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(Anti)kaon condensation in strongly magnetized dense matter
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Recent observations of several massive pulsars, with masses near and above 2M�, point towards the existence
of matter at very high densities, compared to normal matter that we are familiar with in our terrestrial world. This
leads to the possibility of the appearance of exotic degrees of freedom other than nucleons inside the core of the
neutrons stars (NSs). Another significant property of NSs is the presence of a high surface magnetic field, with
the highest range of the order of ≈1016 G. We study the properties of highly dense matter with the possibility
of the appearance of heavier strange and nonstrange baryons, and kaons in the presence of a strong magnetic
field. We find that the presence of a strong magnetic field stiffens the matter at high density, delaying the kaon
appearance and, hence, increasing the maximum attainable mass of NS family.
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I. INTRODUCTION

The state of matter inside neutron stars (NSs) is an
unsolved mystery of modern science. Born from the rem-
nants of a supernova explosion, a neutron star exhibits a
range of densities inside its structure, the density at the
core possibly being several times that of nuclear saturation
density [1–6]. Many recent astrophysical observations indi-
cate that the possible lower limit of NS maximum mass
is above 2M�, viz. PSR J1614-2230 (M = 1.97 ± 0.04M�)
[7,8], MSP J0740+6620 (M = 2.14+0.20

−0.18M� with 95% credi-
bility) [9], PSR J0348+0432 (M = 2.01 ± 0.04M�) [10], and
PSR J0952-0607 (M = 2.35 ± 0.17M�) [11]. These findings
strengthen the idea of the existence of highly dense matter
in the core of NSs. Thus, investigation of the matter inside
NSs provides us with a unique opportunity to study matter
under extreme conditions that cannot be attained in any of the
terrestrial laboratories.

The gravitational pull inside the NS is balanced mostly
by the Fermi degeneracy pressure of neutrons, along with
some amounts of protons and leptons (electrons and muons).
In addition, the extreme matter density inside NSs can lead
to energetically favorable conditions for exotic particles to
appear. Hyperons are one such species of particles that might
appear inside the NS if the baryon chemical potential becomes
high enough. The possibility of their occurrence was first
suggested in [12]. Another class of particle species that might
make its appearance are � resonances. Its appearance pushes
the threshold for the onset of hyperons to higher densities
[13–15].
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Similarly, another possible addition to the degrees of free-
dom can come from the appearance of meson condensates
[16] if the lepton chemical potential becomes high enough.
However, for the lowest massive meson π (pion), the repulsive
s-wave pion-nucleon scattering potential increases the effec-
tive ground state mass of the π meson [17,18]. However, a
few works [19,20] have argued the possibility of pion con-
densation due to the fact that the p-wave scattering potential
is attractive in nature. On the other hand, (anti)kaon (K̄ ≡
K−, K̄0) mesons may appear in the form of s-wave Bose con-
densates due to the attractive nature of the (anti)kaon optical
potential. K+ and K0 kaons have repulsive optical potentials
and their presence in nuclear matter increases their effective
masses. Thus, the occurrence of K+ and K0 in NS matter is
discouraged. The threshold density for the onset of K̄ is highly
sensitive to its optical potential and whether or not hyperons
are present [21]. The presence of K̄ in NS matter has been
extensively studied in past literature [22–28].

As already mentioned, the verification of the theoretical
models of highly dense matter can only be done with the ob-
servations from NSs. The astrophysical observable properties
of NSs should be studied to constrain the dense matter models.
For example, one should note that the appearance of hyperons
tends to soften the equation of state (EoS) and, consequently,
results in lowering of the maximum mass of NSs. Studies
[13,14] have indicated that the inclusion of � resonances
does not affect the implied maximum mass significantly, but
it reduces the radius and thereby increases the compactness of
the stars. The appearance of K̄ , similar to hyperons, softens
the EoS and, thus, lowers the maximum mass of NSs.

The theoretical model of dense matter can be obtained
from terrestrial laboratory data by extrapolating the nuclear
matter properties at nuclear saturation density and it can be
further constrained from the recent mass-radius measurements
of NSs, viz. the NICER mission observations give the mass-
radius measurements of PSR J0030+0451 as 1.44+0.15

−0.14 M�,
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13.02+1.24
1.06 km [29], and 1.34+15

−16 M�, 12.71+1.14
−1.19 km [30],

respectively. Another important constraint on highly dense
matter inside NSs comes from the gravitational wave detec-
tion observations which provide us with the estimate of the
maximum limit of tidal deformability of the star made of
highly dense matter.

Another salient feature of NSs is their strong surface mag-
netic field in the range 108–1016 G. A particular class of NSs,
which has an ultrastrong surface magnetic field of 1014–1016

G [31,32], are called magnetars. The matter inside NSs also
experiences Pauli paramagnetism and Landau diamagnetism.
Pauli paramagnetism is applicable for both charged and un-
charged particles while the Landau diamagnetism affects only
charged particles, being particularly strong for light particles
like leptons. In our present work, we first note down the
constraint on model parametrizations from the astrophysical
observations of mass-radius measurements of many pulsars
as well as tidal deformability from GW observations. Then,
with the constrained model, we study the properties of dense
matter and NSs with strong magnetic field.

