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Empirical neutron star mass formula based on experimental observables
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We derive the empirical formulas expressing the mass and gravitational redshift of a neutron star, whose
central density is less than threefold the nuclear saturation density, as a function of the neutron-skin thickness or
the dipole polarizability of 208Pb or 132Sn, especially focusing on the eight Skyrme-type effective interactions.
The neutron star mass and its gravitational redshift can be estimated within ≈10% errors with our formulas, while
the neutron star radius is also expected within a few % errors by combining the derived formulas. Owing to the
resultant empirical formulas, we find that the neutron star mass and radius are more sensitive to the neutron-skin
thickness of 208Pb than the dipole polarizability of 208Pb or 132Sn.
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I. INTRODUCTION

The death of a massive star would be the brightest mo-
ment in its life. This is known as a supernova explosion.
Through such an explosion, a neutron star would come into
the world as a massive remnant. The neutron star realizes
extreme states, which are almost impossible to reproduce on
Earth [1]. The density inside the star easily exceeds the stan-
dard nuclear density, ρ0, and may reach several times larger,
if not more, than ρ0, depending on the equation of state (EOS)
for neutron star matter. The magnetic and gravitational fields
inside/around the star also become much stronger than those
observed in our solar system. So, the observations of neutron
stars and/or their phenomena might inversely tell us the aspect
of such extreme states. In particular, the constraints from the
observations on the neutron star mass and radius are directly
associated with the validity of the EOSs. For instance, the
discoveries of massive neutron stars could exclude some of
soft EOSs, whose expected maximum mass is less than the ob-
served mass [2–5]. The gravitational wave observations from
the binary neutron star mergers, GW170817 and GW190425,
enable us to estimate the mass and radius of neutron stats
before mergers [6,7]. The observation of GW170817 also
gives us information on the dimensionless tidal deformabil-
ity, which leads to the constraint on the radius of 1.4M�
neutron star, i.e., R1.4 � 13.6 km [8]. Furthermore, owing to
the relativistic effect, i.e., the light bending due to the strong
gravitational field induced by the neutron star, one could pri-
marily constrain the neutron star compactness (the ratio of the
mass to radius) by carefully observing the pulsar light curves
(e.g., [9–15]). In fact, the x-ray observations with the neu-
tron star interior composition explorer (NICER) succeed in
putting the constraint on the neutron star mass and radius, i.e.,
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PSR J0030 + 0451 [16,17] and PSR J0740 + 6620 [18,19].
In general, astronomical observations tend to constrain the
properties of neutron stars in a higher-density region.

On the other hand, via nuclear experiments performed on
Earth, one could achieve information on the relatively lower-
density region. Since any EOS model can be characterized
with its own nuclear EOS parameters, the constraint on such
parameters through the terrestrial experiments would partially
restrict on the EOS for neutron star matter, which enables
us to narrow the allowed region of neutron star mass and
radius. For example, the observation of the ratio of the positive
charged pions to the negative ones in the decay process of
� isobars into nucleons with pions, using the isotope beams
provided by the Radioactive Isotope Beam Factory (RIBF)
at RIKEN in Japan, constrains the density-dependence of
symmetry energy, L, i.e., 42 � L � 117 MeV (SπRIT, e.g.,
[20]). The estimation of the neutron-skin thickness of 208Pb,
using the parity-violating asymmetry of the elastic electron
scattering cross section measured at the Thomas Jefferson
National Accelerator Facility in Virginia, also constrains L as
L = 106 ± 37 MeV (PREX-II [21]). We note that these two
constraints on L seem to be relatively large values compared
to the fiducial value of L, i.e., L � 60 ± 20 MeV [22,23].
Anyway, by using these constraints on the saturation param-
eters, one can discuss the expected neutron star mass and
radius by using the empirical formulas expressing the neutron
star mass and its gravitational redshift as a function of the
suitable combination of nuclear saturation parameters [24,25]
or those for asymmetric nuclear matter [26]. In such a way, the
astronomical observations and experimental constraints must
be complementary approaches for fixing the EOS of neutron
star matter [27].

