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Low-energy nuclear physics and global neutron star properties
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We address the question of the role of low-energy nuclear physics data in constraining neutron star global
properties, e.g., masses, radii, angular momentum, and tidal deformability, in the absence of a phase transition
in dense matter. To do so, we assess the capacity of 415 relativistic mean field and nonrelativistic Skyrme-type
interactions to reproduce the ground state binding energies, the charge radii, and the giant monopole resonances
of a set of spherical nuclei. The interactions are classified according to their ability to describe these charac-
teristics, and we show that a tight correlation between the symmetry energy and its slope is obtained provided
that N = Z and N �= Z nuclei are described with the same accuracy (mainly driven by the charge radius data).
By additionally imposing the constraints from isobaric analog states and neutron skin radius in 208Pb, we obtain
the following estimates: Esym,2 = 31.8 ± 0.7 MeV and Lsym,2 = 58.1 ± 9.0 MeV. We then analyze predictions
of neutron star properties and we find that the 1.4M� neutron star (NS) radius lies between 12 and 14 km for
the “better” nuclear interactions. We show that (i) the better reproduction of low-energy nuclear physics data
by the nuclear models only weakly impacts the global properties of canonical mass neutron stars and (ii) the
experimental constraint on the symmetry energy is the most effective one for reducing the uncertainties in NS
matter. However, since the density region where constraints are required are well above densities in finite nuclei,
the largest uncertainty originates from the density dependence of the energy density functional (EDF), which
remains largely unknown.
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I. INTRODUCTION

The modeling of neutron stars (NSs) relies mostly on the
present knowledge of nuclear physics, since nuclear proper-
ties determine the characteristics of its crust—together with
the electrons—and the energetics of the nucleon liquid in its
outer core [1–3]. Nowadays, however, most of the theoretical
efforts necessary for the understanding of observational data,
such as gravitational waves emitted from binary NSs [4] or
x-ray emissions from milli-second pulsars [5–8], require for
the most part the understanding of the NS inner core, where
densities exceed by several units the saturation density of nu-
clear matter (ρsat ≈ 2.7 × 1014 g cm−3). These new data raise
questions about the impact of nuclear physics constraints,
operating at or around saturation density, on the properties
of suprasaturation density matter. To what extent do global
properties of neutron stars, such as their masses, radii or tidal
deformabilities, require accurate experimental nuclear data as
complementary constraints? Is the extrapolation of nuclear
physics models to higher densities predominantly controlled
by nuclear physics data at saturation density? What is the
impact of other uncertainties, such as the isospin symmetry
dependence of the equation of state (EoS), which is for the
most part unknown, except close to saturation density and to
isospin symmetry ((N − Z )/A � 0.25)?

Such questions were recently addressed by analyzing
the correlations between a few nuclear empirical parame-
ters (NEPs), namely the symmetry energy Esym, its slope
Lsym, and the incompressibility modulus Ksat, and NS global

observables for a set of microscopic nuclear EoSs derived
within the Brueckner-Hartree-Fock (BHF) formalism [9]. No
correlation were found, except the one between NS radius and
tidal deformability for a 1.4M� NS (R1.4 and �1.4) and the
pressure of beta-stable matter at twice saturation density, as
initially suggested in Ref. [10]. In a different analysis based on
the relativistic mean field (RMF) description of dense matter,
a linear correlation between �1.4 with Ksat and Lsym was,
however, found, as well as an anticorrelation with Esym and
the effective mass m∗ [11].

Such a controversy implies that the question of the role
of low-energy nuclear physics in the prediction of global
properties of NS is not yet clarified. This motivates the
new analysis presented in this paper. We perform a statis-
tical analysis based on a large number of nuclear physics
models (415 in total). We explore the question of the
model dependence of the results by investigating various
types of modeling: the Skyrme nuclear force [12] and two
types of relativistic mean field (RMF) approaches, the RMF
with nonlinear couplings (RMF-NL) [12,13], and the RMF
with density dependence couplings (RMF-DD) [14]). Note
that RMF-DD models take into account, at least partially,
the effect of BHF correlations at the mean field level. We
have included such interactions in our analysis and we assume
here that they serve as surrogates for more elaborate BHF
models, such as those analyzed in Ref. [9]. At variance with
the analysis presented in Ref. [9], we directly compare the
nuclear models predictions in finite nuclei to experimental
data.
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Our approach is different from the one presented in
Refs. [15–17], where almost the same set of models were
confronted to NS observables, ignoring their adequacy in de-
scribing low-energy nuclear physics properties. The two first
papers compare nonrelativistic Skyrme interactions [15,16],
while the last one uses relativistic Hartree interactions as well
as a smaller set of relativistic point interactions [17]. In each
study, only an extremely small number of the interactions
were able to describe all of the nuclear matter properties
considered. Surprisingly, none of the successful interactions
are among those that provide the best fits to nuclear binding
energies and charge radii. In the present paper we adopt a
different strategy where we first select the models accord-
ing to their ability to reproduce low-energy nuclear physics
data. To do so, we perform a direct comparison in finite
nuclei between model predictions and low-energy nuclear
data; namely, we consider nuclear binding energies, charge
radii, giant monopole energies, and a constraint on the den-
sity dependence of the symmetry energy. We end up with
different groups of models passing various constraints with
different accuracies, as in the previous analyses. In the second
step of the analysis, we propagate the model predictions to
higher densities. This allows us to analyze the impact of low-
energy nuclear physics data on the predictions of global NS
properties.

We show that the model dispersion at high density is
weakly impacted by low-energy nuclear physics data, except
for the data associated to the symmetry energy, while the
largest source of uncertainties lies in the density dependence
of the EoS, which is not constrained by low-energy nuclear
physics data. To be more precise, we find that the constraint
to reproduce low-energy nuclear physics properties leads to
the prediction that canonical mass neutron stars should have
a radius between 12 and 14 km, if they are made of nu-
cleons and leptons only. However, increasing the accuracy
of the reproduction of the low-energy data is less effective
than the missing information about the density dependence
of the EoS at two to four times nuclear saturation density.
So the confrontation of the nuclear equation of state (EoS)
with low-energy nuclear physics data, while necessary, is
not sufficient for an accurate prediction of the dense matter
equation of state. While such a result may have been antici-
pated, at least qualitatively, our analysis provides quantitative
estimates of the link between the goodness of nuclear models
assessed in finite nuclei and their predictions for NS global
properties.

In our analysis, we do not explore the impact of phase
transitions on NS global properties while they are even more
uncertain than the density dependence of dense nucleonic
matter. For massive neutron stars, the dominant source of
uncertainties comes indeed from the lack of a precise pre-
diction for the new phase(s). The question whether present
astrophysical data already indicate the existence of a phase
transition is not yet a settled one; see for instance [18–20]
for a sample of recent papers on this subject. In the present
work, we focus on the nuclear physics uncertainties, although
our conclusion concerning the weak impact of nuclear physics
data becomes even stronger in the case of phase transition(s)
in dense matter.

The present paper is organized as follow: We first list
the experimental data in Sec. II, namely the nuclear binding
energies, the nuclear charge radii, the isoscalar giant
monopole resonance energy in 208Pb, and the density depen-
dence of the symmetry energy, and discuss the uncertainty
that we consider in the comparison between the models and
the data. The binding energies and charge radii are consid-
ered only for a set of spherical nuclei in order to avoid the
complication of including a pairing interaction and possible
deformation effects. We then explain in Sec. III how the EDFs
are classified and we show that our best selection defines a
clear correlation between Esym and Lsym. We then calculate in
Sec. IV masses and radii of NS based on the different groups.
A further analysis of the density dependence of the symmetry
energy is performed in Sec. V, considering the constraint of
the NS mass. We next determine NS global properties from
our best set of models and analyze the correlation between the
radius, the mass, and the central pressure at beta equilibrium
in Sec. VI. Other global properties such as tidal deformability
and moment of inertia are studied in Sec. VII. We present our
conclusions in Sec. VIII.

II. LOW ENERGY NUCLEAR EXPERIMENTAL
DATA AND MODELING

In this section we start with a quick discussion of the
models and then present and discuss the nuclear experimental
data employed in the model selection.

A. Modeling nuclear low-energy properties

In our analysis, we consider a set of energy density func-
tionals (EDFs), which have been found to be an effective
tool for analyzing the fundamental properties of finite nuclei
and for connecting these to nuclear matter properties [12].
EDFs can be employed over the full nuclide chart, except
for very light nuclei with mass number A � 10. They have
a number of free parameters (typically from 5 to 10) which
are adjusted on low energy nuclear properties and are usually
calibrated to reproduce the ground state energy of spherical
nuclei or of the entire nuclear chart and charge radii. Some
of them, however, are only adjusted to nuclear empirical pa-
rameters without being employed to describe finite nuclei. In
our analysis, we consider a full set of existing EDFs (415
in total), independently of the way they have been adjusted.
We consider both nonrelativistic and relativistic mean field
models. The former are employed in the Hartree-Fock or
Hartree-Fock-Bogoliubov framework together with a zero-
range Skyrme type interaction or a finite range Gogny or
M3Y type force [12,15,21]. The latter are typically used in
a Hartree-Bogoliubov approach with a Lagrangian based on
meson-exchange potentials [12–14]. In all cases the effective
nucleon-nucleon interaction is the key to good agreement of
the calculations with experimental data.

EDFs also predict nucleon densities, deformations, and
skin thicknesses, as well as the nuclear EoS, which is a funda-
mental ingredient to determine the properties of neutron stars;
see Refs. [12,15] for a complete review.
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TABLE I. Binding energies B for the 13 doubly magic nuclei
which are considered in the present work. Here (−) stands for ex-
perimental error bars smaller than the accuracy given in the table
and # identifies interpolated numbers. We also compare our reference
values [22] to the ones from Ref. [23].

B (MeV) B (MeV)
Z N Nucleus Ref. [22] Ref. [23]

8 8 16O −127.6193(–) −127.6172(–)
14 20 34Si −283.4289(140) −283.4208(141)
20 20 40Ca −342.0521(–) −342.0336(2)
20 28 48Ca −416.0009(1) −415.9720(41)
20 32 52Ca −438.3279(7) −436.5522(6986)
20 34 54Ca −445.3642(500)

28 20 48Ni
# −348.7275(5000)

28 28 56Ni −483.9956(4) −483.9505(110)

28 50 78Ni
# −641.5470(6000)

40 50 90Zr −783.8972(1) −783.7953(23)
50 50 100Sn −825.2944(3000) −824.6295(7054)
50 82 132Sn −1102.8430(20) −1102.6860(136)
82 126 208Pb −1636.4301(11) −1635.8927(12)

B. Energies of doubly magic nuclei

Doubly magic nuclei are often used to calibrate EDF mod-
els since they are spherical (no deformation) and have closed
shells (no pairing). The many-body complexity is therefore
reduced, which accelerates the search for the best set of
parameters reproducing the experimental data. Introducing
pairing and deformation would lead to an increase of the num-
ber of parameters in the model and increase the subsequent
uncertainties as well. There are about 13 doubly magic nuclei
(see Tables I and II), which span the nuclear mass table from
light to heavy nuclei, as well as from isospin symmetric to
asymmetric nuclei. They allow an easy and tractable search
for possible sources of uncertainties in the confrontation of
mean field interactions with experimental data.

Let us first analyze the present situation in terms of the
low-energy nuclear data. The experimental data we use in
the present study are given in Table I. We have consid-
ered 13 doubly magic nuclei, including two for which the

binding energy is not measured but extrapolated from neigh-
boring nuclei (48Ni and 78Ni). Both of the latter are the first
unmeasured-mass nucleus of their respective double-beta-
decay mass parabolas, which each contain five nuclei with
measured masses and thus permit a fairly precise extrapola-
tion of the unmeasured masses. The 13 nuclei are grouped
into isospin symmetric ones (group S containing 4 nuclei) and
the isospin asymmetric ones (group A with 9 nuclei). We also
compare the binding energies we consider with the ones used
by the UNEDF Collaboration [23], originating from averages
of the AME2003 [33] mass table values with recent measure-
ments by the JYFLTRAP mass spectrometer [34]. The latter
values deviate from those we consider by less than about
0.2 MeV, except for 52Ca, 100Sn, and 208Pb, where the dif-
ferences are respectively 1.8, 0.7m and 0.5 MeV. These
deviations are smaller than the criteria we will introduce in the
following to assess the quality of the mean field interactions.
These differences in the experimental values thus have little
impact on the definitions of the groups of interactions we
define in the following.

