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Multiple constraints on nuclear mass formulas for reliable extrapolations
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Nuclear mass is responsible for many key processes in both nuclear physics and astrophysics. While the
theoretical accuracy of masses has reached a quite astonishing level, the extrapolations among various predictions
have been conflicting due to several possible reasons, such as the missing physics and overfitting problems in
current formulas. Instead of the single target of binding energies, we make use of both the α decay energy and
the Garvey-Kelson relations as multiple physical constraints on mass models to address the above issues to some
extent. By means of the multiobjective optimization, the Bethe-Weizsäcker–type and the Duflo-Zucker (DZ)
mass models are carried out to perform such a study as specific examples. Thanks to very recent measured
neutron-rich nuclei beyond the AME20, we further test the predictive power on two DZ-type formulas as
accompanied by the impressive accuracy. The discrepancies between the predicted values of the DZ10 and the
DZ33 can be significantly reduced, which implies the therapy of the overfitting phenomenon in some degree.
This leads to lower uncertainties of extrapolations for the models themselves.
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I. INTRODUCTION

Nuclear mass or binding energy (BE) is an essential prop-
erty of nuclei. It plays a paramount role in understanding rich
nuclear structure information such as nuclear effective inter-
actions, stability, reaction rates, and so on [1]. Meanwhile, it
is one of the most important nuclear physics inputs that can
greatly affect the r process of nucleosynthesis in astrophysics,
which is quite important to answer a question: How are el-
ements heavier than iron made in nature [2–4]? As a result,
a precise knowledge of nuclear masses is urgently required
for many branches of nuclear science. Experimental explo-
rations have been very successful in measuring around 2500
masses with the high precision via the direct or indirect meth-
ods. A range for the total number of bound nuclei between
7000 to 10000 is typical for a wide variety of state-of-the-art
nuclear theories [4,5]. Note that thousands of exotic nuclei
involving the r process is unreachable experimentally in the
foreseeable future, the theoretical investigations are becoming
increasingly important aiming at providing the reliable extrap-
olations.

Both macroscopic-microscopic and purely microscopic
considerations have been developed to reproduce available
data, yielding the root mean square deviations (RMSD)
between predicted and measured values in the range of 300–
5000 keV [6]. Besides, there are a series of local mass
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formulas from the unique relations of neighboring nuclei,
particularly the famous Garvey-Kelson relations (GKs) [7]. In
recent years, machine learning has been demonstrated to be a
promising tool for learning the missing physics and improving
the accuracy to a higher level towards the precision of a
hundred keV [8–14]. This indicates that the masses predicted
by the machine learning approach have satisfied the accuracy
requirement for astrophysics applications in known regions.

When it comes to extrapolations, it is expected that a the-
oretical model that describes known masses well also has the
ability to accurately predict the rest of the nuclear landscape,
but recently this assumption has been critically examined and
proved to be doubtful [15–17]. This implies that the predictive
power of models may not fully depend on the theoretical
accuracy of masses in the known region since so many factors
are involved in the extrapolation. Also, the mass differences
between various models tend to grow with the increase of
the extrapolation distance [18–20]. Although the models are
equipped with the Bayesian neural network or the radial basis
function, their prediction differences are still large [11]. The
reasons may come from two directions. One is the missing
physics that is not yet to be incorporated into mass formu-
las. For instance, the shell evolution has been observed in
the experimental side [21–23]. Considering that most of the
global models usually correspond to the specific shell struc-
ture, some adjustments on magic number may be required
in calculating those nuclei with extreme isospin asymmetry
for mass models. On the other hand, such parametrization
models are born with two drawbacks, namely, underfitting
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and overfitting problems [24]. The latter one is relevant with
this paper, which can be understood as one source of the sta-
tistical uncertainties. Assuming that overfitted models, being
flawless in the physical perspective, can perfectly reproduce
the samples in the fitting set, but they cannot correctly predict
the samples far away from training samples because of the
lack of constraints of enough data, causing the parameters of
models determined by fitting the experimental data to be prone
to being locally optimal rather than globally optimal. Simply
stated, the underlying physics in models may be additionally
attached into the parameter of models for singly pursuing the
so-called mass optimal solution, which is reflected in the fact
that the “byproducts” (nucleon separation energy, decay en-
ergy) extracted from the mass models show the uncontrollable
deviations to be much larger or smaller than the accuracy of
binding energies and the more troublesome is the nontrival
disagreement among various models [20]. More physical con-
straints, hence, should be introduced into fitting procedure to
reduce the risk of overfitting and in so doing better guiding the
extrapolation.