Since the nuclear saturation parameters cannot be directly
measured, one has to evaluate them using the experimental
data strongly associated with the saturation parameters. Up
to now, several strong correlations between the experimental
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observables and saturation parameters have been found theo-
retically, which helps us to estimate the saturation parameters
from the experiments. However, one might have to say that
these correlations are still incomplete. Due to the theoretical
uncertainties in the correlations, it is not always true that the
constraint on the saturation parameters becomes more severe,
even though the accuracy in experiments would be improved
well [28–33]. For instance, the estimation of the L parameter
using the parity asymmetry of the polarized electron scat-
tering cross section of 208Pb is strongly model dependent;
even based on the same experimental data, different groups
estimate different values of the L parameter [21,34]. So, in
this study, we will consider to derive the empirical formulas
expressing the neutron star mass and its gravitational redshift
directly using the experimental observables, instead of the
nuclear saturation parameters as in Refs. [24–26]. For this
purpose, we adopt the eight EOS models with the Skyrme
energy density functionals, where five of them are SLy models
(see the next section for details). So, our discussion can be
done in a relatively small parameter range, i.e., 40 � L �
80 MeV. In addition, the empirical relations will be derived
by using the neutron star models, whose central density is less
than threefold the saturation density. Since the corresponding
neutron star masses are at most ≈1M�, one may not be able
to directly discuss the real observations of neutron star mass
with our empirical relations.

This paper is organized as follows. In Sec. II, we briefly
mention the EOSs considered in this study and the experimen-
tal observables estimated from each EOS model. In Sec. III,
we derive the empirical formulas for the neutron star mass
and its gravitational redshift, where we also show the rela-
tive accuracy in the estimations from our empirical formulas.
Then, in Sec. IV, we discuss the neutron star mass and radius
expected from the resultant empirical formulas, together with
the constraints from the astronomical and experimental ob-
servations. Finally, we conclude this study in Sec. V. Unless
otherwise mentioned, we adopt geometric units in the follow-
ing, c = G = 1, where c and G denote the speed of light and
the gravitational constant, respectively.

II. EOS FOR NEUTRON STAR MATTER
AND EXPERIMENTAL VARIABLES

In order to construct a cold neutron star model, one has to
prepare the EOS for neutron star matter with zero temperature,
which satisfies the charge neutral and β-equilibrium condi-
tions. Up to now, many EOS models have been proposed, but
the EOSs whose thermodynamical properties are opened as a
tabulated format (or analytic expression) are not so much. In
this study, we especially focus on the eight EOS models con-
structed with the Skyrme-type effective interaction [42,43],
which are commonly accepted and give us a reasonable nu-
clear structure.

These Skyrme interactions contain ten (or 11) parameters,
which are determined to reproduce experimental data of sev-
eral nuclear properties, such as binding energies and charge
radii, and/or nuclear matter properties. Different model, i.e.,
different Skyrme interaction, adopts different criteria to de-
termine the parameters, which lead to different calculation

results especially for open-shell or exotic nuclei [44–48]. So
far, there are no standard or ultimate criteria to optimize the
parameters of the Skyrme interaction. Here, we adopt only the
EOS models taking into account the one-body center-of-mass
correction without the two-body one [49]. In addition, we
select only the EOS models, with which the expected maxi-
mum mass exceeds (or is comparable to) the 2M� neutron star
observations. The EOS data are taken from the public source
in compstar online supernovae equations of state (CompoOSE
[35]). The EOS models adopted in this study are listed in
Table I. Once the EOS is prepared, the neutron star model is
determined by integrating the Tolman-Oppenheimer-Volkoff
(TOV) equations.