In the case of the Bruxelles-Montreal Skyrme interactions,
a phenomenological Wigner correction EW is applied to the
binding energy, which is given in terms of the following
expression:

EW =VW exp

{
− λ

(
N − Z

A

)2}

+ V ′
W |N − Z| exp

{
−

(
A

A0

)2}
. (1)

A spin-orbit interaction is added to the nonrelativis-
tic Skyrme force (see Appendix A), while the relativistic
approach generates it naturally from the scalar and time com-
ponents of the self-energies [12].

In the following, we consider that the model accuracy in
the prediction of binding energies B is

δB = 2.0 MeV. (2)

This uncertainty is much larger than the experimental one
(see Ref. [35] and references therein for more detailed

TABLE II. Comparison of the experimental charge radii measured by different groups to those of a sample of effective nuclear interactions.
Here we consider the values given in Ref. [24]. Daggers “†” indicate the 1995 PDG data (see the text), as in Ref. [25].

Rch (fm) Rch (fm) Rch (fm) SLy5 BSk18 UNEDF0 DD-ME2 NL3* NLRA1
Z N nucleus Ref. [24] Ref. [23] Ref. [26] Ref. [27] Ref. [28] Ref. [29] Ref. [30] Ref. [31] Ref. [32]

8 8 16O 2.6991(52) 2.7010 2.7975 2.8141 2.8138 2.7283 2.7346 2.7167
2.7825† 2.7992†

20 20 40Ca 3.4776(19) 3.4780 3.4767(8) 3.5059 3.5200 3.4980 3.4651 3.4701 3.4664
3.4939† 3.5081†

20 28 48Ca 3.4771(20) 3.4790 3.4736(8) 3.5262 3.5353 3.5204 3.4811 3.4701 3.4700
3.5137† 3.5228†

40 50 90Zr 4.2694(10) 4.2690 4.2692(10) 4.2859 4.2919 4.2716 4.2733 4.2631 4.2717
4.2759† 4.2857†

50 82 132Sn 4.7093(76) 4.7198 4.7410 4.7221 4.7172 4.7031 4.7141
4.7102† 4.7315†

82 126 208Pb 5.5012(13) 5.4850 5.5013(7) 5.5001 5.5184 5.5021 5.5180 5.5085 5.5233
5.4920† 5.5103†
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discussions), and essentially reflects the limitation of the EDF
approach. Note, however, that this uncertainty represents a per
mil (0.1%) accuracy for 208Pb.

C. Charge radii of doubly magic nuclei

We compare charge radii Rch from various compilations
in Table II. They are in good agreement, with differences
less than 0.01 fm, except for 208Pb, where the value taken in
Ref. [23] is 0.016 fm smaller than those given in Refs. [24,26].
We also show in Table II the charge radii predicted by a set of
Skyrme and relativistic approaches and explore the impact of
changing the proton radius of the SLy5 and BSk18 interac-
tions from the present adopted one to the one suggested in
the 1995 Particle Data Group (PDG) data. Some interactions
have indeed been adjusted with different values for the proton
radius, since its value has changed over time. The SLy5 in-
teraction, for instance, was obtained with the 1995 PDG data
[25].

The nuclear charge radius Rch is related to the rms proton
radius 〈R2

p〉 as [12,36,37]

〈Rch〉2 = 〈
R2

p

〉 + 〈
r2

p

〉 + N

Z

〈
r2

n

〉 + 〈
Rso

ch

〉2 + 〈
RDF

ch

〉2
, (3)

where the second term 〈r2
p〉 = 3

2σ 2 originates from the con-
volution of the point particle proton density with a proton
Gaussian form factor (with width σ ). The proton radius is fur-
ther discussed below. The third term in Eq. (3) is a correction
induced by the negative electromagnetic contribution of the
neutron charge density. It is defined as 〈r2

n〉 = 3
2 h̄2/(mN c)2μn,

with μn the neutron magnetic moment. The spin-orbit charge
distribution furnishes a magnetic dipole moment correction
to the nuclear rms charge radius, 〈Rso

ch〉2, the fourth term in
Eq. (3), which reads

〈
Rso

ch

〉2 = 1

Ze

h̄

mpc

∑
nl jτ

v2
nl jτμ

′
τ (2 j + 1)〈	σ · 	l〉l j, (4)

where the v2
nl jτ are the orbital occupation probabilities.

The modified magnetic dipole moments μ′
τ are defined as

μ′
n = μn and μ′

p = μp − 1/2 [37], and μτ are the intrinsic
nucleon magnetic dipole moments, μn = −1.91304μN and
μp = 2.79285μN , with μN = eh̄/(2mpc). Note that we have
truncated the accuracy with which μn and μp are known since
it does not impact the present analysis. Finally the spin matrix
elements in Eq. (4) are given in Appendix B.

The last term 〈RDF
ch 〉2 in Eq. (3) is the Darwin-Foldy term,

which is a relativistic correction considered only in nonrel-
ativistic approaches. We take it to have the value 〈RDF

ch 〉2 =
3/(4m2

N ) = 0.03311 fm2 [38,39]. We note that its value can
be almost three times larger when the relativistic effective
mass M∗ ≈ 0.6M is used in the nonrelativistic reduction
[40]. However, in either case, the correction provided by
the Darwin-Foldy term is small. Although a center-of-mass
correction should also be considered in the comparison to
experimental data, it is neglected in most calculations since
the correction is usually small.

We take the proton and neutron charge radii from the 2020-
2021 compilation of the Particle Data Group [41] (PDG),

which provides for the proton
√

〈r2
p〉 = 0.8409 ± 0.0004 fm

and for the neutron 〈r2
n〉 = −0.1161 ± 0.0022 fm2. Note that

the value for the proton charge radius is still under de-
bate; see Ref. [42] for a presentation of the actual situation.
The PDG proton charge radius originates from μp exper-
iments, which, however, differs from ep ones, suggesting√

〈r2
p〉 = 0.8751 ± 0.0061 fm. Considering the uncertainties

in these values, they are incompatible and represent the
largest uncertainty in the intrinsic nucleon properties. In-
terestingly, a global analysis of the proton and neutron
elastic form factors in the light cone frame formulation has

extracted
√

〈r2
p〉 = 0.852 ± 0.002(stat.) ± 0.009(syst.) fm and

〈r2
n〉 = −0.122 ± 0.004(stat.) ± 0.010(syst.) fm2 [43], in good

agreement with the PDG compilation [41].
We have estimated the impact of the uncertainty in the

proton charge radius on the nuclear charge radius as follows:
Considering a typical uncertainty on the proton charge ra-

dius δ
√

〈r2
p〉 ≈ 0.04 fm and neglecting the smaller uncertainty

from the neutron charge radius, the effect on the calcula-
tion of the nuclear charge radii is of the order of δRch ≈
δ〈r2

p〉/(2Rch) � 2 × 10−4 fm (for a typical Rch ≈ 5 fm). This
uncertainty is therefore much smaller than the experimental
uncertainty across different groups [23,24,26]; see Table II
for a set of nuclei from 16O to 208Pb, as well as the model
uncertainties for this observable. We considered SLy5 [27],
BSK18 [28], UNEDF0 [29], DD-ME2 [30], NL3* [31], and
NLRA1 [32] in Table II. The values of the nuclear charge
radii obtained by elastic electron scattering from stable and
exotic nuclei have been more systematically investigated for
nonrelativistic Skyrme and relativistic mean field interactions
in Ref. [44]. Note, however, that there is actually no estimate
of the EDF uncertainty on the nuclear charge radius, to our
knowledge, and we suggest below an empirical relation for it.
We conclude that the present uncertainty in the proton charge
radius has no impact on the following discussion.

In the past, the fits of nuclear EDFs have considered older
estimates for the proton and neutron charge radii, which have
varied more substantially. For instance in 1997, the Saclay-
Lyon Skyrme interactions [25], e.g., SLy5, employed 〈r2

p〉 =
0.634 fm2 (with σ = 0.65 fm) and 〈r2

n〉 = −0.126 745 58 fm2,
originating from the 1995 PDG compilation. For SLy5 and
BSK18, we compute the charge radii obtained by taking
the values for the proton and neutron charge radii from the
1995 PDG compilation. Note also that in 2003 the values
〈r2

p〉 = 0.74 fm2 and 〈r2
n〉 = −0.117 fm2 were considered in

Ref. [12]. Although larger, these variations of nucleon charge
radii impact the nuclear charge radius by about 0.01 fm (for a
typical Rch ≈ 5 fm), which is still smaller than the uncertainty
we associate in the following to the model predictions. The
fluctuation of the proton charge radius reported in the past will
thus not impact the present analysis.

Finally, the following empirical expression for the charge
radius,

〈
Remp

ch

〉2 ≈ 〈
R2

p

〉 + 0.64 fm2, (5)
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TABLE III. Experimental value for the ISGMR centroid energy EGMR in 208Pb compared to predictions from various nuclear EDFs. For
consistency with the theoretical calculations, we report in this table the ISGMR experimental centroid energy defined as

√
m1/m−1 and provided

in Ref. [48]. The incompressibility modulus Ksat , the skewness parameter Qsat , and the parameters pc, Kc, and Mc are also given for the EDFs.

E exp.

GMR (MeV) SLy5 BSk18 UNEDF0 RATP SGII SIII DD-ME2 NL3* NLRA1
Z N Nucleus

√
m1/m−1 Ref. [27] Ref. [28] Ref. [29] Ref. [53] Ref. [54] Ref. [55] Ref. [30] Ref. [31] Ref. [32]

82 126 208Pb 13.50(10) [48] 13.77(1) 14.02(0) 13.65(1) 14.12(1) 13.44(1) 16.79(1) 14.08(1) 14.77(1) 15.50(1)
Ksat (MeV) 230 242 230 240 215 355 251 258 285
Qsat (MeV) −364 −364 −404 −350 −381 101 479 122 279

pc (MeV fm−3) −0.653 −0.675 −0.659 −0.673 −0.608 −0.822 −0.589 −0.650 −0.678
Kc (MeV) 35.3 36.0 36.7 35.4 34.8 27.4 23.4 35.7 31.9
Mc (MeV) 1141 1202 1147 1188 1066 1717 992 1160 1271

has sometimes been considered instead of Eq. (3); see for
instance the discussion in Ref. [12]. The difference between
Eqs. (3) and (5) is of the order of 0.02 fm for the lightest
nuclei, e.g., 16O, and decreases to about 0.0001 fm for 132Sn
and 208Pb. This is the largest source of theoretical uncertainty
in the estimate of the nuclear charge radius.

In summary, by considering both experimental and the-
oretical uncertainties and by including the uncertainties in
using the empirical formula (5) instead of (3), we come to the
following estimate of the nuclear charge radius uncertainties
which can be used in the confrontation of EDF modeling of
nuclear data:

δRch ≈ 0.1A−1/3 fm. (6)

We will see in the following that such a loose uncertainty in
the nuclear charge radius is still able to filter out many nuclear
EDFs.

D. Isoscalar giant monopole resonance (ISGMR)
collective mode

The isoscalar giant monopole resonance energy is also used
in the estimation of the adequacy of a nuclear EDF for NS
properties, since it is correlated with the incompressibility
modulus [45,46]. The latter determines the variation of the en-
ergy density as the nucleon density departs from the saturation
density in symmetric nuclear matter (SM). It thus provides
important information about the density dependence of the
EoS, fundamental for the determination of NS properties. For
recent reviews of the incompressibility in finite nuclei and
nuclear matter, see for instance Refs. [47,48].