One potential way to tackle the above dilemmas is to
employ the multiobjective optimization (MOO) by including
more physical constraints on mass formulas, which is an
effective way to heal the overfitting problem for providing
more training samples in fitting procedures [24]. The MOO
is devoted to optimize more than one objective problem and
the relationship among objectives are generally conflicting
and repulsive [25,26]. Recently, we initially performed the
MOO strategies on mass models by including the α decay
energies [27], while the key issues, such as further reducing
the model uncertainty and extrapolation differences between
models, remain missing. In the present work, we carry out a
more thorough and rigorous method to narrow the range of
solutions that may achieve more reliable predictions. The ex-
trapolation differences between DZ10 and DZ33 are evaluated
in a reasonable way, suggesting that the MOO strategies can
somewhat reduce the prediction differences between models.
Furthermore, the GKs, as discussed above, are a very crucial
condition since they indicate the local features of neighboring
nuclei and the cancellation of the isospin dependence of the
residual interaction. The GK mass relations are, therefore,
introduced as a physical constraint on mass models, and also a
test to check the compatibility between GKs and mass models.
This paper is structured as follows. In Sec. II, we briefly make
an introduction for the MOO and the mass models including
the Bethe-Weizsäcker 2 (BW2), the DZ10, the DZ33, and
the GK mass formulas. In Sec. III, the improved accuracy
of observables is discussed. The method to select potential
solutions for the extrapolations at long distance is presented,
and further the comprehensive performance as well as extrap-
olation uncertainties of models are evaluated and analyzed in
detail. The summary is drawn in the last section.

II. DESCRIPTION OF THE MOO AND THE MASS MODELS

A. Multiobjective optimization

Real-life systems usually require the simultaneous opti-
mization of multiple and related objectives, while a solution

is usually optimal for one objective but not the cases for other
objectives. Within this situation, the concept of MOO natu-
rally arises. The MOO defines Pareto optimal or Pareto front
(PF) set, a set of solutions, in which the rank of each solution
is equal in contrast to one best solution in the single objective
evolution algorithms (SOEAs). A multiobjective problem can
be described as

min F (x) = ( f1(x), . . . , fm(x)),

lb � xi � ub, (1)

where f1−m(x) is the related objective functions, and x =
(x1, x2, . . . , xm) is the decision variables in which xi is
restricted in lower bound and upper bound. The Pareto dom-
inance is defined as: a solution j is dominated by another
feasible solution k if fi( j) � fi(k) for i = 1, 2, . . . , m and
fi( j) > fi(k) for at least one objective function. This im-
portant definition leads to the content and detail of MOO.
There has been much progress in developing universal mul-
tiobjective evolution algorithms (MOEAs) for locating the
ideal Pareto front for the decades, including but not lim-
ited to covariance matrix adaptation evolution strategy [28],
strength Pareto evolutionary algorithm 2 [29], Pareto archived
evolution strategy [30]. Of course, one can assign a weight
factor (ωi > 0,

∑m
i ωi = 1) to individual objectives and com-

bine them together as a composite function (
∑m

i=1 fiωi) to
be optimized using any SOEAs. The priority of objectives
according to the preference of users can be determined via the
weight factors, but in practice it is very difficult to determine
the weight factors even for those who are familiar with this
method [25]. Thus, for more complicated problems with many
functions and decision variables one has to rely on specific
multiobjective algorithms. The nondominated sorting genetic
algorithm-III (NSGA-III) [31] is employed here. The detailed
discussions on algorithm are given below.

The basic philosophy of evolutionary algorithms is inspired
in biological evolution. All individuals in a population includ-
ing parent and offspring compete simultaneously with one
another. The individuals with larger adaptive capacity survive
and these surviving elites as a new parent generate the next
generation. The above procedures continually run in ideal
environment. The best individuals thus will be obtained from
the end of loop.