Previous studies have been conducted on NS matter
containing hyperons and � resonances without (anti)kaon
condensates [13,14] and with (anti)kaon condensates [33].
The study without (anti)kaons was also extended to accom-
modate strong magnetic fields in [34]. Work has also been
done on NS matter containing (anti)kaon condensates, but no
hyperons or � resonances, under the effect of strong magnetic
fields [35,36]. In this paper, we present the study of matter
inside NS having a strong magnetic field (magnetar) contain-
ing hyperons, (anti)kaon condensates, and � resonances (as
exotic degrees of freedom) in β equilibrium. We have used
the relativistic mean field (RMF) model to describe the inter-
actions between the particles. As the soft matter with hyperons
attains the lower limit of maximum mass with density depen-
dent baryon-meson interactions, we use a density dependent
RMF (DD-RMF) model to study the effect of the strong
magnetic field on NS composed of matter with (anti)kaon
condensates along with � resonances and hyperons.

In the next section (Sec. II) we discuss the matter model
under the effect of magnetic field. Then, in Sec. III, we discuss
the results with model parameters compatible with the the as-
trophysical observations. Section IV presents a brief summary
of our work.

II. FORMALISM

A. DD-RMF model

Here, we lay down the formulation for the DD-RMF
model. We consider the NS matter to be composed of nucle-
ons (n, p), leptons (e−, μ−), hyperons (�,�,�), (anti)kaons
(K̄ ≡ K−, K̄0), and � resonances (�−,�0,�+,�++). In this
model, the strong interactions between the nucleons, hyper-
ons, (anti)kaons, and � resonances are mediated by the fol-
lowing meson fields: isoscalar-scalar σ , isoscalar-vector ωμ,
and isovector-vector ρμ. We have also considered the strange
isoscalar-vector meson field φμ as a mediator of hyperon-
hyperon and (anti)kaon-hyperon interactions. Throughout our
work, we have used the natural units, h̄ = c = G = 1.

The total Lagrangian density is given by [13,22,23,35,37–
40]

L = Lm + Lem, (1)

where Lm and Lem are the matter and the electromagnetic field
contributions, respectively.

For the matter part of the Lagrangian density, we have

Lm =
∑

b

ψ̄b
(
iγμDμ

(b) − m∗
b

)
ψb +

∑
d

ψ̄dν

(
iγμDμ

(d ) − m∗
d

)
ψν

d

+
∑

l

ψ̄l
(
iγμDμ

(l ) − ml
)
ψl + D(K̄ )∗

μ K̄Dμ

(K̄ )
K − m∗2

K K̄K

+ 1

2

(
∂μσ∂μσ − m2

σ σ 2
) − 1

4
ωμνω

μν + 1

2
m2

ωωμωμ

− 1

4
ρμν · ρμν + 1

2
m2

ρρμ · ρμ − 1

4
φμνφ

μν + 1

2
m2

φφμφμ,

(2)

where ψb, ψν
d , and ψl represent the fields of octet baryons,

� resonances, and leptons, respectively. K̄ represents the
(anti)kaon condensate fields. � resonances, being spin-3/2
particles, are governed by the Schwinger-Rarita field equa-
tions [41]. mb, md , ml , and mK stand for the masses of octet
baryons, � resonances, leptons, and (anti)kaons, respectively.
σ , ωμ, ρμ, and φμ are the meson fields with masses mσ , mω,
mρ , and mφ , respectively. The covariant derivatives in Eq. (2)
are given by

Dμ( j) = ∂μ + igω jωμ + igρ jτ jρμ + igφ jφμ + ieQAμ,

Dμ(l ) = ∂μ + ieQAμ (3)

with j representing the octet baryons (b), � resonances (d ),
and (anti)kaons (K̄), and l representing leptons. τ j is the
isospin operator for the ρμ meson fields. eQ is the charge
of the particle with e being unit positive charge. We choose
the direction of magnetic field as the z axis with the field
four-vector potential as Aμ ≡ (0,−yB, 0, 0) with B being the
magnetic field magnitude. Under the effect of this magnetic
field, the motion of the charged particles is Landau quantized
in the plane perpendicular to the direction of field, the mo-
mentum in the perpendicular direction being p⊥ = 2νe|Q|B,
where ν is the Landau level. Here, the baryon-meson coupling
parameters are considered density dependent.

The gauge mesonic contributions in Eq. (2) contain the
field strength tensors

ωμν = ∂νωμ − ∂μων,

ρμν = ∂νρμ − ∂μρν,

φμν = ∂νφμ − ∂μφν. (4)

The effective masses of the baryons and (anti)kaons used in
Eq. (2) are given by

m∗
b = mb − gσbσ,

m∗
d = md − gσdσ,

m∗
K = mK − gσKσ, (5)

gσ j in Eq. (5) and gω j , gρ j , gφ j in Eq. (3) are density dependent
coupling parameters.
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The electromagnetic field part of the Lagrangian density in
Eq. (1) is given by

Lem = − 1

16π
FμνFμν, (6)

where Fμν is the electromagnetic field tensor. In the relativistic
mean field approximation, the meson fields acquire the fol-
lowing ground state expectation values:

σ =
∑

b

1

m2
σ

gσbns
b +

∑
d

1

m2
σ

gσd ns
d +

∑
K̄

1

m2
σ

gσK ns
K̄ ,

ω0 =
∑

b

1

m2
ω

gωbnb +
∑

d

1

m2
ω

gωd nd −
∑

K̄

1

m2
ω

gωK nK̄ ,

φ0 =
∑

b

1

m2
φ

gφbnb −
∑

K̄

1

m2
φ

gφK nK̄ ,

ρ03 =
∑

b

1

m2
ρ

gρbτb3nb +
∑

d

1

m2
ρ

gρdτd3nd

+
∑

K̄

1

m2
ρ

gρKτK̄3nK̄ , (7)

where the scalar density ns
j = 〈ψ̄ψ〉 and the vector (baryon)

number density nj = 〈ψ̄γ 0ψ〉.
The scalar density, baryon number density, and the kinetic

energy density of the uncharged baryons at the temperature
T = 0 limit are given by

ns
u = 2Ju + 1

2π2
m∗

u

[
pFu EFu − m∗2

u ln

(
pFu + EFu

m∗
u

)]
,

nu = (2Ju + 1)
p3

Fu

6π2
,

εu = 2Ju + 1

2π2

[
pFu E3

Fu
− m∗2

u

8

(
pFu EFu + m∗2

u ln

(
pFu + EFu

m∗
u

))]
,

(8)

where J , pF , and EF represent the spin, Fermi momentum,
and Fermi energy, respectively. Here, the uncharged baryons
are denoted by subscript u.

The scalar density, baryon number density, and the kinetic
energy density of the charged baryons at the temperature
T = 0 limit are given by

(i) For spin- 1/2 baryons

ns
c = e|Q|B

2π2
m∗

c

νmax∑
ν=0

(2 − δν,0)

× ln

(
pc(ν) + EFc√

m∗2

c + 2νe|Q|B

)
,

(9)

nc = e|Q|B
2π2

νmax∑
ν=0

(2 − δν,0)pc(ν), (10)

εc = e|Q|B
4π2

νmax∑
ν=0

(2 − δν,0)

[
pc(ν)EFc

+ (
m∗2

c + 2νe|Q|B)
ln

(
pc(ν) + EFc√

m∗2

c + 2νe|Q|B

)]
.

(11)

(ii) For spin- 3/2 baryons

ns
c = e|Q|B

2π2
m∗

c

νmax∑
ν=0

(4 − δν,1 − 2δν,0)

× ln

(
pc(ν) + EFc√

m∗2

c + 2νe|Q|B

)
, (12)

nc = e|Q|B
2π2

νmax∑
ν=0

(4 − δν,1 − 2δν,0)pc(ν), (13)

εc = e|Q|B
4π2

νmax∑
ν=0

(4 − δν,1 − 2δν,0)

[
pc(ν)EFc

+ (
m∗2

c + 2νe|Q|B)
ln

(
pc(ν) + EFc√

m∗2

c + 2νe|Q|B

)]
,

(14)

where p(ν) = √
pF − 2νeB. The charged baryons are de-

noted by subscript c. The maximum value of ν is given by

νmax = Int

(
p2

F

2e|Q|B
)

. (15)

In the case of Dirac particles, the degeneracy of the lowest
Landau level is unity and 2 for all other levels [42]. While for
the Schwinger-Rarita particles, the same is 2 for the lowest,
3 in the second, and 4 for the other remaining Landau levels
[43].

The number density of (anti)kaon (K̄) condensates is given
by [35]

nK− = 2
√

m∗2

K + |qK−|B K̄K, (16)

nK̄0 = 2m∗
K K̄K, (17)

where |qK−| is the charge of K−.
In the case of leptons, the number density and kinetic

energy density are given by

nl = e|Q|B
2π2

νmax∑
ν=0

(2 − δν,0)pl (ν), (18)

εl = e|Q|B
4π2

νmax∑
ν=0

(2 − δν,0)

[
pl (ν)EFl + (

m2
l + 2νe|Q|B)

× ln

(
pl (ν) + EFc√
m2

l + 2νe|Q|B

)]
. (19)
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The leptons are denoted by subscript l . Throughout Eqs. (8)–
(19), we have

pF =
√

E2
F − m∗2

. (20)

The chemical potentials of octet baryons (b) with spin-1/2
and � resonances (d ) with spin-3/2 are given by

μb =
√

p2
Fb

+ m∗2

b + gωbω0 + gρbτb3ρ03 + gφbφ0 + �r,

(21)

μd =
√

p2
Fd

+ m∗2

d + gωdω0 + gρdτd3ρ03 + �r . (22)

�r represents the self-energy rearrangement term and is given
by

�r =
∑

b

[
∂gωb

∂n
ω0nb − ∂gσb

∂n
σns

b + ∂gρb

∂n
ρ03τb3nb

+ ∂gφb

∂n
φ0nb

]
+

∑
d

[
∂gωd

∂n
ω0nd − ∂gσd

∂n
σns

d

+ ∂gρd

∂n
ρ03τd3nd

]
, (23)

where n = ∑
b nb + ∑

d nd is the total vector (baryon) number
density. �r is required in case of density dependent coupling
models in order to maintain thermodynamic consistency [26].
The chemical potential of s-wave condensates of (anti)kaons
is given by

μK− =
√

m∗2

L + |qK−|B − gωKω0 − 1
2 gρKρ03 + gφKφ0,

(24)

μK̄0 = m∗
K − gωKω0 + 1

2 gρKρ03 + gφKφ0. (25)

Threshold condition for the onset of the ith baryon is given by

μi = μn − qiμe (26)

with μe = μn − μp being the electron chemical potential. qi

refers to the charge of the ith baryon.
The threshold condition for the appearance of (anti)kaons

is given by

μK− = μe = μn − μp, (27)

μK̄0 = 0, (28)

where μK− and μK̄0 are the chemical potentials of K− and K̄0,
respectively. Muons (μ−) appear when the chemical potential
of electrons reaches the rest mass of muons [μe = mμ].