For any EOS model, one can express the bulk energy per
nucleon for the zero-temperature uniform nuclear matter as
a function of the baryon number density, nb = nn + np, and
an asymmetric parameter defined as α = (nn − np)/nb with
neutron (proton) number density, nn (np), in the vicinity of
saturation density, n0 � 0.16 fm−3, for a symmetric nuclear
matter as

E

A
(nb, α) = w0 + K0

2
u2 + O(u3)

+
[

S0 + Lu + Ksym

2
u2 + O(u3)

]
α2 + O(α3),

(1)

where u = (nb − n0)/(3n0) and the coefficient of α2 cor-
responds to the nuclear symmetry energy. The saturation
parameters appearing in Eq. (1) for the EOS models adopted
in this study are listed in Table I. As mentioned below, in this
study we focus on S0, which has been constrained well from
the experiments, i.e., S0 ≈ 31.6 ± 2.7 MeV [23].

On the other hand, using each model, i.e., Skyrme inter-
action, one can estimate the experimental observables, such
as the ground-state energy, Eg.s., the neutron-skin thickness,
�Rn, the dipole polarizability, αD, and the energy of isoscalar
giant monopole resonance (ISGMR), EISGMR, for specific
atomic nuclei. It is known that �Rn and αD are correlated
with the L parameter [50,51], while EISGMR is correlated
with the K0 parameter [52–55]. They are calculated by us-
ing an open-source code for the spherical Hartree-Fock and
the random phase approximation (RPA) calculation named
SKYRME_RPA [56]. Since 208Pb and 132Sn are doubly magic,
we can safely calculate by assuming the spherical symmetry
without the pairing correlation. Owing to the nature of the
spherical symmetry, only the radial wave function is cal-
culated, where we consider the box size of 0 < r < 20 fm
with a 0.1 fm mesh. Starting from the Hartree-Fock ground
state, the RPA calculation is performed, where the cut-off
energy for unoccupied single-particle orbitals is 60 MeV
for 132Sn and 80 MeV for 208Pb. The obtained strength
functions are smeared with the Lorentzian function with a
1.0 MeV width. We note that �Rn and αD for 48Ca and
208Pb have been measured as �RCa

n = 0.168+0.025
−0.028 fm [57],

�RCa
n = 0.121 ± 0.026(exp) ± 0.024(model) fm [58]; αCa

D =
2.07(22) fm3 [59]; �RPb

n = 0.211+0.054
−0.063 fm [60], �RPb

n =
0.283 ± 0.071 fm [21]; and αPb

D = 20.1(6) fm3 [61,62], while
�Rn and αD for 132Sn are not known in experiments. However,
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TABLE I. EOS parameters adopted in this study, n0, E/A, K0, S0, L, Ksym, are listed, while η is a specific combination with them given by
η = (K0L2)1/3. In addition, the maximum mass expected with each EOS is also listed [35].

EOS n0 (fm−3) w0 (MeV) K0 (MeV) S0 (MeV) L (MeV) Ksym (MeV) η (MeV) Mmax (M�) Ref.

LNS5 0.15992 −15.57 240.2 29.15 50.94 −119.1 85.43 1.97 [36]
SKa 0.15535 −15.99 263.1 32.91 74.62 −78.45 113.6 2.22 [37]
SkMp 0.15704 −15.56 230.9 29.89 70.31 −49.82 104.5 2.11 [38]
SLy2 0.16053 −15.99 229.9 32.00 47.46 −115.1 80.30 2.06 [39]
SLy4 0.15954 −15.97 229.9 32.00 45.96 −119.7 78.60 2.06 [40]
SLy5 0.16034 −15.98 229.9 32.03 48.27 −112.3 81.22 2.02 [40]
SLy9 0.15117 −15.79 229.8 31.98 54.86 −81.42 88.43 2.16 [39]
SLy230a 0.15997 −15.99 229.9 31.99 44.32 −98.22 76.72 2.11 [41]

it is discussed in Refs. [33,48,63–66] that beyond-mean-field
effects may be indispensable to calculate properties of 40Ca
and 48Ca consistently, while the mean-field calculation is used
in this paper. Hence, in this study, we use properties of 132Sn
and 208Pb obtained by the RPA calculation.

