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Energy-independent complex single-P-waves NN potential from the Marchenko equation
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I extend the previous results on solving the inverse problem of quantum scattering theory (Marchenko
theory, fixed-l inversion). In particular, a set of isosceles triangular-pulse functions is applied to expand the
Marchenko equation input kernel in a separable form. The separable form enables a reduction of the Marchenko
equation to a system of linear equations for the output kernel expansion coefficients. In the general case of a
single partial wave, a linear expression of the input kernel is obtained in terms of the Fourier series coefficients
of q1−m(1 − S(q)) functions in the finite range of the momentum 0 � q � π/h [S(q) is the scattering matrix;
m = 0, 1, . . . , 2l; l is the angular orbital momentum]. Thus, I show that the partial S matrix on the finite interval
determines the potential function of the corresponding radial Schrödinger equation with h-step accuracy. A
numerical algorithm was developed to implement the method. The developed procedure was applied to the
partial-wave analysis data of NN elastic scattering up to 3 GeV. Calculated energy-independent complex partial
potentials describe these data for single P waves.
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I. INTRODUCTION

Extracting the interparticle interaction potential from scat-
tering data is a fundamental problem in nuclear physics.
Various methods are used for such extraction. Fitting parame-
ters of the phenomenological potential can solve this problem.
Such an adjustment is easily implemented in the case of a
small number and low accuracy of the known experimental
data. An accurate description of a large number of experimen-
tal data requires exact methods of solving the inverse problem
(IP) of quantum scattering. The development of such precise
and unambiguous methods remains a fundamental challenge
[1–5]. The ill-posedness of the problem significantly compli-
cates its numerical solution.

The fixed-l IP considered here is usually solved within
Marchenko, Krein, and Gelfand-Levitan theories [6–13]. In
these approaches, the IP is reduced to solving Fredhölm inte-
gral equations of the second kind. von Gevamb and Kohlhoff
successfully applied Marchenko and Gelfand-Levitan theories
to extract NN partial potentials from partial-wave analysis
(PWA) data [14,15]. They used the PWA data up to the
inelastic threshold (Elab ≈ 280 MeV) and approximated the
corresponding partial S matrices (spectral densities) by ra-
tional fraction expansions (Padé approximants). In this case,
the input kernels of the integral equations are represented as
finite separable series of the Riccati-Hankel functions prod-
ucts (separable kernels). A Fredhölm integral equation of
the second kind with a separable kernel is solved analyti-
cally. The partial potentials, in this case, are also expressed
through Riccati-Hankel functions (Bargman-type potentials).
A similar approach in frames of the Marchenko theory was
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used later to extract optical model NN partial potentials from
elastic NN scattering PWA data up to 3 GeV [16,17]. This
method for solving the inverse problem includes four numer-
ical procedures. The first procedure is the PWA, the second
procedure is the approximation of the S matrix, the third
procedure is the solution of the integral equation, and the
fourth procedure is the differentiation of the output kernel to
calculate the potential. Errors of each step are accumulated,
estimating the error in the calculation of the potential is not
an easy task. For l � 1, Marchenko inversion is unstable
for r < 1 fm, and Gelfand-Levitan inversion is unstable for
r > 8 fm [14,15]. Description of PWA data within errors for
energies up to 3 GeV requires the use of high-order Padé
approximants [16,17]. An increase in the accuracy of the
approximation and, accordingly, an increase in the order of
the Padé approximant can lead to significant changes in the
potential. The Padé approximant is not the best choice since
approximants of different orders that give close S-matrix val-
ues at the PWA points can differ significantly between these
points. Thus, the convergence of methods that use rational
fraction expansions of the S matrix (spectral density) is not
apparent.

