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Quantum information in nucleon-nucleon scattering
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Nucleon-nucleon scattering is a fundamental process in low-energy nuclear physics. Although its spin corre-
lations have been studied intensively, few works take the perspective of quantum information science. In this
work, I explore the quantum information aspects of spin correlations in the partially polarized neutron-proton
scattering in the S wave. It is found that the spin mutual information, entanglement and discord of the out-states,
when averaged over the possible in-states, all vary in a similar way with respect to the relative momentum. The
novel connection between emergent symmetry and spin entanglement found by a previous study [Phys. Rev.
Lett. 122, 102001 (2019)] could then be extended naturally to spin correlations beyond entanglement.
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I. INTRODUCTION

Nucleon-nucleon scattering is one of the most impor-
tant processes in nuclear physics. It plays an irreplaceable
role in understanding the low-energy properties of quantum
chromodynamics (QCD) and provides the most direct probe
of the nucleon-nucleon interaction. The dynamical properties
of the nucleon-nucleon scattering have been studied inten-
sively. Several sophisticated models have been proposed to
describe its cross sections, phase shifts, and spin correlations
to high precision, such as AV18 [1], CD-Bonn [2], and chiral
potentials [3–7].

On the other hand, tremendous progress has been made
in quantum information science during the last three decades
[8–11]. A number of new figures of merit have been proposed
to characterize quantum systems, and those associated with
correlations are of particular interest. Generally speaking, cor-
relations refer to the extra information generated by taking
separate ingredients as a whole system and could be divided
into the classical and quantum ones. Classical correlations
may be understood as the correlations with meaningful coun-
terparts in classical mechanics, while quantum correlations
may be identified as the complementary set of classical corre-
lations. Entanglement [12] and discord [13–15] are two kinds
of quantum correlations, both rooted in the defining features
of quantum mechanics. Explicitly, entanglement results from
the joint effect of the tensor product structure of multipartite
Hilbert space and the fundamental principle of superposition,
while discord is closely related to quantum measurements.
Typically, a quantum state with nonzero entanglement also has
nonzero discord, but not vise versa.
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Although numerous efforts have been made to understand
spin correlations1 in the nucleon-nucleon scattering (see, e.g.,
Refs. [16–28]), few of them take the standpoint of quantum in-
formation science.2 There are a few reasons for exploring this
direction, among which the first and foremost is that quantum
information science can provide brand-new understanding
on a number of conventional facets of nuclear physics and
thus boost it from an unconventional perspective. In 2019,
Beane et al. adopted a quantum information measure called
the entanglement power [30] to study the spin entanglement
generated by the polarized n + p scattering in the S wave [31].
They observed a novel connection between the Wigner and
Schrödinger symmetries [32–35] and entanglement minimiza-
tion, suggesting that low-energy symmetries of QCD could
have a quantum information understanding. This unexpected
result was soon generalized to the hadron-hadron scattering
[31,36,37], the nucleon-nucleus scattering [38], and even the
gravitational scattering [39,40]. It was also polished from a
more formal viewpoint [41].

In this work, I continue the exploration of the quantum in-
formation aspects of spin correlations in the n + p scattering.
Technically, in Ref. [31], the in-state is taken for simplicity to
be an unentangled polarized state of the proton and neutron.
In other words, the in-state under consideration is a pure state.
In comparison, I study partially polarized n + p scattering,
which is more general than the polarized one. The correspond-
ing in-state is parametrized in the spin space by the following

1In this work, the words “spin correlations” are used to refer to the
general correlations between two nucleons in the spin space. They
are not the same as the so-called spin-correlation parameters (also
known as the C coefficients) which belong to a specific kind of spin
observables introduced to characterize spin correlations.

2See Ref. [29] for a pioneering study in the 1970s on the Bell test
in the nucleon-nucleon scattering.
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density matrix:

ρin = p1|n↑ p↑〉〈n↑ p↑| + p2|n↑ p↓〉〈n↑ p↓|
+p3|n↓ p↑〉〈n↓ p↑| + p4|n↓ p↓〉〈n↓ p↓| (1)