The energy of the ISGMR can be calculated using the sum
rule approach, which provides a fast and consistent way to get
the centroid of the ISGMR energy in deeply bound nuclei. It
is defined as [49]

EISGMR =
√

m1

m−1
, (7)

where the kth energy-weighted sum rule is

mk =
∑

l

(El )
k|〈l|Q̂|0〉|2, (8)

with El the collective excitation energy and Q̂ = ∑A
i=1 r2

i the
isoscalar monopole transition operator. The moment m1 is
evaluated in terms of a double commutator using the Thouless

theorem [50],

m1 = 2A
h̄2

mN
〈r2〉, (9)

where A is the nucleon number, mN the nucleon mass, and
〈r2〉 the rms radius. In the constrained Hartree-Fock (CHF)
approach [49,51] the moment m−1 is obtained from the deriva-
tive of the expectation value of the monopole operator,

m−1 = −1

2

[
∂

∂λ
〈λ|Q̂|λ〉

]
λ=0

, (10)

where |λ〉 is the ground-state energy of the constrained Hamil-
tonian,

Ĥconstr. = Ĥ + λQ̂. (11)

In Table III, the experimental value and theoretical pre-
dictions for the ISGMR centroid are given for 208Pb. It has
been estimated that an uncertainty of about 0.2–0.4 MeV in
the centroid can be translated into an uncertainty of about
15 MeV in the incompressibility modulus [52]. Precision of
the experimental results and of the theoretical calculations
for the centroid energy is thus essential. Considering that the
present uncertainty in Ksat is of the order of 20 MeV [48],
we have fixed the uncertainty in the model prediction for the
ISGMR centroid energy to be

δISGMR = 0.7 MeV. (12)

We also report in Table III a set of parameters defined
in uniform matter. The incompressibility modulus Ksat and
the skewness parameter Qsat are nuclear empirical parameters
(NEPs) encoding the density dependence of the energy per
particle in SM as

eSM(n) = Esat + 1
2 Ksatx

2 + 1
6 Qsatx

3 + · · · (13)

with x = (n − nsat )/3nsat. We can check that the mod-
els predicting Ksat = 230 ± 20 MeV [48] also predict in
208Pb EISGMR = 13.50 ± 0.7 MeV, confirming a posteriori
the relation (12). Note also the large differences predicted by
these EDFs for the parameter Qsat for the models with good
incompressibilities: between −400 and −350 MeV for the
nonrelativistic EDFs and an opposite sign for the relativistic
ones. It has been suggested that these systematic differences
are at the origin of the model dependence in the EISGMR − Ksat

correlation [56,57].
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The other parameters pc, Kc and Mc reported in Table III
are the pressure, incompressiblity, and Mc parameter,

p(n) = n2 ∂e

∂n
, (14)

K (n) = 18

n
p(n) + 9n2 ∂2e

∂n2
, (15)

M(n) = 3n
∂K (n)

∂n
, (16)

defined at the crossing density nc = 0.71(1)nsat [56].
Note that the values of the pressure and incompressibili-

ties, pc and Kc, are quite constant for the models with good
incompressibilities. The value of Mc is in agreement with the
one suggested in Ref. [56], namely Mc = 1100 ± 70 MeV.

E. The symmetry energy

The symmetry energy is a crucial quantity guiding the
exploration of asymmetric nuclear matter, such as beta-
equilibrium matter in NS’s. We shall, however, distinguish
between the global symmetry energy esym, defined as

esym(n) = eNM(n) − eSM(n), (17)

and its quadratic contribution esym,2,

esym,2(n) = 1

2

∂2e(n, δ)

∂δ2

∣∣∣∣
δ=0

, (18)

where e(n, δ) is the energy per particle in asymmetric matter,
δ = (nn − np)/n the isospin asymmetry, and eNM the energy
per particle in neutron matter (NM). The quadratic contri-
bution to the symmetry energy esym,2 is the quantity which
is probed by nuclear physics experiments, since the isospin
parameter remains small (δ � 0.25), while the properties of
neutron matter, with large asymmetries, are better described
by esym. The difference between the symmetry energy and
its quadratic contribution, esym − esym,2, represents the non-
quadraticities, which are often found to be small (2–3% of
the symmetry energy); see Ref. [58] and references therein
for a recent study. In the literature, these two quantities are
usually not distinguished, although formally they are differ-
ent. The two representations of the symmetry energy esym

and esym,2 can be expanded in terms of the density parameter
x = (n − nsat )/(3nsat ) as

esym(n) = Esym + Lsymx + 1
2 Ksymx2 + 1

6 Qsymx3 + · · · ,

(19)

esym,2(n) = Esym,2 + Lsym,2 x + 1
2 Ksym,2 x2

+ 1
6 Qsym,2 x3 + · · · , (20)

where Esym, Lsym, Ksym, and Qsym are nuclear empirical pa-
rameters (NEPs) and Esym,2, Lsym,2, Ksym,2, and Qsym,2 are
quadratic nuclear empirical parameters (QNEPs).

There are several experimental constraints for the sym-
metry energy in finite nuclei; see Refs. [9,59] for a detailed
presentation of these. Adopting the Esym,2-Lsym,2 representa-
tion, we show a few of them in Fig. 1, including the recent

FIG. 1. Correlation between the symmetry energy Esym,2 and its
slope Lsym,2 at saturation density. See text for more details on the
various constraints.

ones from the analyses of the PREX-II and CREX parity-
violating electron scattering (PVES) experiments.

Before discussing these recent results, let us first present
the others: “HIC”: constraints inferred from isospin diffusion
in heavy ion collisions (HICs) [60]; “Polarizability”: con-
straints on the electric dipole polarizability of 208Pb, 120Sn,
and 68Ni [61]; “	rnp(Sn)”: constraints deduced from the anal-
ysis of neutron skin thickness in Sn isotopes [62]; “FRDM”:
constraint from the finite-range droplet mass model calcula-
tions [63]; “IAS”: constraint deduced from the analysis of the
excitation energy of the isobaric analog state (IAS) based on
Skyrme-Hartree-Fock calculations [64]; “IAS + 	rnp”: com-
bination of the IAS constraint and neutron skin in 208Pb
[64]. Two additional constraints are also represented, which
formally refer to the global symmetry energy NEPs (Esym,2

and Lsym,2): “Neutron Stars”: horizontal constraint obtained
from a Bayesian analysis of mass and radius observations of
NSs by considering the 95% confidence values for Lsym [65];
“Unitary Gas”: the analysis of the unitary gas predictions for
the symmetry energy parameters [66] permits the values to the
right of the curve.

Also shown in Fig. 1 are analyses of the PREX-II [67]
and CREX [68] PVES experiments: There are indeed big
differences between the analysis by Reed et al. [69] (Esym,2 =
38.1 ± 4.7 MeV, Lsym,2 = 106 ± 37 MeV) and the one by
Reinhard et al. [70] (Esym,2 = 32 ± 1 MeV, Lsym,2 = 54 ±
8 MeV), which also includes the electric dipole polarizabil-
ity. Another analysis by Zhang and Chen [71] combining
PREX-II and CREX using a Bayesian inference finds a very
low centroid for Lsym,2 (Esym,2 = 30.2+3.0

−4.1 MeV, Lsym,2 =
15.3+41.5

−46.8 MeV). It has indeed been pointed our that the results
of PREX-II and CREX are in disagreement [72,73]. There are
large differences among the various PVES analyses. One of
the tightest constraints in the Esym,2-Lsym,2 diagram shown in
Fig. 1 is the one referred to as “IAS + 	rnp” [64]. We will
investigate the role of this constraint in the following analysis.
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III. COMBINED ANALYSIS OF THE MODELING
REPRODUCING LOW ENERGY NUCLEAR DATA

Since we have different types of low-energy nuclear
physics data, we face the difficulty of assembling them
together in a meaningful way. We suggest two ways of per-
forming the assessment, each of them providing interesting
results about the interactions.

A. The groups Gi and Di

The first method is a global assessment, in which all nuclei
contribute equally to the variance of each type of observable,
where the variances σi for the binding energies (i = B), the
charge radii (i = Rch), and the ISGMR energy (i = ISGMR)
are defined as,

σ 2
B = 1

NB

∑
i

[
Bi(exp) − Bi(model)

δB

]2

, (21)

σ 2
Rch

= 1

NRch

∑
i

[
Rch,i(exp) − Rch,i(model)

δRch (Ai )

]2

, (22)

σ 2
ISGMR = 1

NISGMR

∑
i

[
EISGMR,i(exp) − EISGMR,i(model)

δISGMR

]2

,

(23)

with NB = 13 (see Table I), NRch = 6 (see Table II), and
NISGMR = 1 (see Table III). The uncertainties δB, δRch (Ai ), and
δISGMR were introduced in Sec. II. The groups built on this
global assessment will be called Gi.

In the second method, the variances of the binding energy
and the charge radius of the symmetric N = Z and asymmetric
N �= Z nuclei are accumulated separately. We evaluate the rms
deviations for the symmetric nuclei,

σ 2
B,S = 1

NB,S

∑
i∈S

[
Bi(exp) − Bi(model)

δB

]2

, (24)

σ 2
Rch,S = 1

NRch,S

∑
i∈S

[
Rch,i(exp) − Rch,i(model)

δRch (Ai )

]2

, (25)

for asymmetric nuclei,

σ 2
B,A = 1

NB,A

∑
i∈A

[
Bi(exp) − Bi(model)

δB

]2

, (26)

σ 2
Rch,A = 1

NRch,A

∑
i∈A

[
Rch,i(exp) − Rch,i(model)

δRch (Ai )

]2

, (27)

and finally for the ISGMR energy, which remains the same as
in the previous case. We include calculations for the following
nuclei in the groups described above:

(i) (B, S): 16O, 40Ca, 56Ni, 100Sn.
(ii) (B, A): 34Si, 48Ca, 52Ca, 54Ca, 48Ni, 78Ni, 90Zr, 132Sn,

208Pb.
(iii) (Rch, S): 16O, 40Ca.
(iv) (Rch, A): 48Ca, 90Zr, 132Sn, 208Pb.
(v) (ISGMR): 208Pb.

FIG. 2. Representation of the rms deviations for the observables
B, Rch, and EISGMR.

We thus have NB,S = 4 and NB,A = 9, NRch,S = 2 and
NRch,A = 4, and NISGMR = 1. We note that the rms deviations
of the global approach are simply the renormalized sums of
the deviations of this second approach. In the following, the
groups built upon this more detailed approach are called Di.

We show in Fig. 2 the distribution of the rms deviations
σi associated with the observables i = E , i = Rch, and i =
EISGMR, for all the interactions considered (415 in total). Note
that for these three observables, the main peak is systemati-
cally located at about σi < 2, which supports our choices for
the associated uncertainties presented in Sec. II.

In the following, we sort the modeling according to the
rms deviation and attribute to them a set of letters, namely
the three letters LBLRch LEISGMR for the groups Gi and the five
letters LB,SLB,A : LRch,SLRch,A : LEISGMR for the groups Di, where
the letters L are

(i) L = A if σ < 1,
(ii) L = B if 1 < σ < 2,

(iii) L = C if 2 < σ < 3,
(iv) L = D if σ > 3.

The complete list of the scores for each parametrization
analyzed in this work is given in the Supplemental Material
[74]. As examples, we obtain the following scores for the
two approaches (global versus detailed) in the cases of the
relativistic NLSV1 and the nonrelativistic RATP and SLy4
Skyrme forces:

(i) NLSV1: ABC, BA:AB:C,
(ii) RATP: BBA, BC:BB:A,

(iii) SLy4: BBA, BB:BB:A.
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TABLE IV. Number of EDFs passing the filters imposed by the
groups Gi and Di, and D4sym. The numbers of EDFs in each groups
for which MTOV � 1.6M� and MTOV � 2.0M� are also counted. See
the text for more details.

D0/G0 D1 G1 D2 G2 D3 G3 D4 G4 D4sym

Total 374 81 90 66 74 61 74 45 54 22
MTOV � 1.6M� 312 77 85 65 72 61 72 45 52 22
MTOV � 2.0M� 198 49 53 44 49 41 49 25 29 12

The relativistic NLSV1 interaction reproduces the bind-
ing energies better than the charge radii, which are better
reproduced than the ISGMR energy. In detail, the binding
energies (charge radius) of the N �= Z nuclei are reproduced
better (worse) than the N = Z ones. For the nonrelativistic
models, we observed that they are scored identically (BBA) in
the general analysis, but a more detailed analysis shows that
the SLy4 is better than the RATP at reproducing the binding
energies in N �= Z nuclei. This illustrates the differences in the
global and detailed approach, which will be further analysed
in the following.

