tions. Many-body approaches able to compute 2νββ-decay
NMEs [20,21,29,102] could pursue similar strategies to pre-
dict 0νββ-decay NMEs with theoretical uncertainties.
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TABLE III. Sample of calculated 0νββ-decay NMEs for ββ emitters, just the standard NME M0ν
L (1b) and including two-body currents

M0ν
L (1b+2b) and/or the short-range M0ν

S . The pnQRPA values listed here use gT =0
pp adjusted to 2νββ-decay data, except for 96Zr for which

gT =0
pp = 0.8. The NME ranges cover different SRCs and denominators EK for the shell model (NSM).

Nucleus Model M0ν
L (1b) M0ν

L (1b) + M0ν
S M0ν

L (1b + 2b) M0ν
L (1b + 2b) + M0ν

S

48Ca NSM (KB3G) 0.87–1.05 1.10–1.71 0.50–0.73 0.73–1.39
NSM (GXPF1B) 0.72–0.87 0.92–1.46 0.42–0.61 0.62–1.19

76Ge pnQRPA 4.83–5.36 6.32–9.16 2.97–3.85 4.46–7.65
NSM (GCN2850) 2.85–3.52 3.36–5.00 1.58–2.40 2.10–3.89
NSM (JUN45) 3.11–3.82 3.66–5.40 1.74–2.62 2.28–4.20
NSM (JJ4BB) 2.86–3.54 3.34–4.92 1.60–2.42 2.07–3.80

82Se pnQRPA 4.30–4.73 5.57–7.97 2.64–3.40 3.91–6.64
NSM (GCN2850) 2.71–3.37 3.19–4.75 1.51–2.30 1.99–3.68
NSM (JUN45) 2.91–3.58 3.41–5.04 1.62–2.46 2.13–3.92
NSM (JJ4BB) 2.47–3.08 2.89–4.29 1.38–2.11 1.80–3.31

96Zr pnQRPA 4.75–5.22 5.99–8.43 2.84–3.70 4.08–6.91
100Mo pnQRPA 3.52–4.09 5.18–8.35 2.41–3.10 4.07–7.36
116Cd pnQRPA 4.31–4.66 5.41–7.46 2.66–3.37 3.76–6.17
128Te pnQRPA 4.09–4.52 5.46–7.97 2.51–3.28 3.88–6.73
130Te pnQRPA 3.52–3.98 4.70–7.03 2.20–2.88 3.38–5.93

NSM (GCN5082) 2.75–3.46 3.32–5.10 1.56–2.38 2.12–4.02
NSM (QX) 1.64–2.04 2.00–3.09 0.93–1.40 1.30–2.46

136Xe pnQRPA 2.59–2.89 3.35–4.84 1.56–2.06 2.32–4.01
NSM (GCN5082) 2.21–2.78 2.66–4.08 1.25–1.91 1.70–3.22
NSM (QX) 1.50–1.86 1.82–2.81 0.85–1.28 1.18–2.23
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TABLE IV. 0νββ-decay NMEs like in Table III but obtained from the NME correlation fits and 2νββ-decay data. In the shell model (NSM)
we use quenching factors q = 0.65–0.77 for 48Ca, q = 0.55–0.64 for 76Ge and 82Se, and q = 0.42–0.72 for 130Te and 136Xe. In the pnQRPA,
we use q = 0.79 for all the nuclei. The NME ranges combine the errors derived from the fits and the NME calculations added quadratically.

Nucleus Model M0ν
L (1b) M0ν

L (1b) + M0ν
S M0ν

L (1b + 2b) M0ν
L (1b + 2b) + M0ν

S

48Ca NSM 0.58–1.10 0.62–1.66 0.32–0.73 0.45–1.29
76Ge pnQRPA 2.67–5.32 3.71–8.10 1.59–3.74 2.29–6.79

NSM 2.72–4.38 3.30–5.90 1.58–2.79 2.12–4.44
82Se pnQRPA 2.47–5.06 3.60–7.68 1.53–3.52 2.34–6.37

NSM 2.36–3.72 2.86–5.09 1.34–2.46 1.79–3.88
96Zr pnQRPA 2.42–5.17 3.58–7.82 1.52–3.58 2.36–6.45
100Mo pnQRPA 3.92–6.64 5.18–9.87 2.38–4.54 3.33–8.08
116Cd pnQRPA 2.93–5.70 4.34–8.40 1.90–3.85 3.03–6.76
128Te pnQRPA 2.00–4.89 3.09–7.56 1.31–3.38 2.06–6.26
130Te pnQRPA 1.84–4.67 2.97–7.22 1.25–3.21 2.05–5.93

NSM 1.62–3.96 1.99–5.48 0.92–2.57 1.23–4.14
136Xe pnQRPA 1.71–4.52 2.99–6.87 1.23–3.06 2.26–5.49

NSM 1.29–2.90 1.59–4.07 0.72–1.90 0.98–3.11

APPENDIX: 0νββ-DECAY NME VALUES

Table III collects a sample of the 0νββ-decay NME
ranges we have obtained for ββ emitters using the pn-
QRPA and the shell model—the latter calculations involve
many other ββ decays as well. The results cover all calcu-

lations including or not two-body currents and the short-range
NME.

Our final 0νββ-decay NME ranges obtained using the best
linear fits to each correlation, for any combination of 0νββ-
decay NMEs—with and without two-body currents or the
short-range 0νββ-decay NME—are summarized in Table IV.
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