The Hartree-Fock calculation provides the ground-state
energy and density. Using the ground-state proton and neu-
tron densities, the neutron-skin thickness can be calculated
by �Rn = Rn − Rp, where Rp (Rn) is the proton (neutron)
root-mean-square radius. The RPA calculation provides the
strength function. The energy of ISGMR, EISGMR, corre-
sponds to the peak of the strength function of the isoscalar
monopole resonance. The dipole polarizability is related to the
isovector dipole resonance, which can be calculated by [51]

αD = 8πe2

9
m−1(E1), (2)

where m−1(E1) the inverse energy weighted sum rule of the
isovector dipole resonance [67]. These results for 208Pb and
132Sn calculated with the Skyrme interactions considered in
this study are listed in Tables II and III.

Up to now, it has been already shown that the neutron-
skin thickness and dipole polarizability multiplied with S0 for
208Pb are, respectively, associated with L [50,51], such as

�RPb
n (fm) = 0.101 + 0.147L100, (3a)

αPb
D S0 (MeV fm3) = 480 + 330L100, (3b)

where L100 = L/(100 MeV). In a similar way, we can confirm
the same properties of 208Pb and 132Sn estimated with EOS

TABLE II. Estimation of ground-state energy, Eg.s., neutron-skin
thickness, �Rn, dipole polarizability, αD, and energy of ISGMR,
EISGMR, for 208Pb, using various Skyrme interactions.

EOS EPb
g.s. (MeV) �RPb

n (fm) αPb
D (fm3) EPb

ISGMR (MeV)

LNS5 −1625.6 0.1577 21.47 13.97
SKa −1636.5 0.2114 22.36 14.09
SkMp −1636.9 0.1958 23.90 13.71
SLy2 −1635.9 0.1637 19.62 13.51
SLy4 −1636.0 0.1597 19.81 13.57
SLy5 −1636.4 0.1624 19.92 13.61
SLy9 −1630.3 0.1716 20.93 13.28
SLy230a −1635.9 0.1525 19.20 13.55

models adopted in this study are also strongly associated with
L, i.e.,

�RPb
n (fm) = 0.0757 + 0.176L100, (4a)

�RSn
n (fm) = 0.134 + 0.182L100, (4b)

αPb
D S0 (MeV fm3) = 449 + 382L100, (4c)

αSn
D S0 (MeV fm3) = 232 + 177L100. (4d)

These fitting lines are shown in Figs. 1 and 2 together with
the concrete values estimated with each EOS model. From
these figures, we observe that the neutron-skin thickness of
208Pb relatively deviates from the empirical relation given by
Eq. (3a), while the values of αDS0 of 208Pb are more or less
consistent with the prediction with Eq. (3b), using the EOS
models adopted in this study. In the top panel of Fig. 2, we
also show the experimental value of αPb

D S0 with the shaded
region, using the experimental value αPb

D = 20.1(6) fm3 [62]
together with S0 ≈ 31.6 ± 2.7 MeV [23] as the fiducial value
of S0.

III. NEUTRON STAR MASS FORMULA

We have already shown that the mass, M, and gravitational
redshift, z, of a low-mass neutron star can be expressed well
as a function of the normalized central density, uc = ρc/ρ0

using the central density ρc, and the suitable combination
of the saturation parameters [24–26]. Here, a low-mass neu-
tron star means that the central density is less than a few
times the nuclear saturation density. Since the gravitational

TABLE III. Same as in Table II, but for 132Sn.

EOS ESn
g.s. (MeV) �RSn

n (fm) αSn
D (fm3) ESn

ISGMR (MeV)

LNS5 −1108.4 0.2162 10.62 16.25
SKa −1105.8 0.2736 11.22 16.30
SkMp −1119.7 0.2589 11.86 16.04
SLy2 −1103.4 0.2252 9.796 15.57
SLy4 −1103.7 0.2214 9.906 15.63
SLy5 −1104.1 0.2245 9.964 15.63
SLy9 −1097.5 0.2345 10.49 15.74
SLy230a −1103.1 0.2132 9.568 15.66
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FIG. 1. Neutron-skin thickness, �Rn, expected with each EOS
model is shown as a function of the corresponding value of L. The
top and bottom panels correspond to the result for 208Pb and 132Sn.
The fitting lines given by Eqs. (4a) and (4b) are shown with the solid
lines, while the fitting line derived in Ref. [50] is also shown with the
dotted line in the top panel.