Based on the criteria described above, we separate the
interactions submitted to the finite nucleus constraints into five
different groups, as follows:

(i) D0 and G0: groups containing all the interactions con-
sidered,

(ii) D1 and G1: groups containing interactions with a let-
ter rank from A to C over all types of data,

(iii) D2 and G2: groups containing interactions with a let-
ter rank of A or B for the binding energies,

(iv) D3 and G3: groups containing interactions with a let-
ter rank of A or B for the binding energies and charge
radii,

(v) D4 and G4: groups containing interactions with a let-
ter rank of A or B for the binding energies, charge radii
and GMR energies.

(vi) D4sym: This group imposes on top of D4 the constraint
“IAS + 	rnp”, as detailed in the following.

The number of interactions surviving the conditions im-
posed on the different groups Di and Gi are shown in Table IV
by the line denoted by “total”. We also count the number of
interactions that permit a neutron star of mass MTOV � 1.6M�
and MTOV � 2.0M� in the case of TOV hydrostatic equilib-
rium; see Sec. IV for more details. Massive NSs with masses
M � 2M� may not be composed only of nucleons and leptons
as supposed in the EoS investigated in the present analysis. It
would therefore be incorrect to exclude EoSs which do not hit
the observed limit for the maximum mass M�. For this reason,
while we investigate nucleonic matter with MTOV � 1.6M�
and MTOV � 2.0M�, we do not draw firm conclusions with re-
spect to the maximum mass reached by our EoSs. We remark
that the D0 (or G0) group is composed of 374 parametrizations
rather than 415, the total number of interactions. This is due to
the fact that a number of problematic interactions have been
discarded, due to one of the following conditions: (i) spinodal
instability (negative values of the sound speed) above nsat or

FIG. 3. Correlation between the symmetry energy and its slope
for the groups Gi [panel (a)] and Di [panel (b)]. The unitary gas
boundary is shown for reference.

(ii) negative value of the pressure in stellar matter. The upper
density for each EoS corresponds to MTOV or the density for
which the sound speed is equal to c. All EoSs used in our
analysis are, therefore, causal.

B. Impact of the groups Gi and Di on
the Esym,2-Lsym,2 correlation

We compare in Fig. 3 the impact of the different groups
Gi and Di on the Esym,2-Lsym,2 correlation. It is clear that the
groups Di are better correlated than the groups Gi, reflecting
the constraint that N = Z and N �= Z nuclei are reproduced
with same accuracy. Already the group D2 is better correlated
than the group G2, showing that the goodness of the models
to reproduce data (the difference between G1 and G2 or D1

and D2) is less effective than the condition imposed on the D2

models (difference between D2 and G2). The additional con-
dition also appears through the charge radii, i.e., D3 removes
the lower values of Lsym,2, while the additional constraint on
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FIG. 4. Symmetry energy as a function of the density n for
the interactions of the D4 group confronted with the IAS contour
and the IAS + 	rnp one. Dashed curves: interactions satisfy-
ing the IAS + 	rnp constraint. Full curves: interactions not
compatible with this constraint. The models are represented by
the different curves, namely, black: Skyrme; red (light gray):
RMF-DD; and blue (dark gray): RMF-NL. See text for more
details.

the ISGMR in 208Pb plays a small but non-negligible role (the
difference between D3 and D4).

By comparing the contours G4 with D4, we see clearly
the impact of imposing that N = Z and N �= Z nuclei are
reproduced with the same accuracy. In G4 for instance, a poor
reproduction of N �= Z nuclei could be compensated by a
better description of N = Z ones, e.g., as occurs for the SKa
interaction. This is not true in the group D4, which creates a
tighter correlation in the Esym,2-Lsym,2 diagram; see panel (b)
in Fig. 3.

In conclusion, Fig. 3 shows the effectiveness of the con-
dition that N = Z and N �= Z nuclei are reproduced with
the same accuracy on the Esym,2-Lsym,2 correlation. The con-
straints on the charge radii and ISGMR centroid energy also
play an additional role for the Di groups, but have almost no
impact on the Gi groups.

C. The group D4sym with an additional symmetry
energy constraint

We now detail how the group D4sym (see Table IV) is
obtained by adding symmetry energy constraints on top of the
D4 group, which was shown in Sec. III B to naturally constrain
Esym,2 and Lsym,2. Among the set of experimental constraints
for the symmetry energy shown in Sec. II E, we decided to
investigate the impact of IAS + 	rnp [64] since it is obtained
from low-energy nuclear data. Another reason for investigat-
ing these constraints is that they are provided as contours in
the density dependence of the symmetry energy; see Fig. 4.
We can then filter our interactions in the D4 group according to
their ability to fit inside these contours, as illustrated in Fig. 4.

Two contours are shown in Fig. 4: the one represent-
ing the IAS constraint alone as well as one representing

FIG. 5. Correlation between the symmetry energy and its slope
for the groups Di. The contour of the group D0 = G0 is indicated by
the largest band, while the contour in orange includes D4 group. The
blue (green) contour includes the D4 + IAS (D4sym) group, defined by
the constraints shown in Fig. 4. A few other experimental constraints
from Fig. 1 are shown for reference.

the IAS + 	rnp constraints together. The different colors re-
flect the different kinds of interactions analyzed, namely,
black for Skyrme, blue for RMF-NL, and red for RMF-
DD. For each model, we compute a loss function defined
as χ2 = 1/N

∑
i[e

av
sym,2(i) − emodel

sym,2]2/[	esym,2(i)]2, where the
index i = 1 to N scans over the data. Models with χ2 < 1 are
accepted. The interactions compatible with the IAS + 	rnp

constraint are represented by dashed curves and define the
D4sym group.

We now show in Fig. 5 the region of Esym,2-Lsym,2 which
is populated by the D4sym group. For a better understand-
ing, we also show the role of the groups D0, D4, D4 +
IAS, and finally D4sym. The contour D4 isolates a sub-
group allowed by HIC and is partially excluded by the
unitary gas constraint. We show how the constraint from
IAS (D4 + IAS) and IAS + 	rnp (D4sym) [64] reduces the
viable models shown in the Esym,2-Lsym,2 diagram. Includ-
ing the IAS constraint (D4 + IAS) reduces the contour to a
smaller group. which makes it compatible with neutron stars,
and finally the contour D4sym reduces it even further inside
the 	rnp(Sn) experimental constraint. All the new contours
(D4, D4 + IAS, and D4sym) are given in the Supplemental
Material [74].

One could also remark that, despite the good overlap be-
tween the IAS experimental constraint and our D4 + IAS
contour, some of our interactions are outside the IAS ex-
perimental constraint. This is because we have considered
a larger number of interactions, including relativistic ap-
proaches, which were not considered in Ref. [64], where
the contours are based on results solely from Skyrme
models. The same remark could be made about the compar-
ison of the group D4sym and the IAS + 	rnp experimental
constraint.
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FIG. 6. Same as Fig. 1 including the new contours from the
present analysis: D4, D4 + IAS, D4sym. The light-grey band represent
the contour of all explored interactions (group D0 = G0).

Finally in Fig. 6 we compare the contours shown in Fig. 5
to all experimental and theoretical constraints shown in Fig. 1.
The centroids and the standard deviation evaluated among the
interactions forming the groups D4, D4 + IAS, and D4sym are
given in Table V. Note the small dispersion obtained for the
D4sym group.

IV. MASSES AND RADII OF NEUTRON STARS

We now reach the second stage of our analysis where the
EDFs that have been successfully selected by their goodness
in reproducing finite nuclei properties are confronted with
their predictions for NS properties. The EoS for dense mat-
ter and NSs are detailed in Appendix C. In this section, we
discuss their predictions.

The properties of nonrotating NSs are obtained from
the solution of the the Tolman-Oppenheimer-Volkoff (TOV)
equations [75–77] written as (G = c = 1)

d ptot (r)

dr
= − [ρtot (r) + ptot (r)][m(r) + 4πr3 ptot (r)]

r2[1 − 2m(r)/r]
, (28)

dm(r)

dr
= 4πr2ρtot (r), (29)

whose solution is determined by the initial conditions
ptot (0) = pc (central pressure) and m(0) = 0. In Eqs. (28) and
(29), the energy density ρtot and pressure ptot are given from
Eqs. (C13) and (C14). The maximum value of M for a given

TABLE V. Esym,2 and Lsym,2 centroid and standard deviation eval-
uated for the interactions in the groups D4, D4+IAS, and D4sym.

Esym,2 Lsym,2

Group (MeV) (MeV)

D4 33.5 ± 2.4 73.4 ± 23.3
D4+IAS 32.3 ± 1.2 62.9 ± 12.3
D4sym 31.8 ± 0.7 58.1 ± 9.0

EoS is called MTOV. The radius corresponding to a given mass,
e.g., 1.4M�, is called R1.4.

The breakdown density above which the nucleonic EoS
is replaced by an EoS with new degrees of freedom, e.g.,
hyperons or quarks, is not known. Turning the discus-
sion of the breakdown density into NS masses is easier
in terms of observational data. For instance, NSs with
masses 1.2M�, 1.6M�, 2.0M� correspond to central densities
of ≈ (1.7–3)nsat, (2–4.5)nsat, (2.3–6)nsat, where the larger
central densities are obtained for the softer EoSs. From
these numbers, it is reasonable to extrapolate the nucleonic
EoS up to about 1.6M�, while the NSs with 2.0M� are
considered as an extreme nucleonic scenario. In the fol-
lowing, we explore two cases where MTOV � 1.6M� and
MTOV � 2.0M�.

At very low mass (below M�) the core EoS is connected
to a crust EoS. The necessity of having a unified approach
for both the crust and the core [78,79] has been pointed out.
Nevertheless, a piecewise approach, in which the EoS in the
core is connected to another EoS in the crust, is also widely
used when a precision in the NS radius of about 100 m is suffi-
cient or when detailed information of the crust-core transition
is not required. In this work we adopt the procedure used in
Refs. [80] in which the SLY interaction of Ref. [78], based on
the SLy4 Skyrme parametrization [27], is used for the crust
region up to n = 0.1nsat. As in Refs. [80], a uniform matter
EoS starts at nsat and a logarithmic scale cubic spline takes
care of smoothly connecting the lower limit of the crust to
the upper limit of the core. Such a prescription allows a good
description of the crust and the core, provided they can be
smoothly connected. Exceptions exist, however. For instance
if the core EoS is described by an interaction with a value for
Lsym,2 much larger than the one used to describe the crust,
difficulties in connecting the pressure in the crust and the
core regions appear. This, however, is not the case for the
interactions selected in the D4 group.

Mass-radius profiles are shown in Fig. 7 for various sets
of EoSs. The condition on the mass, namely, MTOV � 1.6M�
or MTOV � 2.0M�, removes the softer EoSs predicting low
radii. We represent the individual contributions of the inter-
actions belonging to the D4 group with the same convention
as detailed in Fig. 4. Dashed curves represent the interac-
tions satisfying this constraint, namely, black for Skyrme,
and blue (dark gray) for RMF-NL interactions with con-
stant coupling constants. In panels (c) and (d) of Fig. 7,
the envelopes of the groups D4 (dark brown) and D4sym

(green) are compared. The stiffest EoSs from the D4 group
are excluded in the D4sym group, since they require a sym-
metry energy out of the boundaries shown in Fig. 4. We
obtain Rmean

1.4 = 13.00 ± 0.78 (12.53 ± 0.69) km for the D4

(D4sym) group for MTOV � 1.6M� and Rmean
1.4 = 13.10 ± 1.00

(12.38 ± 0.87) km for MTOV � 2.0M�.
The contours related to the observational constraints from

NICER [5–8] and for the GW170817 event detected by the
LIGO and Virgo Collaboration [4] are indicated in panels (c)
and (d). A good overlap between the NICER contours and the
groups D4 and D4sym is obtained, illustrating the agreement
between the present constraints from nuclear physics and the
ones from observations of neutron stars. A similar conclusion
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FIG. 7. Mass-radius diagram for various groups: The D0 group
is delimited by the dashed contour (gray band), and the D0 group
with the restriction on MTOV, namely, 1.6M� [panels (a) and (c)]
and 2.0M� [panels (b) and (d)], is shown as delimited by the dotted
contour (orange band). Curves in panels (a) and (b) show interac-
tions of the D4 group following the same notation as in Fig. 4. In
panels (c) and (d) are shown the contours (full line dark brown
ones) constructed from the interactions of the D4 group in which
MTOV � 1.6M� and MTOV � 2.0M�. Also in these panels we display
the contours (full green line greens) defined by the interactions of
the D4sym subgroup and the curves that define it [dotted lines on
panels (a) and (b)]. Finally, violet circle and magenta square con-
tours represent the mass-radius constraints of the NICER mission for
PSR J0030 + 0451 [5,6] and PSR J0740 + 6620 [7,8] at the 90%
confidence level. For these contours, dashed (solid) lines indicates
the data from Miller et al. [5,7] (Riley et al. [6,7]). The constraint
determined from LIGO and Virgo Collaboration on the GW170817
event [4] is represented by brown triangle contours.

was obtained in Ref. [81] for the gravitational waves con-
straint extracted from GW170817.