The matter inside NS is electrically neutral, with the charge
neutrality condition given by∑

b

qbnb +
∑

d

qd nd − ne − nμ − nK− = 0. (29)

The total energy density of the nuclear matter is given by

ε =
∑

b

εb +
∑

d

εd +
∑

l

εl + 1

2
m2

σ σ 2 + 1

2
m2

ωω2
0

+ 1

2
m2

ρρ
2
03 + 1

2
mφφ2

0 + εK̄ , (30)

where εK̄ is the kaonic contribution to the total energy density
and is given by

εK̄ = m∗
K (nK− + nK̄0 ). (31)

From the Gibbs-Duhem relation, we get the matter pressure
as

P =
∑

b

μbnb +
∑

d

μd nd +
∑

l

μl nl − ε. (32)

(Anti)kaons, being s-wave condensates, do not contribute ex-
plicitly to the matter pressure. �r contributes explicitly only
to the matter pressure.

B. Star structure

The solution for Einstein’s equations for general relativ-
ity for a static and spherically symmetric star gives us the
Tolman-Oppenheimer-Volkoff (TOV) equations. These equa-
tions are then numerically solved for a particular EoS to
obtain the mass-radius relationship of the NS. The TOV equa-
tions are as follows [1]:

dP(r)

dr
= − [P(r) + ε(r)][M(r) + 4πr3P(r)]

r[r − 2M(r)]
,

dM(r)

dr
= 4πr2ε(r),

(33)

where M(r) is the gravitational mass included within radius r.
The TOV equations are solved with the boundary conditions
M(0) = 0 and P(R) = 0, where R is the radius of the NS. The
presence of strong magnetic field, however, distorts the spher-
ical symmetry of the star structure. The most general coupled
set of equations determining the spherically symmetric star
structure, as derived by Bowers and Liang, is given as [44]

dM(r)

dr
= 4πr2ε,

d�(r)

dr
=

(
1 − 2M

r

)−1(M

r2
+ 4πPrr

)
,

dPr (r)

dr
= −(ε + Pr )

d�

r
+ 2

r
(P⊥ − Pr ), (34)

where Pr and P⊥ are the radial and tangential pressure com-
ponents, respectively, and � is the Newtonian gravitational
potential at the Newtonian limit. The most general energy-
momentum tensor, considering spherical symmetry, is

T μν = diag(ε, Pr, P⊥, P⊥). (35)

However, following the same argument given in [45], T θθ 
=
T φφ (Eqs. (23d) and (23e) in [46]) for the case of the electro-
magnetic energy-momentum tensor. This is in contradiction
to the spherical symmetry assumption in Eq. (35). Also, the
last term in Eq. (34) diverges at the origin since limr→0(T rr −
T θθ ) 
= 0. Therefore, we see that spherically symmetric solu-
tions cannot exactly describe the star structure in the presence
of a magnetic field. Although Eq. (33) provides a good ap-
proximation of the mass-radius relation of magnetized NS
[45], for central magnetic fields close to 1018 G the deformity
becomes too large for Eq. (33) to be used [47]. Thus, we re-
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TABLE I. Table for nuclear saturation properties for the three parametrizations- DD-ME2, DD-2, and DD-MEX.

n0 E/A K0 Esym Lsym mσ mN

Parametrization (fm−3) (MeV) (MeV) (MeV) (MeV) m∗
N/mN (MeV) (MeV)

DD-ME2 0.152 −16.14 250.89 32.30 51.253 0.572 550.124 938.90
DD-2 0.149065 −16.02 242.70 32.73 54.966 0.5625 546.2124 939.56
DD-MEX 0.152 −16.097 267.059 32.269 49.576 0.556 547.3327 939.00

frain from using the spherically symmetric TOV equations for
magnetic field strengths of >1017 G.

III. RESULTS AND DISCUSSION

A. Parametrizations

In this DD-RMF model, the density dependant nature of
the meson-nucleon coupling constants for σ and ω mesons is
given by

giN (n) = giN (n0) fi(x) , i = σ, ω, (36)

where n and n0 are the total baryon number density and the
nuclear saturation density, respectively. N refers to nucleons.
The variable x = n/n0. fi(x) is defined as

fi(x) = ai
1 + bi(x + di )2

1 + ci(x + di )2
. (37)

The meson-nucleon coupling constant for ρ meson is given by

gρN = gρN (n0)e−aρ (x−1). (38)

FIG. 1. Mass-radius relationship of NS for the matter com-
position NK̄Y � for the parametrizations DD-ME2, DD-2, and
DD-MEX. The shaded regions illustrate the observational con-
straints from PSR J0740+6620 [63,64], PSR J1810+1744 [65], PSR
J0030+0451 [29,30], and PSR J0952-0607 [11]. The joint radius
constraints from PSR J0030 + 0451 and the GW170817 event data
for a typical 1.4M� NS are represented by the horizontal lines
[66,67].

The φ meson does not couple with nucleons and, thus, gφN =
0. We take mω = 783, mρ = 763, and mφ = 1019.45 MeV.

For the calculation of the scalar meson-hyperon coupling
constants, we consider the optical potentials of �, �, and � to
be U� = −30 MeV, U� = −14 MeV, and U� = +30 MeV,
respectively [34]. � hyperons, having a repulsive optical po-
tential, do not appear in the range of densities considered in
our work.

In the case of the vector meson-hyperon density dependent
vector coupling constants, we employ SU(6) [48] symmetry
and get the following relations:

1

2
gω� = gω� = 1

2
gω� = 1

3
gωN ,

2gφ� = 2gφ� = gφ� = −2
√

2

3
gωN ,

1

2
gρ� = gρ� = gρN ,

gρ� = 0. (39)

For the scalar meson-� coupling constants, we fix the �

potential to V� = 4
3VN , which gives Rσ� = gσ�/gσN = 1.16.