=

⎛
⎜⎜⎝

p1 0 0 0
0 p2 0 0
0 0 p3 0
0 0 0 p4

⎞
⎟⎟⎠, (2)

with {n↑, n↓, p↑, p↓} being the spin-up and spin-down nucle-
ons, and {pi} ≡ {p1, p2, p3, p4} being the non-negative clas-
sical probabilities for the four bipartite basis states {|n↑ p↑〉 ≡
(1, 0, 0, 0)T , |n↑ p↓〉 ≡ (0, 1, 0, 0)T , |n↓ p↑〉 ≡ (0, 0, 1, 0)T ,
|n↓ p↑〉 ≡ (0, 0, 0, 1)T }, normalized by p1 + p2 + p3 + p4 =
1. If one of {pi} equals one, the density matrix ρin becomes
a pure state satisfying ρ2

in = ρin and corresponds to polarized
incoming beams. If p1 = p2 = p3 = p4 = 1/4, ρin represents
the completely unpolarized state satisfying ρin = I4/4, with I4

being the 4×4 identity matrix, and corresponds to the com-
pletely unpolarized incoming beams. The out-state ρout after
the n + p scattering is then given by

ρout = SρinS†, (3)

which is in general a mixed state, with S and S† being the S
matrix and its Hermitian conjugate. In the S-wave channel, the
S matrix could be parametrized by [31,41]

S = 1
2 [exp(i2δ1) + exp(i2δ0)]I4

+ 1
2 [exp(i2δ1) − exp(i2δ0)]SWAP. (4)

In quantum information science, the identity matrix I4 is also
known as the identity gate for two qubits, and SWAP = (I4 +∑3

k=1 σk ⊗ σk )/2 is the standard SWAP gate, with {σk} being
the three Pauli matrices (k = 1, 2, 3). The phases δ0 and δ1

in Eq. (4) are the 1S0 and 3S1 phase shifts, whose values can
be either predicted by theoretical models or extracted from
experimental data. As ρout is a mixed state, the entanglement
measures for pure states may not be directly applicable. To
overcome this problem, I adopt an entanglement measure
called negativity [42], which is applicable for both pure and
mixed states and has an analytic expression for ρout. Moreover,
the spin mutual information [8,9] and spin discord [13–15] are
also calculated for ρout, motivated by the attempt to generalize
the results of Ref. [31] beyond entanglement. This may pave
the way to a more complete picture for emergent symmetries
and spin correlations in low-energy QCD.

This paper is organized as follows: In Sec. II, the mutual
information, bipartite separability, negativity, and geometric
discord are reviewed briefly, which are useful figures of merit
in quantum information science. In Sec. III, the quantum
information aspects of spin correlations in the partially po-
larized n + p scattering in the S wave are studied, with the
analytic and numerical results presented and discussed in de-
tail. Section IV summarizes and concludes.

II. QUANTUM INFORMATION

A. Mutual information

In this work, it is the quantum mutual information that is
under consideration instead of its classical counterpart, and

this should not cause any confusion as quantum mechanics is
the most natural framework to analyze the nucleon-nucleon
scattering. Given the density matrix ρAB for a general bipartite
state, the mutual information I (A:B) is defined by [8,9]

I (A:B) ≡ S (ρA) + S (ρB) − S (ρAB), (5)

with S (ρ) ≡ −tr[ρ log2(ρ)] being the von Neumann entropy
for the density matrix ρ, ρA ≡ trB(ρAB) being the reduced
density matrix for Subsystem A, and ρB ≡ trA(ρAB) being the
reduced density matrix for Subsystem B. The usefulness of
mutual information relies on the property that it could be
regarded as a quantitative measure for the total amount of
correlations (classical + quantum) in ρAB [43].

B. Bipartite separability and negativity

A bipartite state (pure or mixed) is called separable if its
density matrix could be decomposed into the following form:

ρAB =
∑

i

piρ
(i)
A ⊗ ρ

(i)
B , i = 1, 2, 3 . . . . (6)

Here, {ρ (i)
A } and {ρ (i)

B } are a number of density matrices for
Subsystems A and B, and {pi} are the non-negative classical
probabilities normalized by

∑
i pi = 1. The essential feature

of the separable ρAB is that it can be prepared via local opera-
tions and classical communication (LOCC). If ρAB cannot be
decomposed into the form of Eq. (6), it is called entangled and
thus cannot be prepared by utilizing LOCC only.