We now perform a more detailed study of the different
groups Di and Gi (i = 1 to 4) to understand the impact of
the different low-energy nuclear constraints we have consid-
ered. In Fig. 8, we compare the largest radius uncertainty
	R, namely, the difference between the maximum and the

FIG. 8. Radius dispersion represented by the largest radius un-
certainty 	R and its standard deviation σR as a function of the mass
M, for the groups Di (solid lines) and Gi (dashed lines) with i = 1
(black), 2 (red), 3 (blue), and 4 (orange). The results correspond to
those interactions satisfying MTOV � 1.6M� (closed symbols) and
MTOV � 2.0M� (open symbols). See text for more details.

minimum radius, with the standard deviation σR defined as

σ 2
R = 1

n

n∑
i=1

(Ri − 〈R〉)2, (30)

where i runs over the nuclear interactions belonging to the
groups Di (solid lines) or Gi (dashed lines). As expected, we
have σR < 	R and both quantities increase as functions of
the mass. For a canonical mass NS and the D4 group, we
obtain 	R ≈ 2.8 km and σR ≈ 0.8 km (assuming only that
MTOV � 1.6M�). The number of interactions belonging to
each group is given in Table IV. Comparing D1/G1 and D2/G2

one measures the impact of better accuracy in the reproduction
of the masses: the impact is very small in general. Note,
however, a small reduction of 	R between G1 and G2 at the
mass 1.6M�. Then, comparing D2/G2 and D3/G3 as well as
D3/G3 and D4/G4, one can see the successive impact of an
improved reproduction of the charge radii and ISGMR. Note
the reduction of 	R induced by the condition on the charge
radius in the groups Di, which is not visible for the groups Gi.
This shows that the requirement to reproduce the charge ra-
dius in N = Z and N �= Z with the same accuracy is the main
condition which breaks the degeneracy between the groups Gi

and Di.
The striking result from Fig. 8 is, however, the very weak

dependence of the radius uncertainty, represented here by σR

and 	R, across the increasing index i of the groups Di and
Gi. This feature indicates that a more accurate reproduction
of experimental masses, charge radii, and the GMR energy
in 208Pb does not have a major impact on the modeling of
global NS properties, here M and R. There is, however, still
an impact from the requirement that N = Z and N �= Z nuclei
are described with the same accuracy, which is mainly given
by the charge radius data.
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FIG. 9. Normalized distributions of several isovector QNEPs, in particular, the symmetry energy (Esym,2) and its derivatives (Lsym,2, Ksym,2,
Qsym,2). The probability density functions (PDFs) for the priors from interactions in the D0 group (black dashed curves) are also presented in
each panel.

Our finding suggests that a rough reproduction of low-
energy nuclear physics properties (experimental masses,
charge radii, and ISGMR energy), as given in model D4 for
instance, is sufficient, provided that N = Z and N �= Z nuclei
are described with same accuracy. The gain in improving the
modeling reproducing these experimental data is not effective
for the prediction of NS global properties. The reason is that
the extrapolation from finite nuclei located at around nsat and
close to isospin symmetry δ � 0.25 to canonical mass NSs
with densities above 2nsat, where matter is neutron rich δ ≈ 1,
requires the knowledge of the density and isospin dependence
of the nuclear EoS, which represents a large and effective
source of uncertainties. However, low-energy nuclear physics
properties should be more important in determining the prop-
erties of the crust, such as the mass and the charge of nuclear
clusters (Acl, Zcl); see for instance Refs. [79,82–85].

V. FURTHER ANALYSIS OF THE DENSITY DEPENDENCE
OF THE SYMMETRY ENERGY

In the previous section, we illustrated the needs for a better
understanding of the density dependence of the nuclear EoS
for the prediction of NS global properties. Since the symmetry
energy is the most important term in the EoS driving the

density dependence of the EoS and since the quadratic nuclear
empirical parameters (QNEPs) allow for a simple representa-
tion of this density dependence, we now analyze directly the
QNEPs.

We present the normalized distributions (NDs) of the
QNEPs Esym,2, Lsym,2, Ksym,2, and Qsym,2 in Fig. 9 for various
scenarios. We also present the prior distribution represented
by the black dashed lines. This prior is obtained from the D0

group.
The positions of the ND peaks for Esym,2 are almost iden-

tical to that of the prior, showing no effect of the interaction
selection or the condition on MTOV for this QNEP. The ND for
the group D4sym is more peaked than the others. For Lsym,2, the
prior is almost flat while the posterior distributions indicate
a preference for lower values of Lsym,2 (about 50–70 MeV).
In the case of group D4sym, the Lsym,2 normalized distribution
is double peaked, as is the distribution for Ksym,2. For the
latter, one maximum is located in the region −50 to 20 MeV
and another around −100 MeV. With regard to the D4 group,
notice that the relative size of the peaks in Ksym,2 changes
with the mass constraint: the peak at −100 MeV is preferred
if MTOV � 2.0MTOV, while the peak around 0 MeV is pre-
ferred if MTOV � 1.6MTOV. For Qsym,2, the PDF is very broad,
with most of the models lying between 100 an 600 MeV.
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FIG. 10. Representation of correlations between Ksym,2 (Qsym,2) and Lsym,2 for the interactions of the D0 group [panels (a) and (d)] and D4

group with the restriction of reaching at least 1.6M� [panels (b) and (e)] and 2.0M� [panels (c) and (f)]. The green square symbols represent
the interactions of the D4sym subgroup. The boundaries values (dashed lines) are given in Table VI.

The centroid of the normalized distribution conditioned by
MTOV � 2.0M� is, however, larger than the one conditioned
by MTOV � 1.6M�. This shows that both Ksym,2 and Qsym,2

are impacted by the condition on MTOV.
Another view of these data is shown in Fig. 10, where we

plot the correlations between the QNEPs [Ksym,2 versus Lsym,2

in panels (a), (b), and (c) and Qsym,2 versus Lsym,2 in panels
(d), (e), and (f)] for interactions in the D0 group [panels (a)
and (d)] and D4 group [panels (b), (c), (e), and (f)]. These last
cases also show the impact of MTOV. We observe that there are
no strong correlations among the QNEPs visible in this figure.
The reason is that a low value of Lsym,2 could be compensated
by larger values of Ksym,2 and/or Qsym,2. There is, however, a
set of limits that we can extract from Fig. 10. This set is given
in Table VI.

The lower boundary in Lsym,2 is due to two constraints.
The first one is the reproduction of the low-energy nuclear
physics properties, which produces a lower limit of the order
of 30 MeV, as shown in Fig. 9. The requirement to reproduce
large masses, such as 1.6M� or 2.0M� pushes this lower limit
up to about 45 MeV. It is, however, important to keep in

TABLE VI. Minimum and maximum values for the quantities
presented in Fig. 10 related to each group analyzed.

Lsym,2 (MeV) Ksym,2 (MeV) Qsym,2 (MeV)

min max min max min max

D0 6 160 −394 160 −786 1361
D4 (1.6) 45 127 −122 132 −166 777
D4 (2.0) 45 127 −122 132 −166 777
D4sym (1.6) 45 73 −122 13 128 525

mind that the boundaries we obtain are strongly impacted by
the hypothesis that we have made concerning the absence of
phase transition above saturation density. The case of a phase
transition has been studied in Ref. [86].

The range of values for the isovector QNEPs reported in
Table VI could however be compared to other boundaries
suggested in the literature. In the following we assume that
the NEPs and QNEPs in the isospin channel are similar.
For instance, by analyzing nonrelativistic Skyrme, relativistic
mean field, and relativistic Hartree-Fock models, it has been
suggested that Ksym,2 = (−100 ± 100) MeV [57]. From ob-
servational constraints based on x-ray emission from seven
NSs in globular clusters, a value Ksym = −85+82

−70 MeV was
preferred [87]. These values are consistent with the recent
analysis based on GMR energies in 90Zr, 116Sn, and 208Pb
using the Skyrme model, leading to Ksym,2 = (−120 ± 40)
MeV [88]. From the analysis of GW170817, it was sug-
gested that −259 � Ksym � 32 MeV [89] and, in a similar
analysis, the following values were suggested [90]: Ksym =
(440 ± 210) MeV, Ksym = (560 ± 150) MeV, and Ksym =
(260 ± 240) MeV, depending on the observational PDF for
�̃ extracted from GW170817 [91–93]. The value taken for
Ksym, however, was shown to be well anticorrelated with Lsym,
mainly driven by the condition to reproduce 2M�. Since the
PDFs for �̃ from GW170817 prefer low values for Lsym, this
explains why large values for Ksym were obtained in Ref. [90].
More recently, a compilation of 16 results from independent
analyses of neutron star observational data since GW170817
lead to the following expectation: Ksym = (−107 ± 88) MeV
[20]. We also mention a recent analysis based on the latest
results from the NICER observatory, where it was found that
the lower radius limit of J0740 by Riley et al. [8] only requires
Ksym to be higher than about −150 MeV, depending somewhat
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FIG. 11. Mass-radius profiles obtained from the interactions of
the D4 group, restricted to those producing a neutron star of at least
1.6M� [panel (a)] and 2.0M� [panel (b)]. The points show the values
at which the central density corresponds to saturation density nsat

(circles), 2nsat (squares), 3nsat (triangles up), 4nsat (triangles down).
and 5nsat (× symbol).

on the value of the skewness of the symmetry energy (uncon-
strained by the data).

All these results have to be taken with caution, however,
since they have been obtained with different nuclear models
and corresponding systematical uncertainties that are difficult
to estimate. Different priors have also been considered for
the results based on a Bayesian statistical approach, which
impact the results. We note, however, that our present findings
for Ksym,2 are in agreement with the predictions from these
analyses.

In conclusion, we have extracted constraints on the QNEPs
determining the density dependence of the symmetry energy.
These constraints are given in Table VI for the different groups
D0, D4, and D4sym conditioned by MTOV. One could remark
that these QNEPs are still largely unknown, although they
are crucial for precise predictions of NS properties. However,
the ranges for these QNEPs given in Table VI represent the
best evaluation of these QNEPs based on low-energy nuclear
experiments and conditioned by MTOV.

VI. NEUTRON STAR GLOBAL PROPERTIES

In this section we further elaborate on the role of the sym-
metry energy in the determination of NS global properties.
We then introduce a refined classification of the EDFs based
on the properties of the symmetry energy and we analyze the
impact of this classification on NS global properties.

A. Mass-radius relation of neutron stars

The mass-radius (M-R) relations for the interactions of the
group D4 are shown in Fig. 11, in a similar manner as in
panels (a) and (b) of Fig. 7. In addition, we have grouped the
interactions in D4 into six different sets according to their MR

relations. These sets are shown in color as indicated in the
legend.