VN stands for the nucleon potential. For � resonances, the
vector coupling constants are given by [49]

gω� = 1.1gωN , gρ� = gρN . (40)

φ meson does not couple with � resonances and, thus,
gφ� = 0.

The calculation for the scalar meson-(anti)kaon coupling
constants is explained in [28]. Several works [50–54] have
provided the K− optical potential (UK̄ ) in the range −200 �
UK̄ � −40 MeV. In this work, we have chosen UK̄ = −130
MeV. The determination of vector meson-(anti)kaon coupling
constants is given in [21,55]. They are density independent
and are given by the relations

gωK = 1
3 gωN , gρK = gρN , gφK = 4.27. (41)

It is to be noted that the more general SU(3) symmetry has
also been implemented in many past works [56–59], in lieu
of SU(6), to determine the hyperon-vector meson coupling
parameters. Incorporating SU(3) symmetry brings into pic-
ture free parameters with uncertainties. In our current model,
however, we are successful in satisfying the observational
constraints with SU(6) symmetry. Another thing to note is that
coupling constants determined using SU(3) not only increase
the maximum mass of NSs but also increase their radius,
which in turn makes the stars violate the tidal deformability
constraints. So, we proceed with SU(6) symmetry in this
paper.
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TABLE II. Table for parameter values for DD-ME2, DD-2, and DD-MEX parametrizations. The masses of ω, ρ, and φ mesons are 783
MeV, 763 MeV, and 1019.45 MeV, respectively, and they are the same for all the three parametrizations.

Parametrization Meson(i) ai bi ci di giN

σ 1.3881 1.0943 1.7057 0.4421 10.5396
DD-ME2 ω 1.3892 0.9240 1.4620 0.4775 13.0189

ρ 0.5647 7.3672

σ 1.3576 0.6344 1.0053 0.5758 10.6866
DD-2 ω 1.3697 0.4964 0.8177 0.6384 13.3423

ρ 0.5189 7.2538

σ 1.3970 1.3349 2.0671 0.4016 10.7067
DD-MEX ω 1.3926 1.0919 1.6059 0.4556 13.3388

ρ 0.6202 7.2380

In this work, we use three different density dependent
parametrizations: DD-ME2, DD2, and DD-MEX. The three
parametrizations are framed to reproduce the nuclear mat-
ter properties at n0. The nuclear saturation properties as
well as the masses of nucleons and σ mesons for the three
parametrizations are shown in Table I. In the table, E/A, K0,
Esym, Lsym, mN , m∗

N , and mσ stand for binding energy per
nucleon, compression modulus, symmetry energy coefficient,
slope parameter of Esym, mass of nucleons, effective mass
of nucleons, and mass of σ mesons, respectively. All the
properties in Table I are evaluated at nuclear saturation density
(n0). The values of the coefficients in Eqs. (37) and (38) for
the parametrizations DD-ME2 [60], DD2 [61], and DD-MEX
[62] are given in Table II. K̄ condensates can appear via both
first order and second order phase transitions depending upon
the (anti)kaon optical potential in nuclear symmetric matter
[1]. However, we note that with the discussed parametriza-
tions only the second order phase transition occurs [28].

With these three parametrizations we note the star struc-
ture, ignoring the effect of magnetic field, from the mass-
radius relation as shown in Fig. 1. From the figure, it is
evident that the NSs composed of matter including hyperons,
� resonances, and (anti)kaon condensates satisfy the so far
obtained astrophysical constraints on mass-radius relation for
the DD-MEX and DD-ME2 parametrizations. Even though it
does not satisfy the most recent observation PSR J0952-0607,
we still keep the DD-ME2 parametrization because it satisfies
all the other observational constraints. Along with this, these
two parametrizations also obey the maximum limit of mutual
tidal deformability obtained from gravitational wave observa-
tions of binary NS merger event GW170817, which is evident
from Fig. 2. So, in our present study of the effect of magnetic
field on the NS composed of matter containing hyperons,
� resonances, and (anti)kaon condensates, we choose these
two parametrizations which are compatible with astrophysical
observations.

It is to be noted that recent studies on the correlation
between the slope of symmetry energy and the neutron skin
thickness of 208Pb, obtained from the combined results of
PREX and PREX-II experiments, indicate the range of Lsym =
(106 ± 37) MeV and Esym = (38.1 ± 4.7) MeV [70]. The
corresponding isovector coupling values for the PREX-II es-
timations of symmetry energy are adapted from Ref. [71].
However, for these increased values of Lsym, the maximum

attainable mass gets reduced and tends to fall short of the
recent observational constraints. Considering the symmetry
energy coefficient values as Lsym = 70 MeV and Esym = 38.1
MeV, we get a maximum mass of 2.156 M� (as opposed to
our originally calculated value of 2.192M�) and 2.088M�
(as opposed to our originally calculated value of 2.120M�)
for DD-ME2 and DD-MEX parametrizations, respectively.
Varying the symmetry energy parameter within the above
provided range further decreases the maximum mass. From
nuclear physics experiment also, the range of Lsym and Esym

obtained from these experiments is not very reliable as another
recent experiment to determine the neutron skin thickness in
the 48Ca isotope (CREX) [72] reports the same to be much
smaller and in disagreement with the PREX estimations. Due
to the violation of observational constraints for these values
of Lsym and Esym, we refrain from proceeding with them in
further discussion in this paper.

