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In the 12C nucleus, the Hoyle state (0+
2 ) is considered to be an α-condensed state, and the 0+

3 state is considered
to be its breathing mode. We investigated whether the α condensation in 12C is realized using a microscopic 3α

cluster model with short-range correlation induced by nucleon-nucleon interactions, where we used the Argonne
v′

4 potential having a short-range repulsion constructed from the realistic Argonne v18 potential. Short-range
correlation was treated using the unitary correlation operator method, and the Bloch–Brink wave function was
adopted as a variational wave function where the α cluster motions were treated by generator coordinates. We
obtained four 0+ states, including short-range correlation, and analyzed them in terms of the Tohsaki–Horiuchi–
Schuck–Röpke (THSR) wave function. In addition to the ordinary THSR wave function, we defined a second-
order TSHR wave function to describe the 2h̄ω excitation of the α-condensed state. The 0+

2 state (the Hoyle
state) is an α-condensed state mainly comprising the 8Be(0+) + α(0S-wave) configuration, and the 0+

3 state
mainly comprises the 8Be(0+) + α(2S-wave) configuration, which is regarded as the breathing mode of the α

condensation excited from the Hoyle state.

DOI: 10.1103/PhysRevC.107.044304

I. INTRODUCTION

The nucleon-nucleon (NN) interaction provides the sat-
uration property of the binding energy and density of the
nuclear system, and it forms clusters as well as a mean
field. According to the threshold rule (Ikeda’s diagram) [1],
in self-conjugate 4n nuclei, one can expect the appearance
of various cluster structures near the threshold energies that
decay into relevant clusters [2]. A typical clustering state is
the 0+

2 state of 12C located slightly above the 3α threshold
energy, which is known as the Hoyle state and plays a crucial
role in carbon synthesis in stars [3]. Ab initio calculations, e.g.,
the Green’s function Monte Carlo (GFMC) method [4,5], the
lattice calculation of chiral effective-field theory (CEFT) [6],
and no-core Monte Carlo shell model (MCSM) [7], indicated
that the ground state of 8Be and the Hoyle state has the α-
cluster structure.

In the 1970s, one of the authors (H.H.) reported that the
Hoyle state has a 8Be(0+

1 ) + α(S-wave) structure according
to the orthogonality condition model (OCM) [8,9]. This indi-
cates that the Hoyle state has a weakly coupled 3α structure
because 8Be has a well-developed 2α-cluster structure. This
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gas-like α-clustering feature of the Hoyle state was confirmed
by microscopic 3α cluster calculations [10–13]. In 2001,
Tohsaki et al. proposed the concept of α condensation in finite
nuclei by introducing the Tohsaki–Horiuchi–Schuck–Röpke
(THSR) wave function [14] and confirmed that the Hoyle
state is an α-condensed state in which constituent α clusters
occupy the same 0s orbit. Subsequently, α condensation in
finite nuclei was studied extensively from both experimental
and theoretical perspectives [15].

For 12C, several new states have been experimentally iden-
tified above the 3α threshold energy, such as 0+

3 , 0+
4 , 2+

2 , and
4+

2 states [16,17]; in particular, 0+
3 and 0+

4 states were recog-
nized as a single state at an excitation energy of 10.3 MeV.
The existence of 0+

3 and 0+
4 states was predicted by applying

a complex-scaling method and analytic continuation of the
coupling constant method to the 3α OCM [18]. The newly
observed 0+

3 state was identified as the breathing mode of the
Hoyle state because of the high monopole strength between
the 0+

2 and 0+
3 states estimated via the generator coordi-

nate method (GCM) using the THSR wave function [19–21].
However, the 0+

4 state has a bent-arm structure, as indi-
cated by calculations using lattice CEFT [6], no-core MCSM
[7], antisymmetrized molecular dynamics (AMD) [22], and
fermionic molecular dynamics (FMD) [23]. Nevertheless, in
previous theoretical research on α condensation in nuclei, the
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phenomenological nuclear potential has been adopted as the
NN interaction, similar to the Volkov force [24] without the
short-range repulsion.

The objective of this study was to determine whether α-
condensed states appear even if a NN potential has strong
short-range repulsion as the first step in calculations using
realistic NN interactions reproducing the experimental two-
body data with high precision [25–27]. We use the Argonne
v′

4 (AV4P) potential, which is a simplified potential prepared
by projecting the Argonne v18 potential [25] to facilitate
in many-body calculations [28]. The AV4P potential has a
strong repulsive core which causes short-range correlations
in nuclei. Therefore, we use the unitary correlation operator
method (UCOM) [29] to treat the short-range correlations.
In this method, correlations are included in the uncorrelated
many-body wave function using a unitary transformation.
Alternatively, a potential that includes the correlations is
obtained by transforming the Hamiltonian. Therefore, it is
possible to apply the UCOM procedure to variational many-
body wave functions, such as FMD [30], the tensor-optimized
shell model [31], and high-momentum AMD [32]. In this
study, the Bloch–Brink (BB) wave function (the microscopic
α-cluster model) [33] is adopted as an uncorrelated wave
function, and the energy variation is performed by employ-
ing GCM calculations where the center-of-mass motions of
α clusters are considered as generator coordinates. In addi-
tion, we determine whether the obtained low-lying 0+ states
are α-condensed states by evaluating the overlaps between
their eigenfunctions and the THSR wave function. We further
define the new THSR wave function describing the 2h̄ω ex-
citation of the α-condensed state to analyze the GCM wave
functions.

Section II A outlines the UCOM and provides preparation
for the calculation using the AV4P potential. Section II B
briefly explains the energy variation in the microscopic α-
cluster model (the BB wave function). Section II C provides
a brief explanation of the ordinal THSR wave function and
defines the new THSR wave function to describe 2s and 2d
excited states of α condensation. Section III presents the re-
sults for 8Be and 12C. In Section IV, the resultant 0+ states are
compared with other theoretical results and the overlaps with
THSR wave functions are analyzed. In Sec. V, conclusions
are presented, and future work is discussed.