The simplified steps for the NSGA-III are shown in Fig. 1.
It would be easier to understand if one combines Fig. 1 and
the following discussion on NSGA-III. At the t th genera-
tion, a parent population Pt having N members is randomly
generated, where t denotes the number of generations, and
the offspring Qt with the same number N is created via per-
forming mutations, simulated binary crossover operator, and
selections on the Pt . These two populations are combined to-
gether to create a new population Rt = Pt

⋃
Qt with size 2N .

In order to find excellent individuals from Rt efficiently for the
next generation, the fast nondominated sorting and the refer-
ence point procedure will be performed, which are the essence
of NSGA-III. The NSGA-III inherits the fast nondominated
sorting proposed in NSGA-II [32]. The fast nondominated
sorting procedure is used to divide the population into dif-
ferent nondominated level (F1, F2, . . . , Fi), starting from F1,
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FIG. 1. Basic steps of the NSGA-III illustrated by this sketch.
By using the nondominated sorting procedure, all individuals are
assigned to different class in order of their convergence, starting from
F1, and the individual belonging to F1 is more convergent than the
individual in F2. The reference point procedure is used to precisely
select the solutions that will maximize the diversity of the last chosen
front. These steps shown in Fig. 1 run and iterate until the number of
iterations is reached or the results are convergent.

where F1 denotes the first nondominating front. Next, all solu-
tions of each nondominated front are successively added into a
new population St in order of front. If the St fits the size of the
population completely, it will be regarded as the next parent,
namely, St = Pt+1. No further operations are needed. How-
ever, once the St exceeds N for the first time after adding a set
of nondominating fronts, the reference point procedure will
be performed to reject partial solutions from the last chosen
nondominating front and all the remaining fronts for matching
the number of N . In Fig. 1 after adding the front of F3, the St

exceeds N for the first time. Then, the reference point proce-
dure is started and the remaining fronts (F4, F5, . . . , Fi) will
be immediately removed from the St . The rejected solutions
are less diverse than the other solutions in this front. The
reference points are a set of predefined points on a normalized
hyperplane to structure the search space. The calculation of
reference points is described as H = (M+p−1)!

p!(M−1)! , where H and
M represent the number of reference points and objectives,
respectively, and p denotes the amount of subdivisions along
each objective, which can be set by the user. An example is
shown in Fig. 2 with M = 3, p = 4. One can see from Fig. 2
that the 15 reference points are well distributed on the entire
normalized hyperplane, the obtained solutions are also likely
to be widely distributed on this plane. (See Refs. [31,33,34]
for more detail.)

B. Mass models

It is necessary to provide some proper descriptions for the
mass models employed and the corresponding GKs. The BW2
is an improved version of the classical liquid drop model with
more physical terms considered. The BW2 employed in this

FIG. 2. A sketch of the reference points on a hyperplane for a
three objectives problem.

work is taken from Ref. [35] and can be modified as

BEBW 2 = a1A − a2A2/3 − a3Z2A−1/3 + a4
Z4/3

A1/3

− a5
(N − Z )2

A
+ a6

(N − Z )2

A4/3
− a7

|N − Z|
A

+ a8δA−1/2 + a9A1/3 − a10P + a11P2, (2)

where ai are the free parameters determined by fitting ex-
perimental nuclear masses. The δ = [(−1)N + (−1)Z ]/2 and
P = vpvn/(vn + vp) are associated with pairing and shell cor-
rection terms, where vp (vn) denotes the difference between
the nearest magic numbers and proton (neutron) numbers.

The DZ family have amply shown their niche in the mass
model market not only with the good agreement between
experimental and predicted values (about 350–550 keV) but
also with the reliability and validity in terms of an extrap-
olation issue [36,37]. Meanwhile, they have been applied in
astrophysical investigations, such as the properties of neutron
stars [17], and the extraction of symmetry energy to predict
the neutron skin thickness [27,38]. The popularity of the DZ
family in some sense can be attributed to its relatively low
computational cost since every term of which is an algebraic
analytical expression, allowing us to make statistical strategies
on it with less cost by using Monte Carlo methods [39].