FIG. 2. Plot for the tidal deformablities �1 and �2 for the mat-
ter composition NK̄Y � and considering a fixed chirp mass, M =
1.188M�. The �1 and �2 correspond to the stars of masses M1 and
M2, respectively, of the binary system observed in the GW170817
event. The shaded regions represent �̃ ≈ 900 (TaylorF2) and �̃ ≈
720 (PhenomPNRT) upper bounds at 90% confidence level [68,69].
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B. Magnetic field profile

We model the magnetic field inside NS by adopting a
magnetic field profile which is consistent with the Einstein-
Maxwell field equations. One such magnetic field profile
has been obtained by finding the solutions of the Einstein-
Maxwell field equations with magnetostatic equilibrium for
EoS from several nuclear models and then taking a polyno-
mial fit of the monopolar part of the norm of the magnetic
field profiles obtained. This is the universal profile given by
[45]

B(x) = Bm(1 − 1.6x2 − x4 + 4.2x6 − 2.4x8), (42)

where x ≡ r/rmean, r being the radial distance, rmean is the
mean radius of the star, and Bm is the field strength at the
center of the star. This profile, however, is for a star with
an approximate monopolar magnetic structure and does not
incorporate the dipolar structure.

Another such profile, obtained by taking a quadratic fit of
the solutions of Einstein-Maxwell field equations assuming a
poloidal magnetic field for EoS from three different nuclear
models and two different values of magnetic dipole moment,
is given by [73,74]

B(μB) =
(
a + bμB + cμ2

B

)
Bc

μ, (43)

where μB is the baryon chemical potential and μ is the dipole
magnetic moment of the NS. μB and μ are in units of MeV
and Am2=ampere meter2, respectively, to get B(μB) in units
of gauss (G). Bc = 4.414 × 1013 G is the critical field of
electron. The values of the coefficients a, b, c for a star of
mass 2.2M� are as follows:

a = −0.769 G2/(Am)2.

b = 1.2 × 10−3 G2/(Am2 MeV) ,

c = −3.46 × 10−7 G2/(Am2 MeV2).

Both the magnetic field profiles are derived using input from
several different EoSs [45,73]. However, none of the EoSs
used are for the entire range of particles considered in our
present work. Even so, we believe that the variety of EoSs
used, a few of which are very close in matter composition to
our present work, in deriving the field profiles make Eqs. (42)
and (43) viable candidates for use in our present nuclear
model in a self-consistent manner. To be completely accurate
in maintaining self-consistency of the field profile with the
nuclear model, our EoS needs to be used as input in deriving
the deriving field profiles, which is beyond the scope of our
present work.

We note that Eq. (43), being a function of baryon chemical
potential, also avoids discontinuities in the field during phase
transitions. Hence, we choose this profile in our following
calculations. Here, we consider two values of the dipole mag-
netic moment, μ = 2 × 1031Am2 and μ = 1.5 × 1032 Am2,
which give central magnetic fields of around 1.2 × 1017 and
0.9 × 1018 G, respectively, and surface magnetic fields of
around 2.5 × 1016 G and 2 × 1017 G, respectively. The mag-
netic field profiles for each case are shown in Fig. 3.

FIG. 3. The variation of magnetic field with the normalized num-
ber density n/n0 corresponding to the magnetic field profile given
by Eq. (43). The upper curves are for μ = 1.5 × 1032 Am2 and the
lower curves are for μ = 2 × 1031 Am2. The solid lines represent
DD-ME2 parametrization while the dotted lines represent DD-MEX
parametrization.

C. Matter and star with magnetic field

The particle fraction profiles for NY K̄� are illustrated in
Fig. 4 for the two parametrizations, both with and without
magnetic field. The particle population at all densities satis-
fies the two conditions—charge neutrality and baryon number
conservation. As can be inferred from the figure, at the initial
densities, the charge neutrality is maintained by protons (p)
and leptons, electrons (e−) and muons (μ−). The e− and μ−
populations clearly decreases from the onset of the negative
� resonance (�−) till they eventually disappear or become
insignificantly sparse. This is because �− is energetically
more favorable than the leptons and thus take their place in
maintaining charge neutrality. The onset of �− further con-
tributes to the decrease in e− population. The �− population,
however, starts to decrease with the onset of �− and decreases
more heavily with the onset of K−. At the extreme higher end
of the density range, the negative charges are provided by K−,
�−, and �− while the positive charges are provided by p,
�+, and �++, in a way such that charge neutrality remains
intact. However, we note that �++ only appears in the case
for DD-MEX parametrization and is absent in the case of
DD-ME2.