This paper generalizes the algebraic method [18,19] for
solving the IP. In this method, the Marchenko equation input
kernel is expanded into a separable series in an isosce-
les triangular-pulse function set. Then, one would obtain
a linear expression of the expansion coefficients in terms
of the Fourier series coefficients of q1−m(1 − S(q)) (m =
0, 1, . . . , 2l) functions on a finite range of the momen-
tum 0 � q � π/h. Thus, the Marchenko equation with a
separable kernel is solved, which can be performed analyt-
ically like in Refs. [14–17]. Theory of the Fourier’s series
substantiates convergence of the procedure with decreasing
step h.
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NN potentials used as an input for (semi)microscopic con-
struction of nuclear optical potentials (OPs) are usually real
and only describe the NN PWA data below the inelastic
threshold [20–24]. However, in the absence of a microscopic
theory, complex partial NN potentials are required to describe
nuclear reactions with energies of the NN relative motion
above the threshold [17]. In current models, real partial po-
tentials are modified by energy-dependent imaginary terms
[16,25]. The imaginary terms are absent below the thresh-
old. Therefore, the partial wave function is real below the
threshold up to an r-independent factor. For a realistic op-
tical NN potential, this constraint seems too restrictive. The
generally recognized fundamental interaction potential used
in quantum mechanics is the electromagnetic potential. The
classical limits of the electromagnetic potential is real-valued.
A real-valued potential usually gives a Hermitian Hamilto-
nian, but exceptions exist [26]. A Hermitian Hamiltonian
ensures the conservation of probability and the real-valued
energy spectrum of the system. Thus, the standard axiomatics
of quantum mechanics requires Hermiticity of the Hamil-
tonian. The strong interaction and the corresponding NN
interaction are absent in the classical limit. It is reasonable
to consider the strong NN interaction to be symmetric with
respect to space-time (PT) reflection. The Hamiltonian of a
PT-symmetric system is not always Hermitian [26–29]. There
are no logical or physical reasons to exclude the possibility
of a PT-symmetric non-Hermitian Hamiltonian for a nucleon
system.

The optical model potential (pseudopotential) defini-
tion does not guarantee that it will be Hermitian [30,31].
One can only assert that Hamiltonian eigenfunctions
corresponding to eigenenergies below the threshold sat-
isfy the Hermiticity condition. However, the Hermiticity
condition ∫

ψ∗(V + − V )ψdx = 0 (1)

implies V + − V = 0 only if Eq. (1) holds for an arbi-
trary function ψ , which is not true for OPs. Using the
phase-equivalent Krein transformations, one can obtain an
energy-independent complex potential giving a unitary S ma-
trix [7]. The use of optical potentials limited by the condition
V + − V = 0 below the inelastic threshold is a physically un-
reasonable limitation.

Previously, it was shown that the Marchenko theory applies
to the description of elastic nD scattering from zero energy up
to energies well above the threshold. In this case, Marchenko
theory produces energy-independent complex partial nD po-
tentials [32,33]. They used a rational parametrization, the
same as in Refs. [14–17] for the unitary S matrix. The
small value of the threshold (the deuteron’s binding en-
ergy Ec.m. ≈ 2.226 MeV) does not allow us to judge the
applicability of the Marchenko theory in the general case.
I analyzed the Marchenko theory [7,8] (l = 0), [9] (l > 0)
and found that the theory applies not only to unitary S(q)
matrices but also to nonunitary S matrices. The algebraic
form of the Marchenko equation [18] allows for the calcula-
tion of an energy-independent complex local partial potential
corresponding to a partly unitary and partly nonunitary S

matrix. This approach was previously utilized to analyze
1S0 data of elastic NN scattering PWA [19]. In this study,
I extend the investigation of Ref. [19] to analyze single
P-wave NN PWA data (up to Elab ≈ 3 GeV) and demon-
strate that these data are described by energy-independent
complex partial potentials. The reconstructed partial S and
Pwaves potentials constitute an energy-independent soft core
OP that describes elastic NN scattering PWA data up to
3 GeV.