II. METHODS AND PREPARATION

A. Unitary correlation operator method

The operator

Ĉ = exp

⎛
⎝−i

A∑
i=1

A∑
j=i+1

ĝi j

⎞
⎠ (1)

is unitary when ĝi j is Hermitian (for simplicity, hereinafter,
the subscript i j is omitted unless necessary). In the UCOM
proposed by Feldmeier et al. [29] to treat short-range correla-
tions, the Hermite operator ĝ is defined as follows:

ĝ = 1
2 { p̂rs(r) + s(r)p̂r}. (2)

The operator p̂r is the component of the relative momentum p
parallel to the relative coordinate r between the two nucleons,
and s(r) is the shift function. In the two-body case, the relative
distance r and operator p̂r are transformed as follows:

ĉ†rĉ = R+(r), ĉ† p̂r ĉ =
√

1

R′+(r)
p̂r

√
1

R′+(r)
. (3)

Here, ĉ = exp(−iĝ), and the correlation function R+(r) is
related to the shift function s(r) as follows:

dR+(r)

dr
= s(R+(r))

s(r)
. (4)

The expectation value of the Hamiltonian with respect to the
correlated A-body wave function |�̃〈= Ĉ|�〉 is given by

E = 〈�̃|Ĥ |�̃〉
〈�̃|�̃〉 = 〈�|Ĉ†ĤĈ|�〉

〈�|Ĉ†Ĉ|�〉 = 〈�|H̃ |�〉
〈�|�〉 . (5)

The transformed Hamiltonian H̃ is defined as follows:

H̃ = Ĉ†T̂ Ĉ + Ĉ†V̂ Ĉ = T̃ + Ṽ . (6)

In the two-body approximation, which is valid in the short-
range case, the transformed two-body potential is given as
follows:

Ṽ �
A∑

i=1

A∑
j=i+1

v(R+(ri j )), (7)

and the transformed kinetic energy consists of the uncorre-
lated term T̂ and correlated two-body term T̃2:

T̃ � T̂ + T̃2. (8)

The kinetic energy of the center-of-mass motion of the total
system is subtracted from the uncorrelated term as follows:

T̂ =
A∑

i=1

t̂i − T̂c.m., (9)

and the correlated two-body term depends on the momentum
and angular momentum of relative motion:

T̃2 =
A∑

i=1

A∑
j=i+1

(
wi j + up

i j + ul
i j

)
, (10)

where

w = h̄2

m

(
7

4

R′′2
+ (r)

R′4+(r)
− 1

2

R′′′
+ (r)

R′3+(r)

)
,

up = 1

2m

{
p̂2

(
1

R′2+(r)
− 1

)
+

(
1

R′2+(r)
− 1

)
p̂2

}
,

ul = 1

m

(
r2

R2+(r)
− 1

R′2+(r)

)
l2

r2
.

In the procedure proposed in Ref. [29], the correlation
function R+(r) is assumed to have a specific form. In this
study, we employed a form similar to that used in Ref. [34]
for odd and even channels:

Reven
+ (r) = r + α(r/β )η exp(−er/β ) (11)
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TABLE I. Parameters of the correlation functions R+(r) for the
AV4P potential determined in Ref. [35].

α [fm] β [fm] γ [fm] η

1E 1.36 0.98 0.33
3E 1.24 0.94 0.39
1O 1.50 1.26 0.87
3O 0.69 1.39 0.28

and

Rodd
+ (r) = r + α(1 − e−r/γ ) exp(−er/β ), (12)

respectively. In principle, although α, β, γ , and η are varia-
tional parameters, common values (Table I) were used in this
study for calculating 4He, 8Be, and 12C nuclei, which were
determined in Ref. [35] to minimize the energy of symmetric
nuclear matter at a saturation density of 0.17 fm−3 using the
AV4P potential.

Figure 1 shows the AV4P potential (circles) and the po-
tential transformed by the UCOM procedure (squares) with
respect to the distance between two nucleons in each chan-
nel. Reflecting the difference in correlation functions of even
and odd channels, the region of the repulsive core was
largely reduced in even channels by the UCOM, whereas the

FIG. 2. Energy curves of 4He with the (0s)4 configuration using
the AV4’ potential as a function of the size parameter b. The dashed
and solid curves are the energy curves before and after the translation
via the UCOM, respectively.

reduction was relatively small in odd channels. For numerical
calculations, the transformed potentials were fit by the sum of
15 Gaussians (solid curves), and the Coulomb potential was
similarly included. Figure 2 shows the effect of the UCOM

FIG. 1. Original AV4P potential (circles) and the transformed one (squares) obtained via the UCOM in the 1E (upper-left panel), 3E
(lower-left panel), 1O (upper-right panel), and 3O (lower-right panel) channels. The dashed and the solid curves are the fitting curves based on
the sum of 15 Gaussians for the original and transformed potentials, respectively.
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TABLE II. Comparison of the energy and root-mean-square ra-
dius of 4He at the minimum-energy point with values from the
GFMC method and experimental data. The experimental value of the
charge radius was converted into the point-proton radius.

E [MeV]
√

〈r2〉 [fm]

UCOM [(0s)4] −31.24 1.29
GFMC −32.11(2)
EXPR −28.3 1.46

on the energy of 4He with the (0s)4 configuration:

ψ0(α) = A
4∏

i=1

φ0(ri )χi(ξi ), (13)

where χ1, χ2, χ3, χ4 = p↑, p↓, n↑, n↓, and

φR(r) =
(

1√
πb

)3/2

exp

[
− 1

2b2
(r − R)2

]
. (14)

Excluding short-range correlations (dashed curve), the four-
nucleon system is unbound, but in cases with short-range
correlations included via the UCOM (solid curve), the 4He
nucleus becomes bound. In Table II, the energy and root-
mean-square radius of 4He at the minimum-energy point are
compared with the results of the GFMC method and ex-
perimental data. The UCOM calculation almost reproduced
the GFMC calculation, and the energy difference is approx-
imately 0.9 MeV. Both the UCOM and GFMC calculations
yield lower energies than the experimental data, and the size of
the α particle is significantly smaller than the observed value,
which is due to the nature of the AV4P potential without the
tensor force.

B. Variational wave function

The BB wave function was proposed to describe an α-
cluster state of self-conjugate 4n-nuclei [33] and is expressed
as

〈r|
BB(Γ ) 〉 = A
n∏

i=1

ψRi (αi ), (15)

where Γ denotes the set of n vectors {R1, R2, . . . , Rn} spec-
ifying the positions of α clusters. When the size parameter
of cluster b is common to all the constituent clusters, the BB
wave function can be separated into the center-of-mass and
relative parts:

〈r|
BB(Γ ) 〉 = 〈
rc.m.