The simpler DZ10 contains ten terms which can be classi-
fied into two groups. The six microscopic terms are built from
the interacting shell model. The remaining four macroscopic
terms considering global behavior of nuclei are the Coulomb
VC , symmetry energy VT and its surface corrections VT S , and
pairing energies VP. The DZ10 mass formula can be written
as

BEDZ10 = a1VC + a2(M + S) − a3
M

ρ
− a4VT

+ a5VT S + a6s3 − a7
s3

ρ
+ a8s4

+ a9d4 + a10VP. (3)

The DZ33 model includes 28 monopole terms and five macro-
scopic terms discussed in the DZ10 model above with one
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extra pairing term. Although the DZ10 and the DZ33 are
believed to have similar physics and the same shell structure,
the DZ10 cannot be understood as a simplified type of the
DZ33 model due to the large differences of monopole terms
[39]. Detailed discussions on the DZ33 models may be found
in Refs [37,39,40] and references therein.

The formulation of the GK relations is that the interactions
between nucleon-nucleon (n-n, n-p, p-p) can be canceled to a
large extent in first order in considering an extreme single-
particle model, serving as a simple probe to the unknown
nuclear force to date. A given mass of a nucleus can be deter-
mined with an error bar of 150 keV if the five known masses
around this nucleus are known, which is even applicable in re-
gions away from the β stability line. In addition, Ref. [41] sug-
gested an idea without action that a possible way to constrain
mass models and improve the mass predictions is to combine
the binding energies and the GKs together to be optimized via
such the weighted sum method discussed before. Finally, the
specific implementation is achieved in this paper in aan easier
and more rigorous way. There are two commonly used GKs:

�MGK = M(N + 2, Z − 2) − M(N, Z ) + M(N, Z − 1)

− M(N + 1, Z − 2) + M(N + 1, Z )

− M(N + 2, Z − 1) (4)

and

�MGK = M(N + 2, Z ) − M(N, Z − 2) + M(N + 1, Z − 2)

− M(N+2, Z − 1)+M(N, Z − 1) − M(N + 1, Z ),

(5)

where M, N , Z denote the nuclear mass, neutron number,
proton number, respectively.

III. RESULTS AND DISCUSSIONS

The objective function is defined as the root mean square
deviations between predicted and measured values. Our ex-
perimental data are expanded with the α decay energies and
the GKs. The binding energies can be easily obtained and
the following two observables are indirectly extracted from
mass differences. The Qα values can be obtained by a rela-
tionship of mass differences between a parent nucleus and its
daughter, namely, Qα = −BE(Z, N )+BE(Z−2, N −2)+BEα ,
where BEα is the binding energy for 4He nuclei. As for the
target of GKs, we define that a set of GKs can give a value
called �MGK shown in Eq. (4), and the differences between
the theoretical �M theo

GK and the experimental �Mexp
GK can be

obtained to be minimized. Equation (4) is chosen to perform
such a calculation. In addition, one may argue that the objec-
tives of BE and Qα may have the priority higher than GKs in
optimization since the relative scale of GKs is smaller than
other two objectives, resulting in that the obtained result is
too unstable to adopt. In general, one of the most effective
ways to handle this issue is to normalize objective functions so
that they become dimensionless. Actually, the normalization
procedure is already implemented in NSGA-III. There may
be other paths to tackle such a problem besides the normal-
ization procedure, which deserves further investigations. The

optimization of these three targets is characterized by the
following:

f1 = σBE,

f2 = σQα
,

f3 = σ�MGK ,

σA =
√∑N

i=1(Aexp − Atheo)2

N
. (6)

Shown in Fig. 3 are the Pareto fronts by using the MOO
approach for the three mass models. Those unreasonable so-
lutions with σBE above 5 MeV were previously removed out
from the PF results. The first point to note from Fig. 3 is that
the best accuracy solution of each objective is found, which
tells us the accuracy limit of models for different physical ob-
servables, helping theorists to search for missing ingredients.
Second, besides the accuracy of binding energies, the accu-
racy of the byproducts also can represent the reliability and the
capacity of models. The improvement of the two observables
is significant with a little sacrifice on the accuracy of binding
energies. One can see that the high level of accuracy of masses
to a large extent is at the price of other two observables, in
particular for the BW2 and the DZ10. Taking the BW2 as
an example, we calculate the deviations of objective function
values between the mass optimal and its nearest suboptimal
solution, namely, �( f1, f 2, f 3) = (−0.03, 0.095, 0.002) MeV.
In fact, the change of 0.01 MeV for α decay energies can
affect the precision of α decay half-life at at least an order of
magnitude. Globally speaking, the σQα