II. MARCHENKO EQUATION IN AN ALGEBRAIC FORM

The radial Schrödinger equation is(
d2

dr2
− l (l + 1)

r2
− V (r) + q2

)
ψ (r, q) = 0. (2)

The Marchenko equation [7,8] is a Fredhölm integral equa-
tion of the second kind:

F (x, y) + L(x, y) +
∫ +∞

x
L(x, t )F (t, y)dt = 0. (3)

The kernel function is defined by the following expression:

F (x, y) = 1

2π

∫ +∞

−∞
h+

l (qx)[1 − S(q)]h+
l (qy)dq

+
nb∑

j=1

h+
l (q̃ jx)M2

j h+
l (q̃ jy)

= 1

2π

∫ +∞

−∞
h+

l (qx)Y (q)h+
l (qy)dq, (4)

where h+
l (z) is the Riccati-Hankel function, and

Y (q) =
⎡
⎣1 − S(q) − i

nb∑
j=1

M2
j (q − q̃ j )

−1

⎤
⎦. (5)

Experimental data entering the kernel are

{S(q), (0 < q < ∞), q̃ j, Mj, j = 1, . . . , n}, (6)

where S(q) = e2ıδ(q) is a scattering matrix dependent on
the momentum q. The S matrix defines asymptotic be-
havior at r → +∞ of regular at r = 0 solutions of
Eq. (2) for q � 0; q̃2

j = Ej � 0, Ej is jth bound state
energy (−ıq̃ j � 0); Mj is jth bound state asymptotic
constant.

The potential function of Eq. (2) is obtained from the
solution of Eq. (3)

V (r) = −2
dL(r, r)

dr
. (7)

Many methods for solving Fredhölm integral equations use a
series expansion of the equation kernel [34–40]. I also use this
approach.

I introduce auxiliary functions

Fm(z) = 1

2π

∫ +∞

−∞

eıqzY (q)dq

qm
, (8)
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then

dkFm(z)

dzk
= ıkFm−k (z), (k = 1, 2, . . . , m). (9)

Using the transformations

K̂z,l f (z) = zl+1

(
−1

z

d

dz

)l

[z−1 f (z)]

≡ (−1)l
l∑

n=0

(2l − n)!

n!(l − n)!
(−2z)n−l dn f (z)

dzn
, (10)

one would get (see Eqs. (10.1.23)–(10.1.26) [41])

K̂z,l e
±ıqz = ql h±

l (qz) (11)

and

K̂y,l K̂x,l F2l (x + y)

=
l∑

n1,n2=0

(2l − n1)!

n1!(l − n1)!

(2l − n2)!

n2!(l − n2)!

× (−2x)n1−l (−2y)n2−l ın1+n2 F2l−n1−n2 (x + y)

= 1

2π

∫ +∞

−∞
h+

l (qx)Y (q)h+
l (qy)dq ≡ F (x, y). (12)

Assuming the finite range R of the potential function V (r), I
approximate Fm(x + y) as follows:

Fm(x + y) ≈
2N∑

k=−2N

fm,kHk (x + y) (13)

≈
N∑

k, j=0

�k (x) fm,k+ j� j (y), (14)

where fm,k ≡ Fm(kh), h is some step, and R = Nh. The used
basis sets are

H0(x) =
{

1 if 0 � x � h,

0 otherwise,
Hn(x) = H0(x − hn)

⎫⎪⎬
⎪⎭, (15)

�0(x) =
{

1 − |x − 0.25|/h if |x − 0.25| � h,

0 otherwise
�n(x) = �0(x − hn).

⎫⎪⎬
⎪⎭(16)

The basis set �i(x)� j (y) is shifted by the vector
(0.25h, 0.25h) compared to the set used previously [18,19].
The basis sets are illustrated in Fig. 1. Decreasing the step h,
one can approach Fm(x + y) arbitrarily close at all points with
both sets. Coefficients fm,k are the same for both approxima-
tions Eqs. (13), (14).