∣∣
c.m.
BB (Rc.m.)

〉〈
r̃
∣∣
rel

BB(Γ̃ )
〉
, (16)

where rc.m. and r̃ are the center-of-mass and Jacobi’s coor-
dinates, respectively. The vector Rc.m. represents the mean
position of the clusters.

Rc.m. = 1

n

n∑
i=1

Ri, (17)

and Γ̃ represents a set of n − 1 vectors {R̃1, . . . , R̃n−1}, which
are written as

R̃k = Rk+1 − 1

k

k∑
i=1

Ri (18)

for k = 1, 2, . . . , n − 1. The eigenstate of the total angular
momentum is expressed as〈

r
∣∣
J

MK (Γ )
〉 = 〈

r
∣∣P̂J

MK

∣∣
BB(Γ )
〉

(19)

and

P̂J
MK = 2J + 1

8π2

∫
dΨ DJ

MK (Ψ )R̂(Ψ ), (20)

where R̂(Ψ ) and DJ
MK (Ψ ) are unitary operators that rotate

a wave function by Euler angles Ψ and a unitary rotation
matrix, respectively. In the calculations, the mean position
of the clusters in Eq. (17) is considered the origin, and the
integration of Euler angles is numerically performed using the
Gauss–Legendre quadrature.

A better wave function can be obtained by taking a linear
combination of the wave functions [Eq. (19)] for different
configurations Γ :

〈
r
∣∣�J

MK

〉 =
∫

dΓ c(Γ )
〈
r
∣∣
J

MK (Γ )
〉
. (21)

The center-of-mass and relative wave functions are separable,
provided that

c(Γ ) = cc.m.(Rc.m.)crel(Γ̃ ). (22)

The coefficients c(Γ ) are determined by the variational prin-
ciple for the total energy E :

δ
( 〈

�J
MK

∣∣Ĥ ∣∣�J
MK

〉/ 〈
�J

MK

∣∣�J
MK

〉) = 0, (23)

where K mixing is not taken into account, and Eq. (23) leads
to the Hill-Wheeler equation. Instead of using the integral
combination in Eq. (21), we use a linear combination with
a finite number:

〈
r
∣∣�J

MK

〉 =
N∑

i=1

c(Γi )
〈
r
∣∣
J

MK (Γi)
〉
. (24)

Then, solving the Hill-Wheeler equation becomes an eigen-
value problem for coefficients c(Γi ):

N∑
i=1

(Hi j − ENi j )c(Γ j ) = 0, (25)

where

Hi j = 〈

J

MK (Γi)
∣∣H̃ ∣∣
J

MK (Γ j )
〉

(26)

and

Ni j = 〈

J

MK (Γi )
∣∣
J

MK (Γ j )
〉
. (27)

The eigenvalue problem is solved under the condition that
Rc.m. is fixed at the origin; that is, cc.m.(Rc.m.) = δ(Rc.m.),
which satisfies Eq. (22).
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C. Tohsaki-Horiuchi-Schuck-Röpke wave function

To determine whether the obtained 0+ states in GCM cal-
culations are α-condensed states, we evaluated the overlaps
between their eigenfunctions and the THSR wave function.
The THSR wave function was proposed to describe the nα

condensed states [15] and is a linear combination of the BB
wave functions assuming that the weight function follows a
normal distribution (hereinafter, the original spherical THSR
wave function is called the 0s-THSR wave function):

〈
r
∣∣� (0s)

THSR(B)
〉 =

∫
dΓ N (0)

B (Γ )〈r|
BB(Γ ) 〉, (28)

where

N (0)
B (Γ ) =

n∏
i=1

exp

(
− R2

i

2B2

)
. (29)

To describe the 2h̄ω excitation of the α-condensed states,
wherein one α particle is excited to the 2s or 2d orbit in
a dilute system, we first introduced the second-order THSR
wave function as follows:〈

r
∣∣� (2)

THSR(B)
〉 =

∫
dΓ N (2)

B (Γ )〈r|
BB(Γ ) 〉, (30)

where

N (2)
B (Γ ) =

n∑
i=1

R2
i

B2
N (0)

B (Γ ). (31)

The 2s-THSR wave function is constructed by imposing the
orthogonality to the 0s-THSR wave function with the same
parameter B:〈

r
∣∣� (2s)

THSR(B)
〉 = 〈

r
∣∣� (2)

THSR(B)
〉

−
〈
�

(0s)
THSR(B)

∣∣� (2)
THSR(B)

〉
〈
�

(0s)
THSR(B)

∣∣� (0s)
THSR(B)

〉 〈r∣∣� (0s)
THSR(B)

〉
,

(32)

and the 2d-THSR wave function is constructed by multiplying
Eq. (31) by the spherical harmonics Y m

2 (θ, ϕ):

〈
r
∣∣� (2dm )

THSR(B)
〉 =

∫
dΓ Y m

2 (θ, φ)N (2)
B (Γ )〈r|
BB(Γ ) 〉. (33)

By integrating over configuration Γ within the dilute limit
that B is sufficiently large to neglect antisymmetrization, we
can verify that the 0s-THSR wave function represents the α-
condensed state in which all α particles occupy the same 0s
orbit and that the 2s- or 2d-THSR wave function represents
the α-condensed state in which one of the α clusters is excited
to the 2s or 2d orbit:

〈
r
∣∣� (0s)

THSR(B)
〉 ∝

n∏
i=1

exp

(
− X 2

i

2B2
c

)
ϕ(αi ), (34)

〈
r
∣∣� (2s)

THSR(B)
〉 ∝

n∑
k=1

(
1 − 2

3

X 2
k

B2
c

)
n∏

i=1

exp

(
− X 2

i

2B2
c

)
ϕ(αi ),

(35)

and

〈
r
∣∣� (2dm )

THSR(B)
〉 ∝

n∑
k=1

Y m
2 (θ, φ)

X 2
k

B2
c

n∏
i=1

exp

(
− X 2

i

2B2
c

)
ϕ(αi ),

(36)

where X i and ϕ(αi ) are the center-of-mass coordinate and
internal wave function of the ith α cluster, respectively, and
Bc = B[1 + (b/2B)2]1/2.