values can be consid-
erably improved from about 1.2 to 0.95, 0.4 to 0.3, and 0.35 to
0.2 MeV for the BW2, the DZ10, and the DZ33, respectively.
The DZ models describe the consistency of GKs better than
the BW2, partly due to more physics considered, partly be-
cause the DZ models have the shell-model assumptions, and
thus are inherently compatible with GKs [41].

In situations of so many choices, hundreds or even thou-
sands of nondominated solutions, in general, one feels puzzled
when following the idea that each solution is considered
equally good from the aspect of MOO. It is of great inter-
esting to identify the potential solutions from PF in terms
of prediction performance. Predictions of neutron-rich nuclei
have been a longstanding challenge for researchers since their
structure is drastically changed compared to stable nuclei.
Moreover, the disagreement between models is most serious
in the neutron-rich region. With advances in the field of exper-
imental facilities, an increasing number of neutron-rich nuclei
are being produced in the laboratory. With new mass data in
hand, it gives us an opportunity to judge the predictive power
of models and help us ultimately to select more predictive
solutions from the PF compared to the mass optimal solutions.
The neutron-rich nuclei chosen to be tested are mostly not in-
cluded in the fitting set. The DZ10 and the DZ33 are employed
for this test.

First, the whole nuclear mass data are divided into two
parts, the fitting set from the AME20 and the validation set
consisting of neutron-rich nuclei from very recent measure-
ments [43–46]. Second, the model with the mass optimal
solution is used to calculate the RMSD with respect to the
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(a)

(b)

(c)

FIG. 3. Every globule represents a nondominated solution, and
its color denotes the accuracy of masses to guide eyes. The solu-
tions surrounded by indigo boxes are the mass optimal solutions.
The measured binding energies for nuclei with N , Z � 8 as well as
uncertainties smaller than 100 keV, and α decay energies limited in
even-even nuclei are taken from the latest AME20 [42].

validation set as a benchmark. Finally, the potential solutions
from PF may be found if their corresponding accuracy is
better than the value calculated by the mass optimal. There are
over 50 potential solutions to be picked after this process for

both models, and we define the set of these potential solutions
as the potential set (PS). It should be emphasized that the
distributions of σBE values in Fig. 3 range from a few hundreds
of keV all the way down to very large 5 MeV, but only a few
solutions can achieve better accuracy than the mass optimal
solution. Meaningful insights into the PS may be gained by
performing statistical analysis on it.

Table I presents an overview of the performance of the
PSs on the validation set and the fitting set from partial and
global perspectives. In Table I, with the vertical bar in table,
the analysis is divided into two parts according to different
mass data sets chosen, namely, the validation set and the fitting
set. The second column represents the RMSD with respect
to the validation set by using the models with the mass opti-
mal solutions. For comparison, the third column refers to the
smallest RMSD by using the best solutions from PS. One can
see that the accuracy of masses for the validation set are con-
siderably reduced by 50 and 32 percent for DZ10 and DZ33,
respectively, by using the best solutions in the PSs compared
to the mass optimal. From the fourth column to the last one,
every term is described as mean value ± standard deviation
for describing the central position and the varying scale within
observables. The fourth column corresponds to the statistical
description of binding energies. The last three columns refer
to the statistical description of three objective values, and
they provide us, in some sense, with the original accuracy
of the models without the mask of overfitting. These actual
objective values of PSs near-perfectly match the balance con-
dition discussed before. The values of σ ′

Qα
= 0.367 ± 0.019

and σ ′
�MGK

= 0.066 ± 0.001 MeV are almost located in the
middle of each axis for DZ10, namely, the perfect balance
between “the best” and “the worst”. The DZ33 also displays
a similar trend. It seems that σ ′

BE = 0.766 ± 0.08 and σ ′
BE =

0.502 ± 0.033 MeV may provide the valuable anchors on
the realistic accuracy of masses for the DZ10 and the DZ33,
respectively. Another important advantage of MOO is that our
results are tied with statistical uncertainty which comes from
various solutions, and the statistical uncertainty of parameters
for the DZ10 model is shown in Table II.