Given a general bipartite density matrix ρAB, it is crucial to
determine whether it is separable or not. Often, ρAB depends
on some additional parameters. It is interesting to work out
under which conditions these parameters give rise to a separa-
ble or entangled ρAB. A convenient criterion for this purpose is
the Peres-Horodecki criterion [44,45]. With the orthonormal
basis vectors {|kAlB〉 ≡ |kA〉 ⊗ |lB〉} for the bipartite state, a
general density matrix ρAB could be parametrized by

ρAB =
∑
klmn

(ρAB)kAlB;mAnB |kAlB〉〈mAnB|, (7)

(ρAB)kAlB;mAnB
≡ 〈kAlB|ρAB|mAnB〉, (8)

and the partial transpose TA of ρAB is defined by

ρ
TA
AB ≡

∑
klmn

(ρAB)mAlB;kAnB
|kAlB〉〈mAnB|. (9)

Then, the Peres-Horodecki criterion states that the necessary
condition for a separable ρAB is that all the eigenvalues of
ρ

TA
AB are non-negative. In other words, if ρ

TA
AB has one or more

negative eigenvalues, ρAB must be entangled. In the two-qubit
system, it is proven that the Peres-Horodecki criterion can be
promoted to be both the sufficient and necessary condition for
separability [45].

When the mixed state ρAB is entangled, the amount of en-
tanglement could be quantified by different measures, among
which the negativity has the advantage of good calculability
and is adopted in this work. Given ρAB, the negativity is
defined as [42]

N (ρAB) ≡ −
∑

i

λi, (10)
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with λi being the negative eigenvalues of the partially trans-
posed density matrix ρ

TA
AB. According to the Peres-Horodecki

criterion, the negativity N (ρAB) is exactly equal to zero for
the separable ρAB, as ρ

TA
AB has no negative eigenvalues.

C. Geometric discord

A pure state is quantum correlated if and only if it is
entangled. However, this is not true for a mixed state, and
there are separable mixed states with nonzero quantum cor-
relations, indicating the existence of quantum correlations
beyond entanglement. Discord is one example of these quan-
tum correlations beyond entanglement and could be measured
by the so-called geometric discord [46],

DG(B:A) ≡ min
σ∈CQ

||ρAB − σAB||2. (11)

Here, ||ρ||2 ≡ tr(ρρ†) is the Hilbert-Schmidt distance, and
σAB is a typical classical-quantum state parametrized by

σAB =
∑

i

pi|iA〉〈iA| ⊗ ρ
(i)
B , (12)

with {|iA〉} being the orthonormal basis vectors for A,
{ρ (i)

B } being the density matrices for B, and {pi} being
the classical probabilities normalized by

∑
i pi = 1. The

“classical-quantum” nature of σAB originates from the fact
that σAB remains undisturbed under the local von Neumann
measurements {|iA〉〈iA|} in Subsystem A but not in Subsys-
tem B. Similarly, one could also define the quantum-classical
and classical-classical states. The minimization in Eq. (11)
is taken over all the possible σABs. Besides the geometric

discord, several other measures are available for discord,
such as the original definition of quantum discord given by
Refs. [47,48]. The main advantage of the geometric discord
is that it allows an analytic evaluation for two-qubit systems.
Suppose the two-qubit density matrix is parametrized by the
Bloch representation

ρAB = 1

4

3∑
μ=0

3∑
ν=0

Tμνσμ ⊗ σν, (13)

with σμ = (I2, σ1, σ2, σ3) and Tμν = tr(ρABσμ ⊗ σν ). It is
found that the corresponding geometric discord is given in the
closed form [46]

DG(B:A) = 1

4

⎛
⎝ 3∑

j=1

3∑
ν=0

T 2
jν − λmax

⎞
⎠, (14)

where λmax is the maximal eigenvalue of the 3×3 matrix
LA ≡ a · aT + E · ET , with a = (T10, T20, T30)T and E i j =
Ti j (i, j = 1, 2, 3). On the contrary, the original definition of
the quantum discord involves a minimization that can only be
done numerically for ρout, making it less convenient for my
study.