The Fourier transform of the basis set Eq. (13)

H̃k (q) =
∫ ∞

−∞
Hk (x)e−ıqxdx = ı(e−ıqh − 1)

qeıqhk
. (17)

The Fourier transform of Eq. (8) yields

Y (q)

qm
≈

2N∑
k=−2N

fm,kH̃k (q) =
2N∑

k=−2N

fm,k
ı(e−ıqh − 1)

qeıqhk
. (18)

FIG. 1. The basis set Hn ≡ Hn(x + y) [Eq. (15)] is shown as
trapezoid (triangle for n = 0) regions, where Hn(x + y) = 1, and
elsewhere Hn(x + y) = 0. The regions are bounded by lines x = 0,
y = 0, and x + y = h(n − 1). The basis set �i(x)� j (y) [Eq. (16)]
is shown as projections (points) of the corresponding regular square
pyramids apexes on the xy plane. �i(x)� j (y) = 1 at x = (0.25 +
i)h, y = (0.25 + j)h (apex of the i j pyramid). The pyramids bases
are (2h × 2h) squares on the xy plain with sides parallel to the x and
y axes. �i(x)� j (y) = 0 on sides of the corresponding squares (and
outside them).

I rearrange the last relationship

Y (q)/qm−1 = ı

2N∑
k=−2N

fm,k (e−ıqh − 1)e−ıqhk

= ı

2N∑
k=−2N+1

( fm,k−1 − fm,k )e−ıqhk

+ ı(− fm,−2N )eıqh2N + ı( fm,2N )e−ıqh(2N+1).

(19)

Thus, the left side of the expression is represented as a Fourier
series on the interval −π/h � q � π/h:

fm,k−1 − fm,k = − ıh

2π

∫ π/h

−π/h
Y (q)

eıqhkdq

qm−1
(20)

for k = −2N, . . . , 2N . Recursive solving of Eq. (20) from k =
2N + 1 ( fm,2N+1 = 0) gives

fm,k = h

π

∫ π/h

−π/h

⎛
⎝ 2N+1∑

ν=k+1

eıqhν

⎞
⎠Y (q)dq

qm−1

= − ıh

2π

∫ π/h

−π/h

eıqh(k+1)(1 − eıqh(2N−k+1))

(1 − eıqh)qm−1
Y (q)dq. (21)

The F (x, y) is defined by fm,k (m = 0, 1, . . . , 2l ), k =
0, 1, . . . , 2N from Eqs. (12) and (14) as

F (x, y) ≈
N∑

k, j=0

�k (x)Fk, j� j (y), (22)
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where

Fk, j =
l∑

n1,n2=0

(2l − n1)!

n1!(l − n1)!

(2l − n2)!

n2!(l − n2)!
(−2(k + 0.25)h)n1−l

×(−2( j + 0.25)h)n2−l ın1+n2 f2l−n1−n2,k+ j (23)

= − ıh

2π

∫ π/h

−π/h
h+

l (q(k + 0.25)h)
eıqh(1 − eıqh(2N−k− j+1))

1 − eıqh

×Y (q)h+
l (q( j + 0.25)h)qdq. (24)

Thus, the range of known scattering data defines the value
of h and, therefore, the inversion accuracy.

Equation (3) is solved by substituting

L(x, y) ≈
N∑

j=0

Pj (x)� j (y). (25)

Substitution of Eqs. (22) and (25) into Eq. (3) and linear
independence of the basis functions give

N∑
m=0

(
δ j m +

N∑
n=0

[∫ max((m+0.25)h,(n+0.25)h)

x
�m(t )�n(t )dt

]
Fn, j

)
Pm(x) = −

N∑
k=0

�k (x)Fk, j . (26)

It is convenient to define

ζn m p =
∫ max((m+0.25)h,(n+0.25)h)

(p+0.25)h
�m(t )�n(t )dt

= h

6
(2δn m(δn p + 2ηn�p+1) + δn (m−1)ηn�p

+ δn (m+1)ηm�p), (27)

where δk p are the Kronecker symbols δk p, and

ηa =
{

1 if a is true,

0 otherwise.
(28)

Since �k (hp) ≡ δk p, one finally gets a system of equations

N∑
m=0

⎛
⎝δ j m +

N∑
n=p

ζn m pFn, j

⎞
⎠Pp,m = −Fp, j, (29)

for Pk (h(p + 0.25)) ≡ Pp,k (p, k = 0, . . . , N ) ( j, p =
0, . . . , N).