redshift is expressed with M and the stellar radius, R, as
z = (1 − 2M/R)−1/2 − 1, one can estimate the neutron star
mass and radius from these empirical formulas for M and
z, once the saturation parameters would be constrained. In
this study, we consider similar possibilities for expressing M
and z directly with the experimental observables, such as the
neutron-skin thickness and the dipole polarizability, instead of
the saturation parameters.1

A. Empirical relations with �Rn

First, we consider the possibility of deriving the empirical
formulas for M and z with the neutron-skin thickness, �RPb

n
and �RSn

n . We eventually find a correlation between the mass
of the neutron star constructed with a fixed central density
and the neutron-skin thickness weakly depending on the EOS
models. In Fig. 3, we show this feature, where the left and
right panels correspond to the results with 208Pb and 132Sn for

1In this study, we focus only on the neutron-skin thickness and the
dipole polarizability as the experimental observables. But, it has been
shown that the parity-violating asymmetry for 208Pb is also strongly
associated with the neutron-skin thickness almost independently of
the EOS models [50]. So, one may derive the empirical formula
expressing the neutron star mass and gravitational redshift, using the
parity-violating asymmetry.

FIG. 2. Dipole polarizability multiplied with S0 for each EOS
model is shown as a function of L, where the top and bottom panels
correspond to the result for 208Pb and 132Sn. The fitting lines given
by Eqs. (4c) and (4d) are shown with the solid lines, while the fitting
line derived in Ref. [51] is also shown with the dotted line in the
top panel. For reference, the experimental value of αPb

D S0 is shown
with the shaded region in the top panel, using the experimental value
αPb

D = 20.1(6) fm3 [62] together with S0 ≈ 31.6 ± 2.7 MeV [23] as
the fiducial value of S0.

the neutron star models with uc = 1, 2, and 3. In this figure,
the solid lines denote the resultant linear fitting, given by

M

M�
= aM

0,Pb + aM
1,Pb

(
�RPb

n

0.2 fm

)
, (5a)

M

M�
= aM

0,Sn + aM
1,Sn

(
�RSn

n

0.2 fm

)
, (5b)

where the adjusting parameters of aM
i,Pb and aM

i,Sn for i = 0 and
1 depend on the central density of the corresponding neutron
star model, uc. In Fig. 4, we show the dependence of these
parameters on uc, where the solid lines correspond to the
fitting lines given by

aM
i,Pb =

4∑
j=0

aM
i j,Pbu j

c, (6a)

aM
i,Sn =

4∑
j=0

aM
i j,Snu j

c. (6b)

The concrete values of aM
i j,Pb and aM

i j,Sn are listed in Table IV.
In a similar way, we find that the gravitational redshift, z,

for the neutron star model with the fixed central density can
be expressed as a function of �Rn, weakly depending on the
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FIG. 3. The mass of the neutron stars constructed with each EOS model is shown as a function of �RPb
n in the left panel and �RSn

n in the
right panel, where the neutron star mass for uc = 1, 2, and 3 are shown. The fitting lines are given by Eqs. (5a) and (5b).

EOS models as

z = az
0,Pb + az

1,Pb

(
�RPb

n

0.2 fm

)
, (7a)

z = az
0,Sn + az

1,Sn

(
�RSn

n

0.2 fm

)
, (7b)

FIG. 4. The coefficients in Eqs. (5a), (5b), (7a), and (7b) are
shown as a function of uc, where the top and bottom panels corre-
spond to the coefficients in the formulas with the data of 208Pb and
132Sn, respectively, while the solid lines denote the fitting lines given
by Eqs. (6a), (6b), (8a), and (8b).