The 0s-, 2s- and 2d-THSR wave function can be sepa-
rated into the center of mass and relative parts because the
weight functions N (0)

B (Γ ) and N (2)
B (Γ ) satisfy the condition

of Eq. (22). Accordingly, the wave function of all the relative
motions with 0S-wave (capital letters mean the relative mo-
tion) is given by〈

r̃
∣∣� (0S)

rel

(
B̃

) 〉 =
∫

dΓ̃ N (0)
B̃

(Γ̃ )
〈
r̃
∣∣
rel

BB(Γ̃ )
〉
, (37)

and the wave function wherein one of relative motions is 2S
wave or 2D wave is given by〈

r̃
∣∣� (2S)

rel

(
B̃

) 〉
R̃i

= 〈
r̃
∣∣� (2)

rel

(
B̃

) 〉
R̃i

−
〈
�

(0S)
rel

(
B̃

)∣∣� (2)
rel

(
B̃

) 〉
R̃i〈

�
(0S)
rel

(
B̃

)∣∣� (0S)
rel

(
B̃

) 〉 〈
r̃
∣∣� (0S)

rel

(
B̃

) 〉
, (38)

where

〈
r̃
∣∣� (2)

rel

(
B̃

) 〉
R̃i

=
∫

dΓ̃
R̃

2
i

B̃2
i

N (0)
B̃

(Γ̃ )
〈
r̃
∣∣
BB(Γ̃ )

〉
, (39)

or

〈
r̃
∣∣� (2Dm )

rel

(
B̃

) 〉
R̃i

=
∫

dΓ̃ Y m
2 (θ, φ)

R̃
2
i

B̃2
i

N (0)
B̃

(Γ̃ )
〈
r̃
∣∣
BB(Γ̃ )

〉
.

(40)

Here, the weight function is given by

N (0)
B̃

(Γ̃ ) =
n−1∏
i=1

exp

(
− R̃

2
i

2B̃2
i

)
, (41)

with

B̃k =
√

k + 1

k
B (42)

for k = 1, 2, . . . , n − 1, and B̃ denotes the parameter set of
{B̃1, . . . , B̃n−1}. In the following calculations, the parameters
B̃1, B̃2, . . . , and B̃n−1 are assumed to be independent,

B̃k =
√

k + 1

k
Bk, (43)

to include the 8Be +α channel in the 3α system, which is
called the extended THSR wave function [36].

III. RESULTS

A. 8Be

The GCM calculation was performed for 0+ states of 8Be
whose wave function is expressed as follows:

〈r̃|
2α (0+)〉 = 〈
r̃
∣∣P̂0

00

∣∣
BB
(
R̃

)〉
, (44)
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FIG. 3. Trajectories of the eigenstates of 8Be(0+) in the (〈r2〉)1/2

(root-mean-square radii of eigenstates) and E ′ (eigenvalues measured
from the threshold energy of the 2α breakup, E ′ = E − 2Eα) plane
as the number of generator coordinates increases from 1 fm at 1-
fm intervals. Circles, triangles, diamonds, and squares indicate the
calculations up to 10, 20, 30, and 40 fm, respectively.

where R̃ = R2 − R1 = (0, 0, R). The size parameter b was
set as 1.20 fm, corresponding to the free α particle. The
generator coordinate R was chosen from 1 fm at 1-fm in-
tervals. Figure 3 shows the trajectories of the eigenstates in
the (〈r2〉)1/2 (root-mean-square radii of eigenstates) and E ′
(eigenvalues measured from the threshold energy of the 2α

breakup, E ′ = E − 2Eα) plane as the number of generator co-
ordinates increases from 1 fm at 1-fm intervals. Clearly, only
the lowest eigenstate had the converged values for (〈r2〉)1/2

and E ′. In Table III, the energy and root-mean-square radius of
the ground state of 8Be are compared with the GFMC results
and the experimental data. The AV4P potential bounded 8Be
in both the present and GFMC calculations, although the 8Be
nucleus was observed as a resonance. The energy difference
between the present and GCM calculations was approximately
0.55 MeV when the energy was measured from the threshold
energy for decay into 2α particles. From its radius, the density
of 8Be was estimated to be 0.236 times that of 4He, indicating
that the ground state of 8Be is diluted.

Figure 4 presents the squared overlaps between the
0S-THSR and eigenfunctions obtained from the GCM cal-
culations up to 40 fm. In the UCOM procedure, the overlap

TABLE III. Comparison of the energy and the root-mean-square
radius of the ground state of 8Be obtained from the GCM calculation
with values from the GFMC method and experimental data. E ′ was
measured from the threshold energy for decay into 2α particles (E ′ =
E − 2Eα).

E [MeV] E ′ [MeV]
√

〈r2〉 [fm]

BB + GCM −62.71 −0.23 2.63
GFMC −65.0(1) −0.78(14)
EXPR −56.5 0.11

FIG. 4. Squared overlaps between the 0S-THSR wave function
and eigenfunctions from the lowest eigenstate to the seventh-lowest
eigenstate of 8Be(0+) obtained via the GCM calculation up to 40 fm.

between two correlated wave functions is equivalent to
that between two uncorrelated wave functions: 〈
̄|�̄〉 =
〈
|U †U |�〉 = 〈
|�〉. The maximum value of the squared
overlap of the lowest state was 0.982 at B = 2.2 fm.
Therefore, the ground state of 8Be obtained in the present
calculations is considered to be an α-condensed state, where
α particles occupy the same 0s orbit, because it is diluted and
can be described by a single 0S-THSR wave function.

B. 12C

The wave functions of 12C(0+) were constructed by
projecting the α-2α(0+) systems to 0+ states (the double
angular-momentum projection), as shown in Fig. 5:

〈r̃|
3α (0+)〉 = 〈
r̃
∣∣P̂0

00

∣∣A[
α
2α (0+)]
〉
. (45)

The GCM calculations for R̃1 and R̃2 were performed from 1
fm at 1-fm intervals.