In recent years, Orford et al. [44] suggested that the DZ
model is unsatisfactory in reproducing the mass values of
neutron-rich nuclei, namely, Nd and Sm isotopes. To justify
this claim, we then compare the mass values obtained by
using the DZ10 (with PS) with the measurements of Nd and
Sm. As shown in Fig. 4, the theoretical results of 160Nd and
164Sm are in good agreement with experimental results. As
for other neutron rich isotopes of Nd and Sm, the present
differences between theoretical and experimental values are
relatively large, which is in accordance with Ref. [44]. It is
expected that more mass models will be equipped with MOO
strategies to further explore the neutron rich regions.

In the context of reliable extrapolations, now the two mod-
els with the potential sets can be used to predict masses across
the whole nuclear chart. As mentioned before, although exist-
ing mass models give little deviations for available nuclei, it
becomes a totally different story when it comes to extrapola-
tions. It will be interesting to see whether the extrapolations
still remain stable when the models employ the solutions in
the PSs, and whether the theoretical spread between DZ10
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TABLE I. Detailed results (scale in MeV) of the potential sets of the models on the validation set and the fitting set (divided by the vertical
line).

model σ
opt
BE σ PS

BE σ PS′
BE σ ′

BE σ ′
Qα

σ ′
�MGK

DZ10 0.405 0.204 0.337 ± 0.046 0.766 ± 0.08 0.367 ± 0.019 0.066 ± 0.001
DZ33 0.135 0.091 0.12 ± 0.019 0.502 ± 0.033 0.314 ± 0.015 0.07 ± 0.002

and DZ33 can be systematically reduced. This leads to the
following comparisons. Figure 5 shows two evaluations of
the extrapolation differences for the models, one is the dif-
ferences for the model itself and the other is the differences
between models. We start by evaluating extrapolation differ-
ences for the model itself. First, we can get corresponding
nuclear mass tables by using the model with these potential
solutions, in which the predictions between two drip lines are
limited in even-even nuclei for avoiding the odd-even effects
and reducing computational cost. Second, to systematically
estimate the uncertainties of models in a credible way, each
mass table should be compared to the rest of the mass tables.
Quantitatively, each mass table is an individually selected one
at a time to calculate the standard deviations with all the
remaining mass tables in pairs. Third, these obtained standard
deviations with respect to one mass table are further calculated
as average values denoted as σ BE

ave . For instance, assuming
that the number of the mass table is 100, each mass table
then corresponds to 99 standard values, and the average value
of these 99 standard deviations relative to one mass table is
obtained. The distributions of all average values are shown
in panel (a) of Fig. 5. In this way, it may be insightful to
give the robustness of theoretical predictions and estimate
theoretical uncertainties. From Fig. 5, one can easily see that
the distributions of uncertainties are mostly concentrated on
the order of about 0.6 MeV in the DZ33 model, which fairly
agrees the accuracy that most models reach, while the range of
the uncertainties in the DZ10 model are relatively large from
1 to 2 MeV. This suggests that the predictions by the DZ33
within the PSs may be more stable and reliable than the results
of the DZ10 model.

TABLE II. Based on the results of PSs, each parameter shown in
the second column is calculated as mean value ± standard deviation
to describe the statistical uncertainty (in MeV) for the DZ10 formula.
For the purpose of comparison, we also provide the parameters of the
mass optimal solution, named Case I.

Quantity Present Case I

a1 0.707 ± 0.001 0.705
a2 17.789 ± 0.03 17.747
a3 16.399 ± 0.114 16.251
a4 6.566 ± 0.599 6.102
a5 37.343 ± 0.107 37.356
a6 52.476 ± 0.495 52.661
a7 0.448 ± 0.015 0.463
a8 2.091 ± 0.075 2.104
a9 0.023 ± 0.0008 0.021
a10 39.789 ± 1.246 41.48