where the adjusting parameters of az
i,Pb and az

i,Sn for i = 0
and 1 depend on the central density of the neutron star. As
an example, we show the results with uc = 1, 2, and 3 in
Fig. 5, where the marks denote the value of z for the neutron
stars constructed with each EOS model, while the solid lines
are the fittings. Then, as shown in Fig. 4, we can derive the
dependence of the adjusting parameters in Eqs. (7a) and (7b)
on uc, as

az
i,Pb =

4∑
j=0

az
i j,Pbu j

c, (8a)

az
i,Sn =

4∑
j=0

az
i j,Snu j

c. (8b)

The solid lines in Fig. 4 show the expected values with these
fittings. The concrete values of az

i j,Pb and az
i j,Sn are listed in

Table IV.
Now, we have derived the empirical formulas expressing M

and z as a function of (uc,�RPb
n ) or (uc,�RSn

n ), respectively,
as Eqs. (5) and (6) and Eqs. (7) and (8). To see the accuracy
of the estimation with these empirical formulas, we calculate
the relative deviation in the mass and its gravitational redshift
estimated with the empirical formulas from those as a TOV
solution, and show it in the top and middle panels of Fig. 6,
where the left and right panels correspond to the results from
the formulas with �RPb

n and �RSn
n , respectively. From this

figure, one can see that the mass and its gravitational redshift

TABLE IV. The coefficients in Eqs. (6a), (6b), (8a), and (8b).

j 0 1 2 3 4

aM
0 j,Pb 0.8777 −2.0127 0.9596 −0.13770 0.0047513

aM
1 j,Pb −0.7924 1.7396 −0.3281 −0.04253 0.0117856

aM
0 j,Sn 1.0850 −2.4709 1.0488 −0.13010 0.0023109

aM
1 j,Sn −0.7604 1.6719 −0.3168 −0.03827 0.0108140

az
0 j,Pb 0.076109 −0.2565 0.1586 −0.035961 0.0034092

az
1 j,Pb −0.084495 0.2528 −0.1063 0.025645 −0.0027859

az
0 j,Sn 0.099032 −0.3246 0.1884 −0.043693 0.0042857

az
1 j,Sn −0.081280 0.2429 −0.1025 0.024997 −0.0027348
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FIG. 5. The gravitational redshift of the neutron stars constructed with each EOS model is shown as a function of �RPb
n in the left panel

and �RSn
n in the right panel for the stellar models with uc = 1, 2, and 3. The fitting lines are given by Eqs. (7a) and (7b).

are estimated within �10 % accuracy, using the empirical
formula with �RPb

n or �RSn
n . In addition, in the bottom panel

of Fig. 6, we show the relative deviation of the neutron star
radius estimated with the empirical formulas for M and z from
that determined as a TOV solution. From this figure, we find
that the stellar radius for the neutron star with uc = 2–3 can
be estimated with the empirical formulas for M and z using

�RPb
n or �RSn

n within a few % accuracy. Since these empirical
formulas are derived using several EOS models selected in
this study, the formulas are applicable only in the range of
�Rn given by the adopted EOS models. That is, the empir-
ical formulas are applicable in the range of 0.8 � uc � 3.0
and 0.153 � �RPb

n � 0.211 fm or 0.213 � �RSn
n � 0.274 fm

(e.g., see the horizontal axis in Fig. 3).

FIG. 6. Relative deviation of the stellar mass (M) and gravitational redshift (z) estimated with the empirical relations [Eqs. (5a)–(8b)] from
those determined as the TOV solutions is shown as a function of uc. The bottom panels correspond to the relative deviation of the stellar radius
(R) predicted with the empirical formulas for M and z from that determined as the TOV solutions. The left and right panels correspond to the
results obtained from the empirical formulas as a function of �RPb

n and �RSn
n , respectively.
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FIG. 7. The mass of the neutron stars constructed with each EOS model is shown as a function of αPb
D S0 in the left panel and αSn

D S0 in the
right panel, where we show the results for uc = 1, 2, and 3. The fitting lines are given by Eqs. (9a) and (9b).