By checking the trajectories of eigenstates in the (〈r2〉)1/2

and E ′(=E − 3Eα) plane and strengths of the monopole

FIG. 5. Configuration of three α clusters in 12C adopted for the
GCM calculation, where two α system is projected to the 0+ state.
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TABLE IV. Energies, root-mean-square radii, and matrix ele-
ments of the monopole transition of the nine lowest eigenstates of
12C obtained via the GCM calculation up to (R̃1, R̃2) = (16 fm, 16
fm). The units for the energies, root-mean-square radii, and ma-
trix elements of the monopole transition are MeV, fm, and e fm2,
respectively.

Monopole transition
matrix element

Eigenstate E
√

〈r2〉 0+ → 0+
1 0+ → 0+

2

1st (0+
1 ) −102.32 2.18 5.37

2nd (0+
2 ) −93.12 3.50 5.37

3rd (0+
3 ) −91.90 6.41 1.61 33.60

4th −90.53 7.45 1.38 9.84
5th −90.26 6.50 1.65 13.23
6th −88.86 6.83 1.25 1.59
7th −88.56 7.18 0.65 3.39
8th (0+

4 ) −88.03 5.15 3.03 3.92
9th −87.94 5.88 0.35 7.52

transition, four 0+ states were identified, which are shown in
parentheses in Table IV. Figure 6 shows the distribution of
eigenstates in the (〈r2〉)1/2-E ′ plane, where dots are added for
every additional generator coordinate, and green circles, blue
triangles, and red diamonds indicate the calculations up to (R̃1,
R̃2) = (10 fm, 10 fm), (13 fm, 13 fm), and (16 fm, 16 fm),
respectively. Table IV presents the energies, root-mean-square
radii, and matrix elements of the monopole transition of the
nine lowest eigenstates of 12C obtained via the GCM calcula-
tion up to (R̃1, R̃2) = (16 fm, 16 fm).

For the ground state (0+
1 ) and Hoyle state (0+

2 ), both the
energy and root-mean-square radius converged (trajectories I
and II in Fig. 6). The Hoyle state was obtained as a resonant
state but had a finite radius owing to the Coulomb barrier.

FIG. 6. Trajectories of the eigenstates of 12C(0+) in the (〈r2〉)1/2-
E ′ (=E − 3Eα) plane. Green circles, blue triangles, and red
diamonds indicate the calculations up to (R̃1, R̃2) = (10 fm, 10 fm),
(13 fm, 13 fm), and (16 fm, 16 fm), respectively, from (R̃1, R̃2) = (1
fm, 1 fm) at 1-fm intervals for each generator coordinate.

For the 0+
4 state (trajectory IV), the energy almost converged,

and the radius was the smallest among the eigenstates except
for the 0+

1 and 0+
2 states. The suppression of radius indicated

the localization of the wave function, and it was suggested that
this eigenstate was resonant. Furthermore, the 0+

4 state had the
second-strongest monopole transition to the ground state, as
shown in Table IV. Regarding the 0+

3 state (trajectory III), nei-
ther the radius nor the energy converged, but the radius of this
state was smaller than the radius of the higher states (fourth
to seventh), and in particular, the strength of the monopole
transition to 0+

2 was high. The large value of the monopole
transition to 0+

2 is the feature of the breathing mode of the
Hoyle state reported in Refs. [19,21]. The analysis in the next
section indicates that the 0+

3 state is the 2h̄ω excitation from
the Hoyle state.

Figure 7 shows the contour maps of the squared overlap
between the eigenfunctions and the 0S-THSR wave function
with variables B1 and B2, which are extended to the indepen-
dent parameters in Eq. (43). The case of B1 = B2 corresponds
to the original THSR wave function, which is indicated by the
dotted line in each panel. Within the range shown in the figure,
no significant amount of overlap was found except for the 0+

1 ,
0+

2 , 0+
3 , and 0+

4 states assigned here. The detailed analysis is
described in the next section.

IV. DISCUSSION

First, we compared our results with other theoretical calcu-
lations and experimental data for the four low-lying 0+ states
(Fig. 8). The results labeled “THSR1,” “THSR2,” and “BB
(REM)” were taken from Refs. [21], [19,36], and [37], respec-
tively. These calculations were performed using the Volkov
No. 2 force [24] with the Majorana parameter M = 0.59,
whose strength parameters were slightly modified [2]. In the
GCM calculations of “THSR1” and “THSR2,” the extended
and deformed THSR wave functions were used as the basis
wave functions. In the GCM calculation of “BB (REM),” the
BB wave functions were used, and the selection of basis wave
functions was performed via the real-time evolution method
(REM). In all these calculations, the basis wave functions
were chosen to satisfy the condition that the root-mean-square
radii did not exceed a certain value to prevent the mixing of
continuous states: 6 fm in “THSR1” and “THSR2” and 6.4 fm
in “BB(REM).”

The ground state (0+
1 ) obtained in the present calculation

was more deeply bound and more compact than those of the
experiment and other calculations using the Volkov force.
These results are a characteristic of the AV4P potential not
exhibiting saturation with respect to the density [35]. How-
ever, despite using the AV4P potential with a strong repulsive
core, the Hoyle state (0+

2 ) was obtained slightly above the
threshold energy, as obtained from the other calculations using
the Volkov force. The strong repulsive core is expected to
hardly act between the clusters when the system is diluted.
The density of the Hoyle state estimated from the radius is
1/4 times that of the ground state.

To evaluate the effect of a strong repulsive core between
clusters more precisely, we defined the strength of the short-
range correlation between two α clusters using the correlated
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FIG. 7. Contour maps of the squared overlap with the 0S-THSR wave function for eigenfunctions of the nine lowest eigenstates of 12C,
corresponding to Table IV.

two-body kinetic-energy term in Eq. (10) as follows:

〈T̃2〉pair = 〈T̃2〉nα − n〈T̃2〉α
nC2

, (46)

which arises only from the short-range correlations in the
UCOM procedure. Table V presents 〈T̃2〉pair normalized by
〈T̃2〉α for the four 0+ states. The effect of strong repulsion
between two α clusters in the excited states is 3–7 times
weaker than that in the ground state and �10% of the effect
within an α cluster. Therefore, the short-range strong repulsive
core hardly affects correlations among constituent α clusters
in the low-lying cluster-like excited states. This is the physical
reason why similar results are obtained if the adopted NN po-
tential appropriately represents the cluster-like property with
and without a strong repulsive core.