A logical next step is to apply the above comparative
method for assessing extrapolation differences between the
DZ10 and the DZ33. Analogously, supposing that both mod-
els have 100 mass tables, choosing the first mass table from
the DZ10 calculates the standard deviations in pairs with all
the mass tables from the DZ33. Then, these 100 standard devi-
ations are obtained and also taken as the average values named
as σ BE′

ave . The second mass table is selected to do the same
calculations until the last one done. The above calculations
are performed for the DZ10 and vice versa for the DZ33, and
the distributions of results are shown in Fig. 5(b). In Fig. 5(b),
it is obvious that the range of extrapolation differences be-
tween the models are larger than that from the upper panel.
The solutions at the far right of Fig. 5(b) show pretty large
uncertainty, resulting in these solutions being unfeasible to
adopt predictions and can be eliminated from the PSs thus
further reducing the extrapolation differences.

As discussed above, one of the possible reasons, causing
the large extrapolation discrepancies between models, is the
overfitting phenomenon. In turn, if the discrepancies between
models can be reduced, the overfitting problem may be al-
leviated to some extent. To address this issue, the two mass
evaluations, obtained by using the mass optimal solution of
the DZ10 and the DZ33, are added in PSs, respectively. The
calculated values corresponding to the mass optimal solution
are marked by arrows in Fig. 5. It is clear that in Fig. 5(a)
the extrapolation differences between the potential set and the
mass optimal solution are relatively large for both models.

FIG. 4. Histograms of the BE differences between experimental
and theoretical DZ10 values for 160Nd and 164Sm. The dotted line
represents the main trend of these bars.
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FIG. 5. The extrapolation differences for the model itself are
shown in the upper panel and obtained by comparing all the mass
evaluations from one model with PS, and the extrapolation differ-
ences between DZ10 and DZ33, which is done in a way similar to
the above, are shown in the lower one. The dotted red line indicates
the main trend of these bars for clarity. The blue (yellow) arrow,
respectively, represents the comparison results between the mass
optimal solution and the potential set for the DZ33 (DZ10).

This manifests that the extrapolation uncertainties of potential
sets are lower than the results of the mass optimal for the
models themselves. Last but not least, let us pay attention
to extrapolation differences between DZ10 and DZ33. In
Fig. 5(b), the blue (yellow) arrow represents the result of mass
optimal of DZ33 (DZ10) in comparison with the potential set
of DZ10 (DZ33). It is evident that the extrapolation compari-
son, between the mass optimal of DZ33 and the potential set
of DZ10, is large in contrast with the potential set of DZ33.
The extrapolation comparison, between the mass optimal of
DZ10 and the potential set of DZ33, is similar to the above,
albeit indistinctively. This result indicates that the extrapola-
tion discrepancies between DZ10 and DZ33 can be somewhat

reduced. Through these comparisons, one may conclude that,
by taking into account these physical constraints with MOO
methods, the overfitting problem can be alleviated to some
extent.

IV. SUMMARY AND OUTLOOK

In conclusion, we have employed the multiobjective op-
timization to refine the BW2, the DZ10, and the DZ33 by
simultaneously including the binding energy, the α decay en-
ergy, and the GKs into fitting procedures. During this process,
the accuracy of the Qα and the GK values can be noticeably
improved for a small price of consistency of the binding
energies, suggesting the existence of overfitting problems in
current mass formulas. By incorporating these physical fea-
tures into the fitting space, this not only serves to lower RMSD
for those quantities but also improves the extrapolation ability
of masses. Comparative study has been carried out for se-
lecting the more potential solutions in the extrapolation issue
from the Pareto front in contrast to the overfitted mass optimal
solution. We then performed a more thorough and systematic
test on the performance of the potential sets. In addition, the
statistical uncertainty for the DZ10 model is given due to
features of the MOO approach.

The extrapolation differences for the models within the po-
tential sets were also reasonably evaluated, and it was shown
that the DZ33 model yields more stable results than the DZ10
model, which is expected to employ the DZ33 for the large
distance extrapolations. The potential solutions were further
determined via the comparisons between the predictions of
models, thus reducing the extrapolation differences obviously.
The extrapolation differences between DZ10 and DZ33 were
reduced, hinting that the overfitting problem has been some-
what handled. The method for evaluating the extrapolation
differences developed in this work can be extended to other
mass formulas in the current market, like density functionals
or macro-microscopic mass models.
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