These sets could also be sorted by the values of the NEPs
Lsym,2, Ksym,2 and the condition that MTOV � 2M� as shown
in Table VII: set I consists of interactions from the group D4

for which Lsym,2 � 50 MeV; sets II, III, and IV have 50 <

Lsym,2 � 100 MeV, and additionally set II contains the single
EoS for which Ksym,2 � −110 MeV, while sets III and IV have
larger values for Ksym,2 > −110 MeV. The difference between
sets III and IV is that all EoSs from set IV satisfy the condition
MTOV � 2M�, while models in set III do not, except for the
SKa parametrization. Finally, sets V and VI are EoSs with
large values for Lsym,2 � 100 MeV. Set V has a value of Ksym,2

of about 25 MeV, while set VI has Ksym,2 � 100 MeV.
The analysis of Fig. 11 and Table VII leads to the following

conclusions: The main difference among the different sets is
coming from the value of Lsym,2: low values correspond to set
I, intermediate values to sets II, III, and IV, and large values to
sets V and VI. The value of Lsym,2 determines the stiffness of
the EoS as shown in Fig. 11: the softer the EoS, the lower the
radius and the larger the central density for a given mass M.
To a certain degree, the stiffness of the EoS is determined by
the value of Ksym,2. In order to make this more clear in Fig. 11,
we have separated set II from sets III and IV according to the
value of Ksym,2.

We also indicate in Table VII the EoSs which belong to
the subgroup D4sym. They are the EoSs for which Lsym,2 <

90 MeV. Note that the precise upper value for Lsym,2 actually
depends on the value of Ksym,2.

In conclusion, we have analyzed the dominant role of
Lsym,2 in globally controlling the MR diagram, with some
additional contribution from Ksym,2. In Fig. 11 however,
one observes some correlations between Lsym,2 and the
masses/radii at fixed central densities. In the following, we
analyze these correlations in more detail.

B. Radius and mass (individual analysis)

We represent in Fig. 12 the correlation between the NS
radius R—extracted at different densities (nsat, 2nsat, and
3nsat)—and Lsym,2. Note that the correlation is opposite at
nsat to that at higher densities: At nsat the radius decreases as
Lsym,2 increases, while at higher density the radius increases
as a function of Lsym,2. The reason is simple: having a larger
value of Lsym,2 implies a softer EoS below nsat. So the anti
correlation at nsat reflects the EoS being softer at low densities
for larger values of Lsym,2. At higher densities, the situation is
different since the larger the value of Lsym,2 is, the stiffer the
EoS is above nsat. The EoSs are so stiff that they change the
MR relation: above saturation density, the radius is weakly
impacted by the mass. Since stiffer EoSs above nsat imply
larger values for Lsym,2, the radius is correlated with Lsym,2

in this region.
We now test the empirical relation between R and pc,

suggested in Ref. [10]. The pressure pc is the central pressure
of the NS (at β equilibrium). We show the quantity Rp−1/4

c as
a function of R in Fig. 13. The correlation between R and pc

is better at 2nsat and 3nsat compared to nsat, as already noted
in Ref. [10]. The product Rp−1/4

c is weakly correlated with
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TABLE VII. Properties of the interactions belonging to the D4 group. All entries are in MeV, except for the saturation density nsat given
in fm−3, the dimensionless effective mass m∗ = M∗(nsat )/Mnuc, and the maximum NS mass, Mmax, given in units of M�. Esat is the binding
energy, KNM = Ksat + Ksym,2, QNM = Qsat + Qsym,2, and Kτ,v = Ksym,2 − 6Lsym,2 − QsatLsym,2/Ksat . The symbol � refers to those interactions
that also produce neutron stars with MTOV � 2.0M� and/or and belong to the D4sym group. See the text for the definition of the subgroups I to
VI.

Mmax D4sym interaction Ref. nsat Esat Ksat Qsat Esym,2 Lsym,2 Ksym,2 Qsym,2 KNM QNM Kτ,v m∗

2.03 � � SLy3 [94] 0.160 −15.94 230 −363 31.97 45 −122 525 108 162 −322 0.70
2.04 � � SLy4 [27] 0.160 −15.97 230 −363 32.00 46 −120 522 110 158 −323 0.69
2.04 � � SLy230b [25] 0.160 −15.97 230 −363 32.01 46 −120 521 110 158 −323 0.69

I 2.04 � � SLy0 [94] 0.160 −15.97 230 −364 31.98 47 −116 509 113 145 −324 0.70
2.04 � � SLy8 [94] 0.160 −15.97 230 −363 32.00 47 −116 510 114 147 −324 0.70
2.04 � � SLy2 [94] 0.161 −15.99 230 −364 32.00 47 −115 507 115 142 −325 0.70
2.04 � � SLy5 [27] 0.161 −15.99 230 −364 32.01 48 −113 501 117 137 −325 0.70

II 1.93 � SD1 [95] 0.156 −15.70 232 −376 32.00 61 −116 281 116 −95 −383 1.00
1.95 � IUFSU* [96] 0.150 −16.02 236 −259 29.85 50 12 388 248 129 −234 0.61
1.99 SINPA [97] 0.151 −16.00 203 −59 31.20 54 27 335 229 276 −281 0.58
1.95 � BSR8 [98] 0.147 −16.04 231 −291 31.08 60 −1 238 230 −53 −286 0.61
1.74 � BSR15 [98] 0.146 −16.03 227 −512 30.97 62 −21 128 205 −384 −253 0.61
1.73 � BSR16 [98] 0.146 −16.05 225 −503 31.24 62 −24 152 201 −351 −259 0.61
1.73 � FSUGZ06 [99] 0.146 −16.05 225 −503 31.18 62 −24 153 201 −350 −259 0.61
1.93 � BSR9 [98] 0.147 −16.07 233 −297 31.61 64 −11 203 221 −94 −313 0.60
1.93 � FSUGZ03 [99] 0.147 −16.07 232 −297 31.54 64 −12 203 221 −94 −314 0.60
1.74 � BSR17 [98] 0.146 −16.05 222 −489 31.98 67 −32 177 190 −313 −287 0.61

III 1.95 � BSR10 [98] 0.147 −16.06 227 −255 32.72 71 −17 205 211 −50 −362 0.60
1.98 SINPB [97] 0.150 −16.05 206 −449 33.96 72 −51 552 156 103 −449 0.59
1.74 BSR18 [98] 0.146 −16.05 221 −486 32.74 73 −42 199 179 −286 −319 0.61
2.20 � SKa [100] 0.155 −15.99 263 −300 32.91 75 −78 175 185 −126 −441 0.61
1.95 BSR12 [98] 0.147 −16.10 232 −290 34.00 78 −44 324 188 34 −414 0.61
1.93 BSR11 [98] 0.147 −16.08 227 −312 33.69 79 −25 173 202 −140 −389 0.61
1.74 BSR19 [98] 0.147 −16.08 221 −484 33.78 79 −50 195 171 −290 −353 0.61
1.74 BSR20 [98] 0.146 −16.09 223 −508 34.54 88 −40 83 183 −425 −368 0.61
1.94 BSR13 [98] 0.147 −16.13 229 −294 35.82 91 −42 139 187 −155 −471 0.60
1.75 BSR21 [98] 0.145 −16.12 220 −468 35.96 93 −46 67 174 −401 −406 0.60
1.95 BSR14 [98] 0.147 −16.18 235 −317 36.32 94 −42 113 194 −205 −479 0.61
2.05 � FSUGarnet [101] 0.153 −16.23 230 −13 30.92 51 59 138 289 125 −249 0.58
2.47 � DD-ME2 [30] 0.152 −16.14 251 479 32.30 51 −87 777 164 1256 −492 0.57
2.43 � DD-ME1 [102] 0.152 −16.20 245 317 33.06 55 −101 706 144 1022 −505 0.58
2.45 � � BSR1 [98] 0.148 −16.02 240 −36 31.04 59 13 468 253 432 −335 0.61
2.37 � � BSR2 [98] 0.149 −16.03 240 −48 31.50 62 −3 403 237 355 −363 0.61

IV 2.37 � � FSUGZ00 [99] 0.149 −16.03 240 −48 31.43 62 −3 402 237 355 −364 0.61
2.34 � � BSR3 [98] 0.150 −16.09 231 −115 32.74 70 −8 398 223 283 −395 0.60
2.43 � � BSR4 [98] 0.150 −16.08 239 4 33.17 73 −21 420 218 424 −461 0.61
2.47 � BSR5 [98] 0.151 −16.12 236 −11 34.46 83 −14 347 222 336 −511 0.61
2.42 � BSR6 [98] 0.149 −16.13 236 −8 35.62 86 −50 352 186 344 −561 0.60
2.49 � BSR7 [98] 0.149 −16.18 232 −20 37.26 99 −17 198 215 179 −603 0.60

V 2.06 � FSUGold2 [103] 0.150 −16.26 238 −150 37.57 113 25 −166 263 −316 −580 0.59
2.75 � Q1 [104] 0.148 −16.10 242 9 36.44 116 106 267 348 275 −593 0.60
2.73 � FAMA1 [105] 0.148 −16.00 200 −303 38.01 121 113 403 313 100 −427 0.60

VI 2.74 � NL3* [31] 0.150 −16.31 258 −122 38.68 123 106 224 364 102 −688 0.59
2.79 � E [106] 0.150 −16.13 221 21 38.58 125 132 381 354 402 −627 0.58
2.79 � ER [106] 0.149 −16.16 220 −25 39.42 127 128 377 348 352 −618 0.58

the radius, if the pressure is taken at 2nsat and 3nsat. Since
the radius is well correlated with Lsym,2 at these densities (see
Fig. 12), the product Rp−1/4

c is also weakly correlated with
Lsym,2 at 2nsat and 3nsat. At nsat, however, the points are much
less aligned than at 2nsat and 3nsat. The dispersion between the
points reflects the (dominant) effect of Lsym,2 as well as that
of Ksym,2. In NS, the central pressure near saturation density is

dominantly given by Lsym,2 [1], while other NEPs contribute
more as the density increases [57,80].

The correlation suggested in Ref. [10] at 2nsat and 3nsat

reflects at least two interesting features: first it shows the weak
influence of the radial distribution of the pressure in NSs,
since it is mostly the central value which fixes the NS radius,
and second it hides the contribution of the different NEPs to
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FIG. 12. Neutron star radius at nsat (black symbols), 2nsat [red
(light gray) symbols], and 3nsat [blue (dark gray) symbols] as a
function of Lsym,2, obtained from the interactions of the D4 group
and restricted to those satisfying MTOV � 1.6M� [panel (a)] and
MTOV � 2.0M� [panel (b)]. The symbols correspond to the sets I to
VI as indicated in the legend.

the density dependence of the pressure, since the correlation
furnishes the central pressure pc directly.

With regard to the correlation between NS mass and Lsym,2,
notice that in Fig. 11 one observes the relation between the
mass M at fixed central density and the radius, which reflects
the influence of Lsym,2. To make this clearer, we explicitly
represent in Fig. 14 the correlation between the mass M

FIG. 13. Empirical relation between pressure (in units of
MeV fm−3) and the radius (in km) obtained from the interactions of
the D4 group and restricted to those satisfying MTOV � 1.6M� [panel
(a)] and MTOV � 2.0M� [panel (b)]. The symbols correspond to the
sets I to VI as indicated in the legend. The lines represent the best
values for the product Rp−1/4

c , namely, panel (a) [(b)]: 5.79 [5.55]
and 4.33 [4.05], for the red dashed and blue solid lines, respectively.
All numbers in units of km fm3/4MeV−1/4.

FIG. 14. Neutron star masses corresponding to central densities
of nsat (black symbols), 2nsat [red (light gray) symbols], and 3nsat

[blue (dark gray) symbols] as a function of Lsym,2, obtained from
the interactions of the D4 group and restricted to those satisfying
MTOV � 1.6M� [panel (a)] and MTOV � 2.0M� [panel (b)]. Lines:
fitting curves with the respective correlation coefficients.

and Lsym,2 at different central densities: nsat, 2nsat, and 3nsat.
The correlation is almost perfect at nsat with the correlation
coefficient being 0.995 (0.998) for MTOV � 1.6M� (MTOV �
2.0M�). However, it becomes broader at higher densities. This
reflects the role of other empirical parameters governing the
density dependence of the EoS, for instance Ksym or Qsat. It
is also interesting to observe that the correlations are very
close for nsat and 2nsat when conditioned by MTOV � 2.0M�
in comparison to the MTOV � 1.6M� case, reflecting the weak
impact of MTOV on this correlation. The same is not true for
3nsat, that presents a better correlation when the 2MTOV �
2.0M� condition is applied.

VII. OTHER GLOBAL PROPERTIES OF NEUTRON STARS

In this last section of the paper, we analyze global prop-
erties of NSs that have not yet been analyzed, namely the
moment of inertia and the tidal deformability.