The radii of the 0+
3 and 0+

4 states assigned here are signif-
icantly larger than those obtained via other calculations. This
trend does not depend on the choice of interaction but depends
on the selection of basis wave functions of the GCM calcula-
tion. In the other calculations, the basis wave functions were
chosen to satisfy the condition that root-mean-square radii did

TABLE V. Strength of short-range correlations between two α

clusters evaluated via Eq. (46) for four 0+ states of 12C, normalized
by 〈T̃2〉α .

0+
1 0+

2 0+
3 0+

4

〈T̃2〉pair

〈T̃2〉α 0.298 0.093 0.042 0.060
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FIG. 8. Energy levels for four 0+ states of 12C in the present calculation (BB + UCOM) compared with the experimental data and other
theoretical results. The energies were measured from the 3α threshold energy. The results labeled “THSR1,” “THSR2,” and “BB (REM)”
were taken from Refs. [21], [19,36], and [37], respectively. The values shown to the right of the energy levels indicate the root-mean-square
radii, and the values next to the arrows connecting two levels indicate the values of the matrix elements of a monopole transition between
the connected states with units of e fm2. The experimental value of the charge radius for the ground state was converted into the point-proton
radius.

not exceed a certain value, and the radii of the eigenstates
were automatically suppressed. In this study, the radius was
not restricted, but the range of the generator coordinates was
restricted from (R̃1, R̃2) = (1 fm, 1 fm) to (R̃1, R̃2) = (16 fm,
16 fm). In addition, the radius of the 0+

4 state was smaller than
that of the 0+

3 state in all the calculations.
In the study of the excited states in Hermitian quan-

tum mechanics, preventing the mixing of continuous states
is a difficult problem, and this mixing was particularly ev-
ident in the 0+

3 state results. In all the calculations, the
differences in the values of the energy, radius, and matrix
element of the monopole transition between the 0+

2 and 0+
3

states were significant. In particular, although “THSR1” and
“THSR2” used the same interaction and radius constraint,
their values differed significantly. This indicates that the 0+

3
state is extremely sensitive to the choice of the basis wave
function and requires a non-Hermitian quantum-mechanical
treatment, such as the complex-scaling method, for accurate
discussion [18,38]. However, all the calculations indicated
a large transition matrix element between the 0+

2 and 0+
3

states, and the three previous studies concluded that the 0+
3

state was the breathing mode of the Hoyle state (0+
2 ). It

was directly shown in the present study that the 0+
3 state

is the vibrationally excited state from the Hoyle state, as
discussed later.

The 0+
4 state was obtained at a higher excitation energy

compared with other calculations, but this was due to not
differences in interactions but differences in variational wave

functions; that is, in the present calculations, the 8Be +α

channel included only the 8Be(0+) state. Experiments have
indicated that the 0+

4 state has a large branching ratio to the
8Be(2+) + α(D-wave) channel [17]. Therefore, including the
8Be(2+) + α channel in our calculations is a future issue,
which is expected to reduce the energy of the 0+

4 state.
We next analyzed the wave functions of the four 0+ states

through a comparison with THSR wave functions and exam-
ined the spatial feature of the four states from the view point
of the α condensation.

The ground state is almost described by a single 0S-THSR
wave function with (B1, B2) = (1.0 fm, 1.0 fm), which has a
squared overlap of 0.922 (upper left panel of Fig. 7). Because
the 0S-THSR wave function coincides with the shell-model
Slater determinant as B1 and B2 go to zero, the ground state of
12C is considered to have a shell-model-like structure because
of the small values of B1 and B2. In addition, the density
estimated from its radius is 2.63 times that of the ground state
of 8Be(0+

1 ).
The Hoyle state is 81.1% described by a single 0S-THSR

wave function with (B1, B2) = (2.1 fm, 4.5 fm) (upper middle
panel of Fig. 7). In contrast to the ground state, the Hoyle state
has a maximum squared overlap at large B1 and B2 values
and the density estimated from its radius is low; that is, 0.636
times that of the ground state of 8Be. Accordingly, the Hoyle
state is considered an α-condensed state in which three α

particles move almost freely in a self-consistent mean field.
The value of B1 was similar to that of the ground state of 8Be,
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FIG. 9. Contour maps of the squared overlaps of the 0+
3 state of 12C with the 2S-THSR wave function with respect to R1 (left panel) and

R2 (right panel).

and the value of B2 was significantly larger than that of B1.
These results indicate that the third α particle spreads over a
wide range around the 8Be(0+

1 ) core occupying the 0S orbit.
The 0+

3 and 0+
4 states do not have a large overlap with

a single 0S-THSR wave function (upper right and lower
middle panels of Fig. 7), but the maximum overlap of the
0+

4 state is located near the horizontal axis, and the points
on B2 = 0 fm describe the linear-chain structure with the
aligned 3α particles because the third α cluster is fixed at the
center-of-mass position of 8Be when B2 = 0. As shown later,
such a structure is also observed in the contour map of the
squared overlap with the 2S-THSR wave function with respect
to R̃2.

Figure 9 shows the contour maps of the squared overlaps
of the 0+

3 state with the 2S-THSR wave function with respect
to R̃1 (left panel) and R̃2 (right panel). The 0+

3 state is 81.8%

described by a single 2S-THSR wave function with respect to
the excitation of the α-2α relative motion (R̃2) with (B1, B2)
= (2.3 fm, 4.9 fm). The value of B1 is close to that of the
ground state of 8Be such that 0+

3 has a structure in which the
third α particle moves widely around the 8Be core occupying
the 2S orbit. This result is consistent with an experiment
in which the 0+

3 state decayed predominantly through the
8Be(0+) + α(S-wave) channel [17]. Furthermore, the position
of the maximum point is almost the same as that of the Hoyle
state (upper middle panel of Fig. 7). Accordingly, we conclude
that the 0+

3 state is a vibrational mode of α condensation from
the Hoyle state, resulting in a large monopole transition matrix
element between the 0+

2 and 0+
3 states.