Solution of Eq. (29) gives Pp,k . Next, one should calculate
potential values at points r = hp (p = 0, . . . , N ) from Eq. (7)
by some finite difference formula.

I tested the developed approach by restoring the poten-
tial function V (r) = −3 exp(−3r/2) from the corresponding
scattering data. Results are presented in Figs. 2 and 3, where

FIG. 2. Data used to reconstruct V (r) = V0 exp(−ar), where
V0 = −3 fm−2 = −124.5 MeV, a = 1.5 fm−1. Angular orbital mo-
mentum l = 1. Units correspond to the NN system.

h = 0.04, R = 4. The input S matrix was calculated at points
shown in Fig. 2 up to q = 8. The S matrix was interpolated by
a quadratic spline in the range 0 < q < 8. The S matrix was
approximated as asymptotic S(q) ≈ exp(−2iα/q) for q > 8,
where α was calculated at q = 8.

III. ENERGY-INDEPENDENT COMPLEX
PARTIAL POTENTIALS

Two-particle relativistic potential models can be repre-
sented in a nonrelativistic form [44]. Thus, the applicability
of methods for solving the inverse problem is not lim-
ited only to nonrelativistic quantum mechanics. As we
showed earlier [19], modern data of the NN partial-wave
analysis up to Elab = 3 GeV can be described by the energy-
independent complex partial potential for 1S0 single wave at
least.

After analyzing the Marchenko theory [7,8], including
for the case of l > 0 [9], I found that Eqs. (2)–(7) ap-
ply to nonunitary S matrices describing absorption. In this
case, the absorbing partial S matrix should be defined
as

S(q) =
{

Su(q) + Sn(q) for q > 0,

S+
u (−q) − S+

n (−q) for q < 0,
(30)

FIG. 3. Initial and reconstructed potentials: V (r) = V0 exp(−ar),
where V0 = −3 fm−2 = −124.5 MeV, a = 1.5 fm−1. Units corre-
spond to the NN system.
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FIG. 4. Data used to reconstruct P-wave partial potentials are
phase shifts δ (solid circles) and inelasticity parameters ρ (solid
squares) (from Refs. [42,43]). Circles and squares stand for δ and ρ

correspondingly calculated from the reconstructed partial potentials.

FIG. 5. Real and imaginary parts of the reconstructed partial
potentials.

FIG. 6. Real and imaginary parts of the reconstructed partial
potentials.

where superscript + means Hermitian conjugation. For q > 0,
one should define

Su(q) = e2ıδ(q), Sn(q) = − sin2(ρ(q))e2ıδ(q), (31)

where δ(q) and ρ(q) are phase shift and inelasticity param-
eter correspondingly. With an S matrix defined in this way,
Eqs. (24)–(29) remain valid and allow calculating local and
energy-independent OP from data Eq. (6) with an absorptive
S matrix.

IV. RESULTS AND CONCLUSIONS

Extending our previous results [19], I analyzed modern sin-
gle P-wave NN phase shift data up to 3 GeV [42,43] (SW16,
single-energy solutions, Fig. 4).

The phase shift and inelasticity parameter data were
smoothed for q > 3 fm−1 by the following functions, corre-
spondingly:

δ(q) ∼
8∑

k=3

Ak/qk, ρ(q) ∼
9∑

k=0

Bk/qk, (32)

TABLE I. Coefficients of Eq. (32) for the 3P0 wave.

j 3 4 5 6 7

δ1 = δ2 (rad) : Aj (fm j) −566 9050 −88500 379000 −551000
δ3 (rad) : Aj (fm j) −1520 16000 −69600 143000 −113000

j 0 1 2 3 4 5

ρ1 (rad) : Bj (fm j) 0.1 17.7 −394 3180 −10300 11600
ρ2 = ρ3 (rad) : Bj (fm j) 0 12.2 −283 2450 −8210 9380

044001-5



N. A. KHOKHLOV PHYSICAL REVIEW C 107, 044001 (2023)

FIG. 7. Different asymptotics of phase shift and inelasticity pa-
rameter for the 3P0 wave.

where the coefficients were fitted by the least-squares method.
The SW16 data and asymptotics (32) above q > 3 fm−1 were
used to calculate coefficients of Eqs. (24) with h = 0.02 fm
corresponding to qmax ≈ 157.08 fm−1.