The effect of the magnetic field on the particle population
can be better appreciated by looking at Figs. 5 and 6. They
show the ratio δYi ≡ ni(B)/ni(0) as a function of n/n0. The
oscillatory tendencies in the figures can be attributed to
the occupation of the Landau levels by the charged particles.
The oscillations become more prominent near the higher end
of the density range since the magnetic field increases with the
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FIG. 4. Variation of particle number density normalized to the nuclear saturation density (ni/n0) with the total number density normalized
to n0 (n/n0 ). Top panel: in the presence of magnetic field with μ = 1.5×1032 Am2, middle panel: in the presence of magnetic field with
μ = 2×1031 Am2 and bottom panel: in the absence of magnetic field. Left panel: for DD-ME2 and right panel: DD-MEX parametrization.

density. The electrons, being the lightest particles, show more
prominent oscillations in their particle fraction ratio from an
earlier density. In the case of muons, the early oscillations
in their profile can be explained by their lower population
density, and thus lower Fermi momentum, leading to smaller
number of maximum Landau levels [Eq. (15)], which makes
Landau quantization more prominent. For the magnetic field
profile with μ = 2×1031 Am2, near the surface and outer
core where density is less than 2n0, the field strength is of
the order of 1016 G. At this field strength the protons are
not affected substantially and electrons are little affected by
the presence of magnetic field, as can be seen from Fig. 5.
Hence the particle fraction and threshold of �− are also least
affected. The proton population is affected very little and
electrons populate less number of Landau levels when the
field strength reaches magnitude of the order 1017 G near
density ≈5n0. Then electron fraction is increased leading to
later appearance of K− and δYi < 1 for K− in the subsequent
densities. Consequently, the threshold densities of �+, �0,
and �++ changes and their populations are affected due to

interplay of baryon number conservation and charge neutral-
ity condition, as seen from Fig. 5. The threshold densities
of various particles are given in Table III. For the magnetic
field profile with μ = 1.5×1032 Am2, the pattern is similar
but there are some differences to be noted as evident from
Fig. 6. The oscillations for δYi of protons (p) and electrons
(e−) at the initial densities (<1n0) are noticeable. This is due
to the low population of e− and p, and the high magnitude
of magnetic field, of the order 1017 G, for this profile near
the surface and outer core. Here, we can also see that the
e− and p populations oscillate in unison. This is because
they are the only charged particles at this density range and,
thus, to maintain charge neutrality they must increase or de-
crease similarly. Similar to the case for μ = 2×1031 Am2,
the electron population increases substantially when the field
strength reaches around 1018 G near density 3n0. This results
in the later appearance of K− and δYK− < 1. The amplitudes
of the oscillations in δYe− being larger compared to the case
of field profile with μ = 2×1031 Am2, the threshold den-
sity for appearance of K− is pushed towards an even higher
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FIG. 5. Variation of δYi = ni(B)/ni(0) with the total number density normalized to n0 (ni/n0) for the star dipole moment μ = 2×1031 Am2.
Upper panel: DD-ME2 parametrization and lower panel: DD-MEX parametrization.

density in this case and δYK− is also smaller in this case. The
oscillations of the charged particles are, in general, signifi-
cantly larger in Fig. 6 than in Fig. 5, as expected. Similar
to the case for the field profile with μ = 2×1031 Am2, the
threshold densities and the particle populations for �+, �0,
and �++ are also altered in the case for field profile with

μ = 1.5×1032 Am2 but the change is greater for the latter
case, as can seen from Table III. We also notice that δY�0 for
DD-ME2 parametrization does not appear in Fig. 6 as it is very
low and outside the range of the plot. This is due to its appear-
ance being delayed because of the presence of strong magnetic
field.

FIG. 6. Variation of δYi = ni(B)/ni(0) with the total number density normalized to n0 (ni/n0) for the star dipole moment μ =
1.5×1032 Am2. Upper panel: DD-ME2 parametrization and lower panel: DD-MEX parametrization.
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TABLE III. Threshold densities of various particles. The particle μ− extinguishes at 2.77 and 2.59 for DD-ME2 and DD-MEX, respectively,
for B field with μ = 2×1031 Am2, and the particle μ− extinguishes at 2.79 and 2.62 for DD-ME2 and DD-MEX, respectively, for B field with
μ = 1.5×1032 Am2. Without magnetic field, the particle μ− extinguishes at 2.77 and 2.58 for DD-ME2 and DD-MEX, respectively.

μ = 1.5×1032 Am2 μ = 2×1031 Am2 Without B field

DD-ME2 DD-MEX DD-ME2 DD-MEX DD-ME2 DD-MEX

μ− 0.75 0.75 0.75 0.75 0.75 0.75
� 2.53 2.42 2.53 2.42 2.53 2.42
�− 1.63 1.58 1.63 1.58 1.63 1.58
�0 3.61 3.50 3.61 3.50 3.61 3.50
K̄− 5.37 6.11 5.11 5.87 5.07 5.82
�+ 5.75 5.72 5.64 5.71 5.62 5.70
�++ 6.70 6.57 6.55
�− 4.21 3.94 4.24 3.97 4.24 3.97
�0 6.16 6.08 6.08 6.00 6.06 5.99

In Fig. 7, we illustrate the relationship of the Dirac effective
mass for nucleons as a function of of n/n0. We observe that
deviative features start appearing in the figures with the onset
of �− around density ≈1.6n0. This oscillating behavior is
associated with the Landau quantization, which in turn will
affect the matter properties viz. specific heat, mean-free path
of baryons, thermal conductivity, to name a few.

In Fig. 8, we illustrate the matter pressure density as a func-
tion of electron chemical potential (μe) and neutron chemical
potential (μn). We observe that μe increases initially and then
starts to decrease from a point which corresponds to the ap-
pearance of �− particles. This is attributed to the replacement
of electrons by �− in maintaining charge neutrality. We also
note that the slope of the plot softens slightly after the ap-
pearance of K− condensates. This happens because (anti)kaon
condensates being s-wave Bose condensates do not contribute
to the matter pressure, after they replace baryons in the matter
composition as favoured from energy argument point of view.