Figure 10 presents the contour maps of the squared over-
laps of the 0+

4 state with the 2S-THSR wave function with

FIG. 10. Contour maps of squared overlaps of the 0+
4 state of 12C with the 2S-THSR wave function with respect to R1 (left panel) and R2

(right panel).
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TABLE VI. Maximum squared overlaps between the eigenfunctions of the four 0+ states of 12C and the THSR wave function. In the
present calculation (BB + UCOM), overlaps were evaluated for the single 0S- and 2S-THSR wave functions. In the “THSR1” and “THSR2”
calculations, overlaps were evaluated for the single extended and deformed THSR wave functions projected to 0+ and for them when the
orthogonality to the single THSR wave functions giving the maximum overlap with the states below the state of interest. More information can
be found in Refs. [20,21].

BB + UCOM (AV4P) THSR1 (Volkov No. 2) THSR2 (Volkov No. 2)

0S-THSR w.f. 2S-THSR w.f. Deformed THSR w.f. projected to 0+

[2α-α(2S-wave)]
Single w.f. Single w.f. Single w.f. Orthogonalized w.f. Single w.f. Orthogonalized w.f.

0+
1 0.922 – 0.978 0.978

0+
2 0.811 – 0.837 0.983 0.79 0.992

0+
3 0.396 0.818 0.290 0.944 0.19 0.89

0+
4 0.272 0.501 0.446 – 0.47 0.81

respect to R̃1 (left panel) and R̃2 (right panel). The 0+
4 state was

50.1% described by a single 2S-THSR wave function with
respect to R̃2 with (B1, B2) = (3.1 fm, 1.3 fm). Because the
maximum position is slightly away from the horizontal axis
on which the structure indicates a linear chain, the intrinsic
state of 0+

4 is considered to have a bent-arm structure, as
indicated by lattice CEFT [6], no-core MCSM [7], AMD
[22] and FMD [23] calculations. As noted previously, the 0+

4
state mainly decays through the 8Be(2+) + α(D-wave) chan-
nel [17]; therefore, it is necessary to consider the 8Be(2+) + α

channel for further investigation.
Table VI presents the maximum values of the squared

overlaps between the eigenfunctions of the four 0+ states
and the THSR wave functions. The present calculations are
compared with the “THSR1” and “THSR2” calculations. Ap-
proximately 80% of the eigenfunction of the Hoyle state
(0+

2 ) was described by the single THSR wave function in
both the present calculation (the spherical 0S-THSR wave
function) and the “THSR1” and “THSR2” calculations (the
deformed THSR wave function projected to the 0+ state).
Furthermore, when the orthogonality to the single THSR wave
function giving the maximum overlap with the eigenfunction
of the ground state (0+

1 ) was imposed, the maximum value
of squared overlap exceeds 0.9. In the present calculation,
the maximum value imposing the orthogonality was 0.944 at
(B1, B2) = (1.7 fm, 4.0 fm).

For the 0+
3 state, almost 40% of its eigenfunction was

described by the single 0S-THSR wave function in the present
calculation, whereas only 20%–30% was represented by the
single deformed THSR wave function in the “THSR1” and
“THSR2” calculations. When the orthogonality to the single
THSR wave function giving the maximum overlap with the
eigenfunctions of the 0+

1 and 0+
2 states was imposed, the

maximum value of the squared overlap became 0.90–0.95
in the “THSR1” and “THSR2” calculations. In the present
calculation, approximately 80% of the 0+

3 state was described
by the single 2S-THSR wave function. Therefore, it is sug-
gested that the main component of the 0+

3 states is the 8Be +α

(2S-wave) configuration. A detailed analysis of the 0+
4 state

considering the 8Be(2+) + α channel will be performed in a
future study.

Finally, we verified the possibility of an α-condensed state
of 2D-wave excitation in 8Be(2+). The GCM calculation was
performed for 2+ states of 8Be in the same manner as that
for 0+ states of 8Be. Figure 11 shows the trajectories of the
resulting eigenstates in the (〈r2〉)1/2-E ′ plane. It was found
that the state with the smallest radius in each GCM calculation
(red points) existed around E ′ = 3.08 MeV where the trajec-
tories were bent (dotted line). Such a suppression of radius
was also seen in trajectory IV (0+

4 ) of 12C (Fig. 6) due to
the localization of the resonant state, and it is suggested that
there is a resonance state around Ex = 3.3 MeV, which was
consistent with the GFMC result indicating that the 2+

1 state
of 8Be was at Ex = 3.1 MeV [28].

Figure 12 shows the squared overlap between eigenfunc-
tions at the bending point (E ′ = 3.08 MeV) and 2D-THSR
wave function describing an α-condensed state with the rel-
ative motion excited to 2D0 wave. The maximum overlap
occurred at B = 1.7 fm. As the number of generator coor-
dinates increased, the peak height gradually decreased, but

FIG. 11. Trajectories of eigenstates of 8Be(2+) in the (〈r2〉)1/2-E ′

(=E − 2Eα) plane. Circles, triangles, diamonds, and squares indicate
the calculations up to 10, 20, 30, and 40 fm, respectively. Red points
indicate the eigenstate with the minimum root-mean-square radius in
each GCM calculation.
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FIG. 12. Squared overlaps between the eigenstate of 8Be(2+)
at E − E2α = 3.08 MeV and the 2D-THSR wave function describ-
ing an α-condensed state with the relative motion excited to 2D0

wave. Circles, triangles, diamonds, squares, and inverted triangles
indicate the GCM calculations up to 8, 15, 21, 27, and 33 fm,
respectively.

the reduction rate of the peak height gradually decreased.
Such behavior is caused by the mixing of continuous states,
and, therefore, it is suggested that 8Be(2+

1 ) contains an α-
condensed state that is excited from the 0S wave to the 2D
wave. How such a state affects the α-condensed states of 12C
is of interest.

V. CONCLUSIONS

We investigated the low-lying 0+ states of 12C in a 3α

cluster model (BB wave function) using the AV4P potential,
which has a strong repulsive core. We confirmed four ex-
perimentally observed 0+ states that were also indicated by
calculations using the Volkov No. 2 force. The AV4P potential
does not exhibit saturation, and the ground state is deeply
bound; however, the energy spectrum near the threshold is
almost identical to that obtained with the Volkov No. 2 force,
which is a phenomenological potential and has no short-range
repulsion. This is because 0+ states near the threshold are
cluster-like states and have diluted structures, and short-range
repulsion seldom acts between the constituent clusters.