A. Moment of inertia

In the low spin regime, as suggested by Hartle and Sharp
[107], the rotation of a NS is much smaller than the Kepler fre-
quency, allowing us to assume that the NS remains spherical.
The moment of inertia is therefore expressed as [107,108]

I = 8π

3

∫ R

0
dr r4ε

(
1 + p

ε

)
ω̄

�
eλ−�, (31)

where ω̄ is the local spin frequency, which represents the
correction from general relativity to the asymptotic angu-
lar momentum �. The local angular momentum is ω =
� − ω̄. Furthermore, eλ = [1 − m(r)/r]−1/2 and � is the
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FIG. 15. I-M correlation obtained from the D0 group (grey band
delimited by the dashed contour in all panels). Orange band delimited
by the dotted contour: regions from the D0 group conditioned by
MTOV. Panels (a) and (b): the curves are from the subgroups of D4

as given in Table VII and the legend is the same as in Fig. 11. Panels
(c) and (d): the full line dark brown contour is constructed from
the interactions of the D4 group conditioned by MTOV [as in panels
(a) and (b)] and the full line green contour delimits the predictions
based on the D4sym group.

gravitational potential solution of the equation

d�(r)

dr
= m(r) + 4πr3 p(r)

r2[1 − 2m(r)/r]
, (32)

with the boundary condition �(R) = 1
2 ln(1 − 2M/R).

We then investigate how the moment of inertia is influ-
enced by the low-energy nuclear experimental constraints.
We show in the panels (a) and (b) of Fig. 15 the moment
of inertia I as a function of the mass M for the six sets, as
indicated in the legend. There is a reasonable ordering of the
moment of inertia as a function of the sets: the moment of
inertia increases for increasing values of Lsym,2. We obtain
Imean
1.4 = 1.33 ± 0.16 (1.24 ± 0.14) × 1045 g cm2 for the D4

FIG. 16. 	I (range) and σI (standard deviation) as a function of
the mass M, for the groups Di (solid lines) and Gi (dashed lines) with
i = 1 (black), 2 (red), 3 (blue), and 4 (orange). The results correspond
to those interactions satisfying MTOV � 1.6M� (closed symbols) and
MTOV � 2.0M� (open symbols). See text for more details.

(D4sym) group for MTOV � 1.6M� and Imean
1.4 = 1.36 ± 0.20

(1.22 ± 0.18) × 1045 g cm2 for MTOV � 2.0M�.
A more systematical investigation of the moment of inertia

is shown in Fig. 16, where the effects of the groups D1–D4 and
G1–G4 are given in the four panels. As in Fig. 8, we represent
the largest uncertainties 	I = Imax − Imin and the standard
deviation σI = (1/n)

∑
i(Ii − 〈I〉)2. The uncertainty measured

by these two quantities increases as a function of the mass M.
We also confirm our previous conclusions from Fig. 8: there
is only a very limited impact due to a better description of
the low-energy nuclear data. An improvement is seen when
using the Di groups rather than the Gi ones, showing that
the condition to describe equally well the N = Z and N �= Z
nuclei also plays a role here. However, the uncertainty in
the moment of inertia is generated by the unknown density
dependence of the EoS, as we have already discussed in the
case of the radius.

B. Tidal deformability

Finally, we address the question of the tidal deformability,
which is probed by coalescing neutron stars and carried away
by gravitational waves emitted during the last orbits before
merger. We analyze its correlation with the experimental nu-
clear data.

Tidal deformability is defined as the quotient of the in-
duced quadrupole moment Qi j to the tidal field εi j . In terms
of the second Love number k2, it is given by λ = 2

3 k2R5.
One can also define the dimensionless tidal deformability as
� = 2

3 k2(R/M )5 ≡ 2
3 k2C−5 where C is the compactness. The

Love number k2 is defined as

k2 = 8C5

5
(1 − 2C)2[2 + 2C(yR − 1) − yR]

× {2C[6 − 3yR + 3C(5yR − 8)]
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FIG. 17. �-M correlation for the group D0 group (grey band
delimited by the dashed contour in all panels) and for the group D0

conditioned by MTOV (orange band delimited by the dotted contour).
See Fig. 15 for the description of the curves in panels (a) and (b) and
the contours in panels (c) and (d). The data for �1.4 shown in panels
(c) and (d) is extracted from Ref. [4] by the LIGO/Virgo Collabora-
tion (GW17817 event).

+ 4C3[13 − 11yR + C(3yR − 2) + 2C2(1 + yR)]

+ 3(1 − 2C)2[2 − yR + 2C(yR−1)]ln(1−2C)}−1,

(33)

with yR ≡ y(R) and y(r) being the solution of the differential
equation,

r
dy

dr
+ y2 + yF (r) + r2Q(r) = 0, (34)

where the functions F (r) and Q(r) are given by

F (r) = 1 − 4πr2[ε(r) − p(r)]

f (r)
, (35)

Q(r) = 4π

f (r)

[
5ε(r) + 9p(r) + ε(r) + p(r)

c2
s (r)

− 6

4πr2

]

−4

[
m(r) + 4πr3 p(r)

r2 f (r)

]2

, (36)

FIG. 18. Dimensionless tidal deformability � as a function of the
compactness C = M/R for the D4 group. The grey band represents
the contour of the D0 group (prior). The insets show a zoom of the
curve in linear scale and for a small region of C.

in which c2
s (r) = ∂ p(r)/∂ε(r) is the square of the sound speed

and f (r) = 1 − 2m(r)/r [109–113].
The dimensionless tidal deformability � is shown as a

function of M in Fig. 17 for the six sets, as indicated in the
legend. We can compare the envelop of the best EoS (group
D4) with the prior from group D0. The orange band, delimited
by the dotted contour, represents the envelop of the group D0

conditioned by the constraint on MTOV. As discussed previ-
ously for the M-R relation, as well as for the I-R one, there
is only a small impact of a better reproduction of the low-
energy nuclear data, with most of the uncertainty originating
from the unknown density dependence of the EoS. We also
indicate the point reported by the LIGO/Virgo Collaboration
for the dimensionless tidal deformability of a canonical star,
namely, �1.4 = 190+390

−120 [4]. As we see, the softest interac-
tions are more compatible with this specific restriction. We
obtain �mean

1.4 = 669 ± 323 (482 ± 179) for the D4 (D4sym)
for MTOV � 1.6M� and �mean

1.4 = 760 ± 400 (474 ± 231) for
MTOV � 2.0M�.

We investigate in Fig. 18 the �-C universal relation sug-
gested in Ref. [114]. The contributions for the six sets are
shown in different colors. We confirm the universal relation,
and we show that the dispersion in this relation is mainly given
by Lsym,2. In addition, the dispersion is even larger when all
EDFs in the D0 group are considered. The origin of the small
dispersion is thus due to the interaction selection of the Gi/Di

groups. We have checked that an accurate description of the
low-energy nuclear data by the EDFs is also less important
here than an improved determination of the density depen-
dence of the EoS.

In Fig. 19 we present the maximal uncertainty and the
standard deviation related to the dimensionless tidal deforma-
bility, defined similarly to the moment of inertia and to the
radius shown before. We clearly see a reduction of 	� =
�max − �min and σ� as a function of the neutron star mass,
at variance with the analysis of R and I . This is related to the
fact that � is strongly decreasing with M, as shown in Fig. 17.
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FIG. 19. Uncertainties in � represented by the largest � uncer-
tainty 	� and the standard deviation σ� for each groups Gi and
Di with i = 1 (black), 2 (red), 3 (blue), and 4 (orange). The results
correspond to those interactions satisfying MTOV � 1.6M� (closed
symbols) and MTOV � 2.0M� (open symbols).

The correlation of the experimental nuclear data with the
tidal deformability is extremely small. Among the quantities
we have investigated in this study, the tidal deformability is
perhaps the quantity on which the constraints provided by the
experimental nuclear data has the smallest impact.

Finally, we show in Fig. 20 the dimensionless tidal de-
formability of a M = 1.4M� star, namely, �1.4, as a function
of the NEPs Esym,2, Lsym,2, and Ksat. This figure is similar to
Fig. 5 from Ref. [9], which showed no correlation for a re-
duced set of nuclear interactions. Restricting the EoSs to those
with �1.4 � 800, as suggested by GW170817 observation [4],

FIG. 20. Dimensionless tidal deformability �1.4 as a function
of Esym,2 [panel (a)], Lsym,2 [panel (b)], and Ksat [panel (c)] for the
D4 group conditioned by MTOV. We also present results for the
D4sym subgroup restricted to MTOV � 1.6M�. Full lines: fitting curves
considering all points. Dashed lines: fitting curves considering only
points in which �1.4 � 800. In the case of the D4sym subgroup,
dashed and full lines are the same.

we verify that the correlations between the global properties
of NSs and saturation properties of nuclear matter encoded in
Esym,2, Lsym,2, and Ksat are weak in general. We thus confirm
the conclusions of Ref. [9]. Furthermore, our findings also
show that the experimental constraints imposed on the density
dependence of the symmetry energy to generate D4sym group,
produces stronger correlations between �1.4 and Lsym,2 and
Ksat in comparison with the corresponding ones from D4
group. This shows the important role of the symmetry energy
in relating �1.4 with nuclear matter properties.

VIII. CONCLUSIONS

In this study, we have analyzed the link between the con-
straints on mean field EDFs generated by low-energy nuclear
experimental data and their corresponding predictions for
NSs. To do so, we have investigated 415 mean field interac-
tions, both relativistic and nonrelativistic, for which we have
calculated several quantities that can be directly compared
to the experimental data. These quantities are the masses,
radii, and GMR energies of a number of doubly magic nuclei
(chosen to minimize the impact of uncontrolled approxima-
tions such as pairing, deformation, etc). We have defined five
groups, from G0 to G4, where G1 is the set of interactions
reproducing the experimental nuclear masses with the largest
tolerance, G2 with the smaller tolerance, while G3 and G4

add successively the constraint on the charge radius and the
giant monopole resonance. In these groups, we have evaluated
the reproduction of the experimental data globally. They are
contrasted with another set of groups, called D0 to D4, for
which a more detailed evaluation is performed by separating
the N = Z nuclei from the others: To be well ranked in the
groups Di, the interactions must reproduce equally well the
N = Z and N �= Z nuclei. From this first step of our analysis,
we find that

(1) The group D4 exhibits a fairly strong correlation be-
tween Esym,2 and Lsym,2.

(2) By combining the low-energy nuclear data and an
analysis of the density dependence of the symme-
try energy [64], we have isolated a group D4sym that
further reduces the uncertainty in the symmetry en-
ergy. We find Esym,2 = 31.8 ± 0.7 MeV and Lsym,2 =
58.1 ± 9.0 MeV.

In a second step, we have confronted the different groups
Gi and Di with global observational quantities related to stable
NSs, such as radii, moments of inertia, and tidal deforma-
bilities. We have compared the priors, identified as the G0

or D0 groups, which include all viable EoSs, with the best
interactions of the groups G4 and D4. From this comparison,
we find that

(3) The selection of interactions according to their ade-
quacy in reproducing the experimental nuclear data
has a weak impact on the reduction of uncertainties
of global NS properties with masses around or above
the canonical one. This reveals that the density de-
pendence of the EoS is not constrained by precision
measurements of low-energy nuclear data.
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(4) The selection of the groups Di has a greater impact on
the results than the selection of the groups Gi, showing
the importance of having control over the isotopic pre-
dictions of the interactions. The charge radius plays an
important role in this selection.

(5) The 1.4M� neutron star (NS) radius lies between 12
and 14 km for the “better” nuclear interactions.

(6) To a large degree, the density dependence of the
symmetry energy explains the observed dispersion in
NS properties, so that a more detailed knowledge of
the symmetry energy should result in a reduction of
the uncertainties in NS radii, at least for canonical to
low-mass NSs, where there is no phase transition to
exotic matter.