Due to the strong magnetic fields, in the higher density
regime the matter EoS stiffens. Although it is not evident
from the left panel of Fig. 9 which illustrates the EoS for
NK̄Y � composition for the two parametrizations (DD-ME2
and DD-MEX) and for the two magnetic field profiles (with
μ = 2×1031 Am2 and μ = 1.5×1032 Am2). However, the
feature is evident from the right panel of Fig. 9 which shows
the ratio of pressure density in presence of magnetic field
P(B), to pressure density without magnetic field, P(0), as
a function of total number density fraction, n/n0. The right
panel manifests the minute effects due to Landau quantization
in dense matter. The oscillations in this figure, as in the cases
of Figs. 5 and 6, can be attributed to the occupation of the Lan-
dau levels by the charged particles at high value of magnetic
field.

Now, the so far inferred maximum limit of the surface
magnetic field strength from the magnetar observations is
of the order of ≈1016 G. So we consider the field profile

FIG. 7. Plot for the ratio Xm∗
N

≡ m∗
N (B)/m∗

N (0) of the effective Dirac mass of nucleons in the presence of magnetic field to its value in
the absence of magnetic field as function of total number density normalized to n0 (n/n0 ) for the star dipole moments μ = 2×1031 Am2 and
μ = 2×1031 Am2. The plots are given for the matter composition NK̄Y � and for the two parametrizations: DD-ME2 (left panel) and DD-MEX
(right panel).
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FIG. 8. 3D plot of pressure density as a function of electron chemical potential (μe) and neutron chemical potential (μn), along with its
projection on the xy plane. The left and right panels are for DD-ME2 and DD-MEX parametrizations, respectively. The circles mark the onset
of (anti)kaon condensates: black circle for μ = 0, red circle for μ = 2×1031 Am2, and green circle for μ = 1.5×1032 Am2.

with μ = 2×1031 Am2 which gives the surface field strength
≈1016 G. With this profile the maximum field strength within
the star remains below the order of 1017 G. Hence, for this
field profile, the solution of TOV equations for the star struc-
ture can be taken as a good approximation. We show the
effect of the magnetic field on the maximum mass of NS
with NK̄Y � composition in Fig. 10. We observe a small
increase (≈0.05%) in maximum mass which is visible for the
case of DD-ME2 parametrization. This is the consequence of
the stiffening of matter in presence of magnetic field due to
late appearance of K−.

IV. SUMMARY AND CONCLUSION

Recent observations of massive NSs [7–11] suggest the
existence of matter to be at densities above 2n0 inside the
core of the massive stars. At such high densities it is quite
possible for exotic degrees of freedom of matter to appear. In
this scenario, the possibility of the appearance of strange and
nonstrange heavier baryons [12–15], kaons [21–28,35], and
strange quark matter (SQM) [75–77] inside the core of the
NSs, and its consequences on the NS observables, are of great
interest and are discussed in the above cited literature and

FIG. 9. Left panel: EoS for NS matter in the presence of magnetic fields with μ = 1.5×1032 Am2 and μ = 2×1031 Am2, and also for NS
matter in the absence of magnetic field (μ = 0). Right panel: Ratio of pressure density in the presence of the same two magnetic fields, P(B),
to pressure density in the absence of magnetic field, P(0), as a function of the total number density normalized to n0 (n/n0). The plots are given
for DD-ME2 (upper plots) and DD-MEX (lower plots) parametrizations. The matter composition considered is NK̄Y �.
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FIG. 10. Comparison of the closeup of the mass-radius relations in the region of the maximum mass. The plots are given for NS matter
with magnetic field (μ = 2×1031 Am2) and without magnetic field, and for the two parametrizations: DD-ME2 (left panel) and DD-MEX
(right panel). The matter composition considered is NK̄Y �.

many others. The effect of a strong magnetic field on highly
dense matter with kaons and in absence of heavier baryons has
been discussed previously [35,36]. In our present work, we
discussed the effect of the presence of strong magnetic field
on highly dense NS matter with all possible baryonic exotic
degrees of freedom, viz. hyperons and � resonances, and
(anti)kaon condensates, in view of the existence of magnetars
with high surface magnetic field. The inferred surface field
strength from the magnetar observations is in the range 1013–16

G. The field strength inside the NSs cannot be inferred from
any observation as of yet but can be estimated theoretically
from the solution of combined Einstein-Maxwell field equa-
tions. Hence, we considered a model magnetic field profile,
as a function of baryon chemical potential inside the NS,
which is poloidal in nature and satisfies the Einstein-Maxwell
field equations. With this profile, the field strength gradually
increases towards the center of the star and at the center the
strength is ≈1 order higher compared to that at the surface.
Furthermore, the (anti)kaon condensate appears at high den-
sity compared to the threshold density of deconfinement to
SQM. Hence, if we consider a hybrid star (HS) configuration,
the occurrence of (anti)kaon condensate is very unlikely in-
side the core of a HS. Further investigation in this particular
aspect has not been explored and is beyond scope of this work.

For our discussion, we considered the model of mat-
ter within the DD-RMF model with two parametrizations,

DD-ME2 and DD-MEX, which are compatible with the as-
trophysical observations for NSs, with matter composed of
NK̄Y �. The variation of magnetic field with the matter den-
sity is more or less the same with these two parametrizations
for the considered field profile. The presence of the magnetic
field pushes the threshold for the appearance of K− to a higher
density. Consequently, at higher density regime, the matter
stiffens compared to the case without magnetic field and this
effect is more in the case of DD-ME2 parametrization than
the DD-MEX parametrization. This leads to an increase in
the maximum attainable mass, compared to the case without
magnetic field, which is also more prominent for the DD-ME2
parametrization.
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