B. Empirical relations with αD

Next, we consider the derivation of the empirical formulas
for M and z, using the dipole polarizability, αD, for 208Pb and
132Sn. In a similar way to the case with �Rn, we find that
the neutron star mass with the fixed central density is strongly
correlated to αDS0, weakly depending on the EOS models. In
Fig. 7, we show the neutron star mass with uc = 1, 2, and 3

FIG. 8. The coefficients in Eqs. (9a), (9b), (11a), and (11b) are
shown as a function of uc, where in the top and bottom panels
correspond to the coefficients in the formulas with the data of 208Pb
and 132Sn, respectively, while the solid lines denote the fitting lines
given by Eqs. (10a), (10b), (12a), and (12b).

as a function of αPb
D S0 in the left panel and αSn

D S0 in the right
panel, where the solid lines denote the fitting given by

M

M�
= bM

0,Pb + bM
1,Pb

(
S0

30 MeV

αPb
D

20 fm3

)
, (9a)

M

M�
= bM

0,Sn + bM
1,Sn

(
S0

30 MeV

αSn
D

20 fm3

)
. (9b)

The coefficients in these fittings depend on the value of uc,
and we can derive their fitting as

bM
i,Pb =

4∑
j=0

bM
i j,Pbu j

c, (10a)

bM
i,Sn =

4∑
j=0

bM
i j,Snu j

c (10b)

with which the expected values are shown in Fig. 8 with the
solid lines. The concrete values of bM

i j,Pb and bM
i j,Sn for i = 0, 1

and j = 0 − 4 are listed in Table V.
Moreover, we also find that the gravitational redshift of

the neutron star with the fixed central density is strongly
associated with αDS0, weakly depending on the EOS models.
In fact, as shown in Fig. 9, it can be expressed as a function of
αDS0 for 208Pb and 132Sn, such as

z = bz
0,Pb + bz

1,Pb

(
S0

30 MeV

αPb
D

20 fm3

)
, (11a)

z = bz
0,Sn + bz

1,Sn

(
S0

30 MeV

αSn
D

20 fm3

)
, (11b)

TABLE V. The coefficients in Eqs. (10a), (10b), (12a), and (12b).

j 0 1 2 3 4

bM
0 j,Pb 1.4048 −3.1188 1.0989 −0.08108 −0.006288

bM
1 j,Pb −1.1036 2.3765 −0.3867 −0.08429 0.019227

bM
0 j,Sn 1.3332 −2.9720 1.0432 −0.07696 −0.0057868

bM
1 j,Sn −2.0784 4.4887 −0.6693 −0.17770 0.037747

bz
0 j,Pb 0.1340 −0.4237 0.2239 −0.051039 0.0050455

bz
1 j,Pb −0.1191 0.3508 −0.1430 0.033876 −0.0036785

bz
0 j,Sn 0.1279 −0.4069 0.2173 −0.050428 0.0050662

bz
1 j,Sn −0.2264 0.6699 −0.2725 0.066119 −0.0073334
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FIG. 9. The gravitational redshift of the neutron stars constructed with each EOS model is shown as a function of αPb
D S0 in the left panel

and αSn
D S0 in the right panel, where we show the results for uc = 1, 2, and 3. The fitting lines are given by Eqs. (11a) and (11b).

where the coefficients of bz
i,Pb and bz

i,Sn should be expressed
with uc. We show such dependence in Fig. 8, where the solid
lines are the fittings given by

bz
i,Pb =

4∑
j=0

bz
i j,Pbu j

c, (12a)

bz
i,Sn =

4∑
j=0

bz
i j,Snu j

c. (12b)

The concrete values of bz
i j,Pb and bz

i j,Sn for i = 0, 1 and j =
0–4 are listed in Table V.

Now, we have newly obtained the empirical formulas ex-
pressing M and z as a function of (uc, α

Pb
D S0) or (uc, α

Sn
D S0),

respectively, as Eqs. (9) and (10) and Eqs. (11) and (12). In
the top and middle panels of Fig. 10, we show the relative
deviation of the estimation of mass and gravitational redshift
with empirical formulas from those determined by integrat-
ing the TOV equations. From this figure, we find that the
mass and gravitational redshift can be estimated within ≈8%
accuracy from the empirical formulas with αPb

D S0 or αSn
D S0.