III. SPIN CORRELATIONS

A. Spin mutual information

After some symbolic simplification, ρout in Eq. (3) is given
explicitly by

ρout =

⎛
⎜⎜⎜⎜⎜⎝

p1 0 0 0

0 1
2 [p2 + p3 + (p2 − p3) cos(2δ0 − 2δ1)] i

2 (p2 − p3) sin(2δ0 − 2δ1) 0

0 − i
2 (p2 − p3) sin(2δ0 − 2δ1) 1

2 [p2 + p3 − (p2 − p3) cos(2δ0 − 2δ1)] 0

0 0 0 p4

⎞
⎟⎟⎟⎟⎟⎠

. (15)

Here, p1, . . . , p4 are the classical probabilities for different combinations of spin polarizations in the in-state ρin, and δ0 and δ1

are the phase shifts for the n + p scattering in the 1S0 and 3S1 waves. Implicitly, δ0 and δ1 depend on the relative momentum p.
The reduced density matrices for the neutron and proton turn out to be diagonal and are given by

ρn
out = diag

{
p1 + 1

2 [p2 + p3 + (p2 − p3) cos(2δ0 − 2δ1)], p4 + 1
2 [p2 + p3 + (−p2 + p3) cos(2δ0 − 2δ1)]

}
, (16)

ρ
p
out = diag

{
p1 + 1

2 [p2 + p3 + (−p2 + p3) cos(2δ0 − 2δ1)], p4 + 1
2 [p2 + p3 + (p2 − p3) cos(2δ0 − 2δ1)]

}
. (17)

Therefore, the spin mutual information of the out-state ρout is given by

Iout(n:p) = p1 log2(p1) + p2 log2(p2) + p3 log2(p3) + p4 log2(p4)

− {
p1 + 1

2 [p2 + p3 + (p2 − p3) cos(2δ0 − 2δ1)]
}

log2

(
p1 + 1

2 [p2 + p3 + (p2 − p3) cos(2δ0 − 2δ1)]
)

− {
p4 + 1

2 [p2 + p3 + (−p2 + p3) cos(2δ0 − 2δ1)]
}

log2

(
p4 + 1

2 [p2 + p3 + (−p2 + p3) cos(2δ0 − 2δ1)]
)

− {
p1 + 1

2 [p2 + p3 + (−p2 + p3) cos(2δ0 − 2δ1)]
}

log2

(
p1 + 1

2 [p2 + p3 + (−p2 + p3) cos(2δ0 − 2δ1)]
)

− {
p4 + 1

2 [p2 + p3 + (p2 − p3) cos(2δ0 − 2δ1)]
}

log2

(
p4 + 1

2 [p2 + p3 + (p2 − p3) cos(2δ0 − 2δ1)]
)
. (18)

Similarly, the spin mutual information of the in-state ρin is given by

Iin(n:p) = p1 log2(p1) + p2 log2(p2) + p3 log2(p3) + p4 log2(p4) − (p1 + p2) log2(p1 + p2) − (p3 + p4) log2(p3 + p4)

− (p1 + p3) log2(p1 + p3) − (p2 + p4) log2(p2 + p4). (19)
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To quantify the spin mutual information generated by the n +
p scattering, it may be meaningful to work out the difference
between Iout(n:p) and Iin(n:p),

�I (n:p) ≡ Iout(n:p) − Iin(n:p), (20)

and its average over all the possible in-states in the form of
Eq. (2) (constrained by p1 + p2 + p3 + p4 = 1),

�Iav(n:p) ≡ 6
∫ 1

0
d p1

∫ 1

0
d p2

∫ 1

0
d p3

∫ 1

0
d p4

×�I (n:p) δ(p1 + p2 + p3 + p4 − 1).

(21)

The prefactor 6 is given by the reciprocal of the multiple inte-
gral

∫ 1
0 d p1

∫ 1
0 d p2

∫ 1
0 d p3

∫ 1
0 d p4 δ(p1 + p2 + p3 + p4 − 1),

which is the volume of the probability space allowed by clas-
sical probability theory. In the following parts, it is �Iav(n:p)
and its variants defined in Eqs. (34)–(35) that will be used
to characterize the n + p scattering rather than the original
Iout(n:p) and Iin(n:p), and it is named as the average spin
mutual information for simplicity, without stressing that it is
the spin mutual information difference between the out- and
in-states. This should not cause any confusion.

B. Spin entanglement

Given ρout in Eq. (15), the four eigenvalues of the partially
transformed density matrix ρ

TA
out are found to be

λ1,2 = 1
2 [p2 + p3 ± (p2 − p3) cos (2δ0 − 2δ1)], (22)

λ3,4 = 1
2 [p1+p4 ±

√
(p1−p4)2+(p2−p3)2 sin2(2δ0−2δ1)].