The used data are described by energy-independent com-
plex partial potentials (Figs. 5 and 6). Thus, this study presents
an IP solution algorithm for finite range potentials (fixed-l ,
single partial wave inversion, in frames of the Marchenko
theory).

I investigated the numerical stability of the developed
method changing asymptotics of the 3P0 S matrix. Table I dis-
plays three sets of parameters describing the data, but giving
different S-matrix asymptotics (Fig. 7). The potential is found
to be fairly stable under reasonable variations of the data
asymptotics. The range r < 0.5 fm shows the most significant
changes of the potential (Figs. 8 and 9). As demonstrated in
Fig. 9, increasing the value of h from 0.02 fm to 0.04 fm has
a negligible effect on the potential for r > 0.3 fm, where the
finite-difference errors are small. For r < 0.3 fm, the optimal
value of h is 0.02 fm.

The phase shifts of elastic NN scattering are slowly varying
smooth functions of energy, suggesting that the quasimacro-
scopic geometric potential model is applicable [25]. I assume
that developed method enables the reconstruction of the corre-
sponding partial NN potentials. Both real and imaginary parts
of the constructed potentials are oscillatory for r > 1.5 fm
(Figs. 6). The oscillatory behavior is stable with respect to

FIG. 8. 3P0 partial potentials reconstructed from data and differ-
ent asymptotics shown in Fig. 7 (a pair {δ j, ρ j} corresponds to Vj).

FIG. 9. 3P0 partial potentials reconstructed from data and differ-
ent asymptotics shown in Fig. 7 (a pair {δi, ρi} corresponds to Vi; V3

was reconstructed with h = 0.02 fm, and V ′
3 was reconstructed with

h = 0.04 fm).

reasonable transformations of the unknown asymptotics of the
S matrix (Figs. 7 and 9). The imaginary parts of the potentials
change sign by oscillating. Potential with a negative imaginary
part is absorptive, while a positive imaginary part of potential
leads to an increase in the outgoing particle flux. The imagi-
nary parts of the obtained potentials oscillate changing sign,
however, the method of their construction ensures absorption
above the inelastic threshold. For energies below the inelastic
threshold, the S matrix is almost unitary, with slight deviations
from exact unity that can be attributed to computational errors.
Thus, one cannot interpret the regions of the positive signs of
imaginary parts of potentials as regions of particle produc-
tion. The origin and nonartificial nature of the oscillations in
optical potentials are discussed in Ref. [33]. As noted earlier
by Fernández-Soler and Ruiz Arriola [45], “short-wavelength
fluctuations/oscillations are inherent to the maximum energy
or CM momentum being fixed for the phase shift”. In this con-
clusion, they refer to the results of our calculations [16]. Then,
we did not pay attention to this feature of the IP solution,
and we considered the oscillations an artifact of the used IP
solution in which the potential is explicitly, algebraically ex-
pressible in terms of Hankel functions. Reconstructed 1S0 NN
partial potential [19] shows that short-wavelength oscillations
may indeed be a manifestation of a physical phenomenon.
There are also similar oscillations in the reconstructed P-wave
partial potentials (Fig. 6). Microscopic calculations also pre-
dict such oscillations [46].

The present study demonstrates that IP solutions yield op-
tical model energy-independent NN partial potentials not only
in the 1S0 NN wave, but also in other single NN partial waves.
The optical model partial NN potentials with a repulsive core
does not necessarily exhibit a strong energy dependence up to
3 GeV, as previously stated in [45]. Instead of the soft repul-
sive core that was reconstructed in our model for the real part
of the 1S0 NN partial potential, the barriers at about 0.2–1.3
fm were reconstructed for the real parts of the P-waves partial
potentials.1

1The reconstructed P-wave NN complex potentials may be re-
quested from the author in the FORTRAN code.
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