The properties of the four 0+ states, such as the radius
and monopole transition matrix elements, exhibited similar
tendencies to those obtained in previous studies. In particular,
the matrix element of the monopole transition between the
0+

2 and 0+
3 states was large, indicating that the 0+

3 state was
the breathing mode of the Hoyle state, as in previous studies.
From the analysis of the overlaps with the ordinal 0S-THSR
wave function and the 2S-THSR wave function defined in
this study, it is shown more specifically that the 0+

3 state is a
vibrationally excited state of the Hoyle state; that is, from the
8Be(0+

1 ) + α(0S-wave) state to the 8Be(0+
1 ) + α(2S-wave)

state. The eigenfunctions of the 0+
2 and 0+

3 states obtained in
the GCM calculation can be �80% described by single 0S-
THSR and 2S-THSR wave functions, and the condensation
radii where the overlaps are maximum in the 0+

2 and 0+
3 states

are almost the same. However, the eigenfunction of the 0+
3

state is sensitive to the choice of basis wave functions owing to
the contamination of continuous states, and it requires detailed
studies that accurately describe resonant states, such as the
complex scaling method.

The 0+
4 state was obtained at a higher excited energy

compared with the THSR and BB(REM) calculations. This
is because the 8Be(2+) + α channel in the 0+

4 state, which
is important as shown both experimentally and theoretically,
was not included in the present study. However, despite the
absence of the 8Be(2+) + α(S-wave) channel, it was observed
that the 0+

4 state exhibits a bent-arm structure, as observed in
the previous studies. Calculations involving the 8Be(2+) + α

channel are necessary for a detailed discussion. As the possi-
bility that the 8Be(2+

1 ) state is an α-condensed state with 2D
wave was illustrated in this study, it is of interest to determine
how this condensed state relates to low-lying cluster excited
states in 12C—not only four 0+ states but also the 2+

2 state,
which has been demonstrated to be related to the Hoyle state.
This will be discussed in our forthcoming reports.

ACKNOWLEDGMENTS

This work was partly achieved using Supercomputer for
Quest to Unsolved Interdisciplinary Datascience (SQUID) at
the Cybermedia Center, Osaka University. One of the authors
(H. Takemoto) acknowledges that part of this work was mo-
tivated by Prof. P. Schuck and is grateful to Prof. A. Tohsaki
for the fruitful discussions.

[1] K. Ikeda, N. Takigawa, and H. Horiuchi, Prog. Theor. Phys.
Suppl. E68, 464 (1968).

[2] Y. Fujiwara, H. Horiuchi, K. Ikeda, M. Kamimura, K. Katō,
Y. Suzuki, and U. Uegaki, Prog. Theor. Phys. Suppl. 68, 29
(1980).

[3] F. Hoyle, Astrophys. J., Suppl. Ser. 1, 121 (1954).
[4] R. B. Wiringa, S. C. Pieper, J. Carlson, and V. R.

Pandharipande, Phys. Rev. C 62, 014001 (2000).
[5] J. Carlson, S. Gandolfi, F. Pederiva, S. C. Pieper, R. Schiavilla,

K. E. Schmidt, and R. B. Wiringa, Rev. Mod. Phys. 87, 1067
(2015).

[6] E. Epelbaum, H. Krebs, T. A. Lähde, D. Lee, and Ulf-G.
Meißner, Phys. Rev. Lett. 109, 252501 (2012).

[7] T. Otsuka, T. Abe, T. Yoshida, N. Shimizu, N. Itagaki, Y.
Utsuno, J. Vary, P. Maris, and H. Ueno, Nat. Commun. 13, 2234
(2022).

[8] H. Horiuchi, Prog. Theor. Phys. 51, 1266 (1974).
[9] H. Horiuchi, Prog. Theor. Phys. 53, 447 (1975).

[10] E. Uegaki, S. Okabe, Y. Abe, and H. Tanaka, Prog. Theor. Phys.
57, 1262 (1977).

[11] E. Uegaki, Y. Abe, S. Okabe, and H. Tanaka, Prog. Theor. Phys.
59, 1031 (1978).

044304-12

https://doi.org/10.1143/PTPS.E68.464
https://doi.org/10.1143/PTPS.68.29
https://doi.org/10.1086/190005
https://doi.org/10.1103/PhysRevC.62.014001
https://doi.org/10.1103/RevModPhys.87.1067
https://doi.org/10.1103/PhysRevLett.109.252501
https://doi.org/10.1038/s41467-022-29582-0
https://doi.org/10.1143/PTP.51.1266
https://doi.org/10.1143/PTP.53.447
https://doi.org/10.1143/PTP.57.1262
https://doi.org/10.1143/PTP.59.1031


APPEARANCE OF THE HOYLE STATE AND ITS … PHYSICAL REVIEW C 107, 044304 (2023)

[12] E. Uegaki, Y. Abe, S. Okabe, and H. Tanaka, Prog. Theor. Phys.
62, 1621 (1979).

[13] M. Kamimura, Nucl. Phys. A 351, 456 (1981).
[14] A. Tohsaki, H. Horiuchi, P. Schuck, and G. Röpke, Phys. Rev.

Lett. 87, 192501 (2001).
[15] B. Zhou, Y. Funaki, H. Horiuchi, and A. Tohsaki, Front. Phys.

15, 14401 (2020).
[16] M. Itoh, H. Akimune, M. Fujiwara, U. Garg, N. Hashimoto, T.

Kawabata, K. Kawase, S. Kishi, T. Murakami, K. Nakanishi,
Y. Nakatsugawa, B. K. Nayak, S. Okumura, H. Sakaguchi, H.
Takeda, S. Terashima, M. Uchida, Y. Yasuda, M. Yosoi, and J.
Zenihiro, Phys. Rev. C 84, 054308 (2011).

[17] M. Itoh, H. Akimune, M. Fujiwara, U. Garg, T. Kawabata,
K. Kawase, T. Murakami, K. Nakanishi, Y. Nakatsugawa, H.
Sakaguchi, S. Terashima, M. Uchida, Y. Yasuda, M. Yosoi, and
J. Zenihiro, J. Phys.: Conf. Ser. 436, 012006 (2013).
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