(23)

Here, λ1 and λ3 take the positive sign, while λ2 and λ4 take
the minus sign. Obviously, λ1, λ2, λ3 are non-negative defi-
nitely, and only the non-negativity of λ4 is questionable. The
requirement of λ4 � 0 can be mathematically reduced to the
condition

(p2 − p3)2 sin2 (2δ0 − 2δ1) � 4p1 p4. (24)

According to the Peres-Horodecki criterion, this is also the
sufficient and necessary condition for ρout to be separable.
Complementarily, the sufficient and necessary condition for
an entangled ρout is given by

(p2 − p3)2 sin2 (2δ0 − 2δ1) > 4p1 p4. (25)

To quantify the incidence of entangled states produced by the
n + p scattering, the volume of spin entanglement is defined
under the inspiration of Ref. [49],

EV ≡ 6
∫ 1

0
d p1

∫ 1

0
d p2

∫ 1

0
d p3

∫ 1

0
d p4 �[(p2 − p3)2 sin2

×(2δ0 − 2δ1) − 4p1 p4] δ(p1 + p2 + p3 + p4 − 1),

(26)

which is the relative volume of the in-states that lead to the
entangled states after the n + p scattering over all the possi-
ble in-states in the probability space spanned by p1, p2, p3,
and p4. Here, �(x) is the standard Heaviside step function,
satisfying �(x) = 1 if x > 0 and �(x) = 0 if x < 0.

The spin negativity, which measures the amount of spin
entanglement in ρout, is then given by

N (ρout) = 1
2 [

√
(p1 − p4)2 + (p2 − p3)2 sin2(2δ0 − 2δ1)

− (p1 + p4)] (27)

if (p2 − p3)2 sin2 (2δ0 − 2δ1) > 4p1 p4,

= 0 if (p2 − p3)2 sin2 (2δ0 − 2δ1) � 4p1 p4. (28)

Similar to the average spin mutual information �Iav(n:p), the
average spin negativity could be defined as follows:

Nav ≡ 6
∫ 1

0
d p1

∫ 1

0
d p2

∫ 1

0
d p3

∫ 1

0
d p4 N (ρout)

×δ(p1 + p2 + p3 + p4 − 1), (29)

which gives a global measure for the entanglement generation
capability of the neutron-proton interaction independent of the
mixed in-states ρin.

C. Spin discord

With ρout given in Eq. (15), the matrix elements of {Tμν} in
the Bloch representation are given by

T00 = p1 + p2 + p3 + p4 = 1,

T03 = p1 − p4 − (p2 − p3) cos(2δ0 − 2δ1),

T12 = (p2 − p3) sin(2δ0 − 2δ1),

T21 = −(p2 − p3) sin(2δ0 − 2δ1),

T30 = p1 − p4 + (p2 − p3) cos(2δ0 − 2δ1),

T33 = p1 − p2 − p3 + p4, (30)

while all the other Tμνs are equal to zero. The 3×3 matrix LA

is found to be diagonal, with

LA = diag{(p2 − p3)2 sin2(2δ0 − 2δ1),

×(p2 − p3)2 sin2(2δ0 − 2δ1),

×(p1 − p2 − p3 + p4)2 + [p1 − p4

+ (p2 − p3) cos(2δ0 − 2δ1)]2}.
As a result, λmax in Eq. (14) is given by

λmax

= max{(p2 − p3)2 sin2(2δ0 − 2δ1), (p1 − p2 − p3 + p4)2

+ [p1 − p4 + (p2 − p3) cos(2δ0 − 2δ1)]2}. (31)

The corresponding geometric discord is given by

DG(p:n) = 1
8

{
4p2

1 + 5p2
2 + 5p2

3 + 4p2
4 − 4p1 p2

− 4p1 p3 − 2p2 p3 − 4p2 p4 − 4p3 p4
}

+ 1
8 (p2 − p3)[4(p1 − p4) cos(2δ0 − 2δ1)

− (p2 − p3) cos(4δ0 − 4δ1)]

− 1
4 max{(p2 − p3)2 sin2(2δ0 − 2δ1),

×(p1 − p2 − p3 + p4)2 + [p1 − p4

+ (p2 − p3) cos(2δ0 − 2δ1)]2}. (32)
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Similar to �Iav(n:p) and Nav, the average geometric discord
could be defined by

Dav(p:n) ≡ 6
∫ 1

0
d p1

∫ 1

0
d p2

∫ 1

0
d p3

∫ 1

0
d p4 DG(p:n)

×δ(p1 + p2 + p3 + p4 − 1), (33)

which averages DG(p:n) over all the possible in-states given
by Eq. (2).