The fourth point is not surprising, since NS matter is an
extrapolation of current nuclear interactions towards large
isospin asymmetries. The third point, however, is a bit more
surprising. It tells us that the constraints of experimental nu-
clear data near saturation density are only weakly correlated
with the behavior of the EoS at several times saturation den-
sity. This confirms the conclusions of Ref. [80], where the un-
certainties in the extrapolation of the nucleonic EoS are found
to be fairly uncontrolled above the densities at which experi-
mental data exist. We therefore emphasize that the reduction
of the uncertainties in NS global properties will not originate
from better data related to low-energy nuclear physics, since
the density or energy region for which constraints are required
is outside the reach of standard nuclear physics.

The experimental data on the symmetry energy is found
to be much more constraining, however. We find that the
slope of the symmetry energy Lsym,2 near saturation density
is well correlated with NS radii and masses. We also ob-
serve that the experimental data on IAS + 	rnp (group D4sym)
has a large impact on further selection among our best set
of interactions D4. The D4sym group furnishes, for the most
part, values of Lsym,2 � 90 MeV, depending on the value of
Ksym,2. It also determines boundaries for a few QNEPs, Lsym,2,
Ksym,2, and Qsym,2, which are tighter than the ones proposed in
Ref. [57].

In conclusion, we have shown in our analysis that the ex-
perimental nuclear masses, radii, and GMR energies of a set of
doubly magic nuclei show little correlation with the properties
of nucleonic matter at several times saturation density. The
experimental data related to the symmetry energy, however,
are somewhat better correlated with these properties. In the
future, we plan to perform a complementary analysis includ-
ing data from heavy-ion collision exploring densities above
nsat, the saturation density of nuclear matter. This appears to
be a necessary condition for making substantial progress on
the understanding of the properties of dense nuclear matter.

The results of the Hartree-Fock calculations for Skyrme
and relativistic models are publicly available [115].
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APPENDIX A: NONRELATIVISTIC SPIN-ORBIT
PARAMETERS

For a Skyrme-type force the mean-field Hamiltonian for
neutrons reads

ĥ = p̂Bp̂ + U + W · (σ × p̂), (A1)

where the mean-field U , the inverse mass B, and the spin-orbit
potential W are local functionals of the neutron and proton
densities nn and np. The density dependence is linear for the
mass and spin-orbit potentials, i.e.,

B = h̄2

2m
+ b1n + b′

1nn, (A2)

W = 1

2
W0(∇n + ∇nn), (A3)

and, for interactions with generalized spin-orbit interactions
[116],

W = b4∇n + b′
4∇nn. (A4)

For standard Skyrme interactions, the ratio b′
4/b4 is unity,

while it is zero for σω-RMF.
We can link the parameters b4 and b′

4 to the EDF coeffi-
cients C∇J

t [12] as

C∇J
0 = − 3

4W0, C∇J
1 = − 1

4W0, (A5)

and, for interactions with generalized spin-orbit interaction,

C∇J
0 = −b4 − 1

2 b′
4, C∇J

1 = − 1
2 b′

4. (A6)

APPENDIX B: SPIN-ORBIT MATRIX ELEMENTS

We have

〈	σ · 	l〉l j = j( j + 1) − l (l + 1) − 3/4

=
{

l, j = l + 1/2,

−(l + 1), j = l − 1/2.
(B1)
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so that

(2 j + 1)〈	σ · 	l〉l j =
{

2l (l + 1), j = l + 1/2,

−2l (l + 1), j = l − 1/2.
(B2)

Since the occupation numbers of the nuclei under consider-
ation are vnl jτ = 1, we see that the only contributions to the
spin orbit sum will come from filled j = l + 1/2 orbitals for
which the higher energy j = l − 1/2 orbital is empty. We
tabulate these values in Table VIII.

The smallest radius in the Table VIII that we compare to
experimental data and for which 〈	Rso

ch〉2 is nonzero is that
of 34Si. Taking its charge radius to be Rch(34Si) ≈ 3.2 fm, we
find the relative change to be

	Rch

Rch
≈ 1

2

	
〈
Rso

ch

〉2
R2

ch

≈ −0.001.

The effect is thus quite small and will not make a perceptible
difference in our results. Kurasawa and Suzuki have shown
that the spin-orbit correction is nonzero in the relativistic case,
even for closed shell nuclei [117]. However, the size of the
correction is still of the same order of magnitude of those
shown here.

APPENDIX C: DENSE MATTER EQUATIONS OF STATE

We briefly review the equations of state for dense matter
and neutron stars at beta equilibrium.

1. Skyrme and relativistic mean field models

For the Skyrme model, the energy density (including the
nucleon rest mass) and pressure are given by

ρsky = 3

10Mnuc

(
3π2

2

)2/3

n5/3H5/3 + t0
8

n2[2(x0 + 2) − (2x0 + 1)H2]

+ 1

48

2∑
i=1

t3in
σi+2[2(x3i + 2) − (2x3i + 1)H2] + 3

40

(
3π2

2

)2/3

n8/3(aH5/3 + bH8/3) + nMnuc (C1)

and

psky = 1

5Mnuc

(
3π2

2

)2/3

n5/3H5/3 + t0
8

n2[2(x0 + 2) − (2x0 + 1)H2] + 1

48

2∑
i=1

t3i(σi + 1)nσi+2[2(x3i + 2) − (2x3i + 1)H2]

+ 1

8

(
3π2

2

)2/3

n8/3(aH5/3 + bH8/3) (C2)

with

a = t1(x1 + 2) + t2(x2 + 2), (C3)

b = 1
2 [t2(2x2 + 1) − t1(2x1 + 1)], (C4)

Hl (y) = 2l−1[yl + (1 − y)l ]. (C5)

where y = Z/A = np/n is the proton fraction of the system, and Mnuc is the nucleon rest mass. The set of constants x0, x1, x2,
x31, x32, t0, t1, t2, t31, and t32 defines a particular parametrization of the interaction. The nucleon chemical potential is obtained as
follows:

μsky
q (n, y) = ∂ρsky

∂nq
= 1

2Mnuc

(
3π2

2

)2/3

n2/3H5/3(y) + 1

5

(
3π2

2

)2/3

n5/3[aH5/3(y) + bH8/3(y)]

+ t0
4

n[2(x0 + 2) − (2x0 + 1)H2(y)] + 1

48

2∑
i=1

t3i(σi + 2)nσi+1[2(x3i + 2) − (2x3i + 1)H2(y)]

± 1

2
[1 ∓ (2y − 1)]

{
3

10Mnuc

(
3π2

2

)2/3

n2/3H ′
5/3(y) − t0

8
n(2x0 + 1)H ′

2(y) − 1

48

2∑
i=1

t3in
σi+1(2x3i + 1)H ′

2(y)

+ 3

40

(
3π2

2

)2/3

n5/3[aH ′
5/3(y) + bH ′

8/3(y)]

}
+ Mnuc, (C6)

where q = p, n stands for protons and neutrons, respectively, and H ′
l (y) = dHl/dy.

For the relativistic mean field (RMF) model, the Hartree approximation to the T00 and Tii/3 components of the energy-
momentum tensor leads to

ρRMF = 1

2
m2

σ σ 2 + A

3
σ 3 + B

4
σ 4 − 1

2
m2

ωω2
0 − C

4

(
g2

ωω2
0

)2 − 1

2
m2

ρρ̄
2
0(3) + gωω0n + gρ

2
ρ̄0(3)n3 + ρ

p
kin + ρn

kin

+ 1

2
m2

δ δ
2
(3) − gσ g2

ωσω2
0

(
α1 + 1

2
α′

1gσ σ

)
− gσ g2

ρσ ρ̄2
0(3)

(
α2 + 1

2
α′

2gσ σ

)
− 1

2
α′

3g2
ωg2

ρω
2
0ρ̄

2
0(3) (C7)
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TABLE VIII. Spin orbit quantities.

〈	Rso
ch〉2

Z N Nucleus Proton Neutron
∑

nl jτ l (l + 1)μτ (fm2)

8 8 16O 0 0.000
14 20 34Si 1d5/2 12μp 0.026
20 20 40Ca 0 0.000
20 28 48Ca 1 f7/2 24μn −0.025
20 32 52Ca 1 f7/2, 2p3/2 28μn −0.030
20 34 54Ca 1 f7/2 24μn −0.025
28 20 48Ni 1 f7/2 24μp 0.026
28 28 56Ni 1 f7/2 1 f7/2 24μp + 24μn 0.008
28 50 78Ni 1 f7/2 1g9/2 24μp + 40μn −0.004
40 50 90Zr 1g9/2 40μn −0.021
50 50 100Sn 1g9/2 1g9/2 40μp + 40μn 0.008
50 82 132Sn 1g9/2 1h11/2 40μp + 60μn −0.001
82 126 208Pb 1h11/2 1i13/2 60μp + 84μn 0.001

and

pRMF = −1

2
m2

σ σ 2 − A

3
σ 3 − B

4
σ 4 + 1

2
m2

ωω2
0 + C

4

(
g2

ωω2
0

)2

+ 1

2
m2

ρρ̄
2
0(3) + pp

kin + pn
kin − 1

2
m2

δ δ
2
(3)

+ gσ g2
ωσω2

0

(
α1 + 1

2
α′

1gσ σ

)

+ gσ g2
ρσ ρ̄2

0(3)

(
α2 + 1

2
α′

2gσ σ

)
+ 1

2
α′

3g2
ωg2

ρω
2
0ρ̄

2
0(3),

(C8)

with the kinetic energy terms

ρ
p,n
kin = 1

π2

∫ kF p,n

0
k2

(
k2 + M∗2

p,n

)1/2
dk, (C9)

pp,n
kin = 1

3π2

∫ kF p,n

0

k4dk(
k2 + M∗2

p,n

)1/2 , (C10)

in which the Fermi momentum of the nucleon is kF p,n, and
n3 = np − nn. From the energy density, we obtain the chemi-
cal potentials for protons and neutrons as

μRMF
p,n = (

k2
F p,n + M∗

p,n
2)1/2 + gωω0 ± gρ

2
ρ̄0(3), (C11)

with + (−) for protons (neutrons). The meson masses are
mσ , mω, mρ , and mδ . In parametrizations of the interaction

that include the δ meson, the effective masses of protons and
neutrons are different,

M∗
p,n = Mnuc − gσ σ ∓ gδδ(3), (C12)

with − (+) for protons (neutrons). In all of the above expres-
sions, σ , ω0, ρ̄0(3), and δ(3) are the “classical” fields of the
model. Furthermore, gσ , gω, gρ , gδ , A, B, C, α1, α′

1, α2, α′
2, and

α′
3 are the coupling constants of the interaction. For the case

of the density-dependent version of the model, similar expres-
sions are found by taking gσ → �σ (n), gω → �ω(n), gρ →
�ρ (n), gδ → �δ (n), and A = B = C = α1 = α′

1 = α2 = α′
2 =

α′
3 = 0 in Eqs. (C7)–(C12). Additionally, in this case, the

pressure also contains a term given by n�R(n), with �R(n)
(the rearrangement term) defined in terms of the field deriva-
tives with respect to the density. Likewise, �R(n) is also
added to the proton/neutron chemical potential in this case.
We refer the reader to Ref. [17] for more details regarding
the thermodynamics of the RMF model (in infinite matter), as
well as for the explicit expressions of the field equations.

2. Equation of state for neutron star matter

Cold catalyzed NSs are at β equilibrium and are locally
charge neutral. These conditions impose the following equi-
librium equations between nucleons (n and p) and leptons (e
and μ): μn − μp = μe = μμ and np = ne + nμ.

The total energy density and pressure are then given by

ρtot = ρnuc + μ4
e

4π2
+ 1

π2

∫ √
μ2

μ−m2
μ

0
dk k2

(
k2 + m2

μ

)1/2

(C13)

and

ptot = pnuc + μ4
e

12π2
+ 1

3π2

∫ √
μ2

μ−m2
μ

0

dk k4

(
k2 + m2

μ

)1/2 ,

(C14)

where ρnuc and pnuc represent the nucleonic contribution to
the energy density and to the pressure. They are described
by the nonrelativistic Skyrme model (sky) or the relativistic
mean field (RMF) previously described in Appendix C. Fur-
thermore, in the ground state the electron density ne is related
to μe through ne = μ3

e/(3π2) and if μμ � mμ (mμ = 105.7
MeV) the muon density reads nμ = [(μ2

μ − m2
μ)3/2]/(3π2).
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