D. Numerics and discussion

In Secs. III A–III C, some symbolic results are given for
the spin mutual information, entanglement, and discord. This
section is devoted to developing the corresponding numeri-
cal understanding. In the literature, different realistic models
of the nucleon-nucleon interactions generally give different
theoretical results of the 1S0 and 3S1 phase shifts, especially
at the high relative momenta close to 400 MeV. For higher
relative momenta, the partons inside nucleons become active,
and the low-energy picture of the nucleon-nucleon scatter-
ing could be less reliable. To test the model dependence of
the final numerical results, six different theoretical data sets
are adopted, including PWA93 [50], ESC96 [51,52], NijmI
[53], NijmII [53], Reid93 [53], and Nijm93 [53], all available
from the NN-OnLine website maintained by the Nijmegen
group [54].

In Fig. 1, the variations of the average spin mutual in-
formation �Iav(n:p), the volume of spin entanglement EV ,
the average spin negativity Nav, and the average spin discord
Dav(p:n) are plotted with respect to the relative momentum
p for the six models of the phase shifts. It is important to
emphasize that the maximal values of these figures of merit
in Fig. 1 are all normalized to 1

3 , the maximal value of EV .
This allows an intuitive comparison of the horizontal positions
of their minimal and maximal points without the distraction
from their vertical scales. It is straightforward to see that,
in spite of their different physical nature, the four figures of
merit vary in a similar way in all of the six models, going
up and down twice at relative momenta less than 100 MeV
and generally being suppressed at relative momenta ranging
from 100 to 400 MeV. Moreover, their minimal and maxi-
mal points actually take place at the same relative momenta.
Take Nijm93 as an example. All the four figures of merit
get their minimal values of zero at p = 0, 19.45 MeV and
their maximal values at p = 6.10, 63.98 MeV. The similar
results hold also for the other models. In each panel, an
additional quantity of 1

3 sin2(2δ0 − 2δ1) is also plotted for
comparison (the green long-dashed line, labeled EP), which is
actually proportional to the spin entanglement power derived
in Ref. [31] for the pure-state scattering. One can see that Nav

almost coincides with 1
3 sin2(2δ0 − 2δ1), while �Iav(n:p) and

Dav(p:n) lie close to it. Also, it is straightforward to notice that
the minimal and maximal points of 1

3 sin2(2δ0 − 2δ1) coincide
perfectly with those of all the four figures of merit. This makes
it possible to work out the exact conditions for the minimal
and maximal points of these figures of merit. Explicitly, the
minimal points take place when δ0 − δ1 = Nπ

2 , while the max-

imal points take place when δ0 − δ1 = π
4 + Nπ

2 , with N = 0,

±1,±2, . . . .
In Fig. 1, the maximal value of EV (the orange short-dashed

line) is found to be 1
3 in all the six models. This value could be

easily reproduced by bringing the maximum condition δ0 −
δ1 = π

4 + Nπ
2 into its definition in Eq. (26) and calculating

the corresponding multiple integral explicitly. As mentioned
before, EV measures the proportion of the specific in-states
which lead to the entangled out-states after the n + p scat-
tering. Therefore, this result shows that a majority (�66.7%)
of the in-states remain unentangled after the n + p scattering,
while the in-states that give rise to the entangled out-states
belong to the minority (�33.3%). On the other hand, when the
minimum condition δ0 − δ1 = Nπ

2 holds, it is easy to check
that EV equals zero exactly. It means that, under this condition,
none of the in-states become entangled after the scattering.
Indeed, the S matrix is then reduced to the identity gate if N is
even and the SWAP gate if N is odd. In either case, the out-state
ρout is unentangled.

In Fig. 2, a componential analysis is given for the average
spin mutual information �Iav(n:p). Two different contribu-
tions are distinguished, including �Ien

av (n:p) contributed by
the entangled out-states and �Ien

av (n:p) contributed by the
entangled out-states,

�Ien
av (n:p) ≡ 6

∫ 1

0
d p1

∫ 1

0
d p2

∫ 1

0
d p3

∫ 1

0
d p4 �I (n:p)

×�[(p2 − p3)2 sin2(2δ0 − 2δ1) − 4p1 p4]

×δ(p1 + p2 + p3 + p4 − 1), (34)

�Ien
av (n:p) ≡ 6

∫ 1

0
d p1

∫ 1

0
d p2

∫ 1

0
d p3

∫ 1

0
d p4 �I (n:p)

×�[4p1 p4 − (p2 − p3)2 sin2(2δ0 − 2δ1)]

×δ(p1 + p2 + p3 + p4 − 1). (35)

In the second lines of Eqs. (34) and (35) are the
Peres-Horodecki conditions for the entangled and unentan-
gled out-states given by Eqs. (25) and (24). While both
components vary similarly to �Iav(n:p), one can see that
�Ien

av (n:p) is generally greater than or equal to �Ien
av (n:p) for

the whole range of relative momenta under consideration. To
put it another way, in spite of the minor role of the entangled
out-states in absolute numbers (i.e., the small values of EV ),
they make a major contribution to the total spin correlations
measured by �Iav(n:p). Also, it is interesting to note that
the excess of �Ien

av (n:p) over �Ien
av (n:p) gets suppressed at

relative momenta ranging from 100 to 400 MeV. A similar
analysis has also been applied to the spin discord Dav(p:n),
the measure for quantum correlations beyond entanglement.
The results turn out to be qualitatively similar and are left out
to save space.

Last but not least, I would like to discuss the possible impli-
cations of the above results on the novel connection between
emergent symmetry and spin entanglement. In Ref. [31], it is
found that the minimization of spin entanglement (measured
by the entanglement power) takes place at δ0 − δ1 = Nπ

2 .
When δ0 = δ1, the n + p system is equipped with the Wigner
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FIG. 1. The variations of the average spin mutual information �Iav(n:p) (red solid line), the volume of spin entanglement EV (orange
short-dashed line), the average spin negativity Nav (blue dash-dotted line), and the average spin discord Dav(p:n) (purple dotted line) with
respect to the relative momenta for six different models, namely, PWA93 [50], ESC96 [51,52], NijmI [53], NijmII [53], Reid93 [53], and
Nijm93 [53]. The maximal values of all the curves are normalized to 1

3 , the maximal value of EV . For comparison, 1
3 sin2(2δ0 − 2δ1) is also

plotted in each panel (green long-dashed line, labeled EP, almost coincident with Nav).

SU(4) symmetry. When (δ0, δ1) = (0, 0), (0, π
2 ), ( π

2 , 0), and
( π

2 , π
2 ), the n + p system is equipped with the Schrödinger

symmetry. Such a coincidence of (δ0, δ1) with the mini-
mal spin entanglement and emergent symmetries thus may
suggest a quantum-information understanding of emergent
symmetries in low-energy QCD. This analysis could be nat-
urally extend to �Iav(n:p) and Dav(p:n), as they obey exactly

the same minimization condition as the spin entanglement.
However, the physical interpretations of �Iav(n:p) and
Dav(p:n) are not the same as entanglement. As mentioned be-
fore, �Iav(n:p) measures the total amount of spin correlations
generated by the n + p scattering, including both classi-
cal and quantum contributions, while Dav(p:n) represents a
general kind of quantum correlations beyond entanglement.
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FIG. 2. Different components of the average spin mutual infor-
mation. The red solid line represents �Iav(n:p), the average spin
mutual information. The orange dashed line represents �Ien

av (n:p),
the average spin mutual information contributed by the entangled
out-states. The blue dash-dotted line represents �Ien

av (n:p), the
average spin mutual information contributed by the unentangled out-
states. The phase-shift data behind this figure are given by Nijm93.

Therefore, my study shows that the connection between
emergent symmetry and spin entanglement holds for spin
correlations beyond entanglement as well.

IV. CONCLUSIONS

In this work, I explore the spin correlations of the partially
polarized n + p scattering in the S wave from the perspec-
tive of quantum information science. Several figures of merit
are adopted to characterize the spin correlations, including
the mutual information, entanglement, and discord. Among
these three concepts, mutual information measures the total
amount of classical+quantum correlations, entanglement is
the most well-known example of quantum correlations, and
discord is a general kind of quantum correlations beyond
entanglement. Both analytic and numerical results are derived.
It is found that, when averaged over the possible in-states,
they all vary in a similar way in spite of their different phys-
ical meanings, with the minimal and maximal points taking
place at the same relative momenta. As a result, the novel
connection between emergent symmetry and spin entangle-
ment found by Ref. [31] could be extended naturally to spin
correlations beyond entanglement. My study complements the
previous theoretical studies on the nucleon-nucleon scattering
and may help to reveal new aspects of spin correlations and
low-energy QCD symmetries from the quantum information
viewpoint.
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