FIG. 10. Same as in Fig. 6, but with the empirical formulas using
αPb

D in the left panel and αSn
D in the right panel.

Additionally, one can estimate the stellar radius by combining
these formulas for M and z, whose relative deviation from
the stellar radius as the TOV solution is shown in the bottom
panel of Fig. 10. From this figure, we find the stellar radius can
be estimated within ≈2% error for the neutron star for uc =
2–3. These empirical formulas are applicable in the range of
0.8 � uc � 3.0 and 1.02 � αPb

D S0/(600 MeV fm3) � 1.23 or
0.51 � αSn

D S0/(600 MeV fm3) � 0.62.

IV. NEUTRON STAR MASS AND RADIUS RELATION

Using the empirical formula derived in this study, we see
how the neutron star mass and radius depend on the exper-
imental observables, i.e., �Rn and αDS0. For this purpose,
we assume that �RPb

n /(0.2 fm) = 0.9, �RSn
n /(0.2 fm) = 1.2,

αPb
D S0/(600 MeV fm3) = 1.13, and αSn

D S0/(600 MeV fm3) =
0.56 as their test values here. These values are around the
central values in the range of corresponding variables with
the EOS models adopted in this study (see the horizontal
axis in Figs. 3, 5, 7, 9). Then, in Fig. 11, we show the
neutron star mass and radius predicted from the empirical
relations, adopting the error of ±5 %, ±10 %, and ±15 %
from the test values. In addition, the experimental value of
�RPb

n is known via PREX-II, i.e., �RPb
n = 0.283 ± 0.071 fm

[21], but this constraint is out of the range in which our
empirical relation is applicable. On the other hand, the ex-
perimental value of αPb

D is αPb
D = 20.1(6) fm3 [62], which

leads 0.94 � αPb
D S0/(600 MeV fm3) � 1.18, assuming that

S0 ≈ 31.6 ± 2.7 MeV [23]. Since this is more or less inside
the applicable range, we also show the predicted region in the
neutron star mass and radius, using this experimental value, in
the left-bottom panel in Fig. 11. From this figure, one can ob-
serve that the predicted neutron star mass and radius strongly
depend on the experimental observables, even if one assumes
the same errors in �Rn and αDS0. In fact, it seems that one can
well predict the neutron star mass and radius, using the data
of �Rn for 208Pb. For example, once one would determine the
value of �Rn for 208Pb within 10 % error, neutron star radius
may be determined a few % accuracy.

To understand this situation, we see the EOS dependence of
�RPb

n , �RSn
n , αPb

D S0, and αSn
D S0. From Figs. 3, 5, 7, and 9, one

can observe the minimum and maximum values of �RPb
n ,

�RSn
n , αPb

D S0, and αSn
D S0 are given by SLy230a and SKa,

respectively. Now, to see how these variables strongly depend
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FIG. 11. The neutron star mass and radius predicted with the empirical formulas with �RPb
n (top left), �RSn

n (top right), αPb
D S0

(bottom left), and αSn
D S0 (top left), where we assume that �RPb

n /(0.2 fm) = 0.9, �RSn
n /(0.2 fm) = 1.2, αPb

D S0/(600 MeV fm3) = 1.13,
αSn

D S0/(600 MeV fm3) = 0.56 as their test values. The dotted, dashed, and solid lines denote the region of the neutron star mass and radius
with ±5 %, ±10 %, and ±15 % deviation from the test values. In the bottom left panel, we also show the shaded region as the predicted region
from the experimental value of αPb

D = 20.1(6) fm3 together with the fiducial value of S0 (see text for details).

on the EOS models, we calculate their relative range through

δB = 2(BSKa − BSLy230a )

BSKa + BSLy230a
, (13)

where B denotes the variables of �RPb
n , �RSn

n , αPb
D S0, and

αSn
D S0. One can get δ(�RPb

n ) = 0.324, δ(�RSn
n ) = 0.248,

δ(αPb
D S0) = 0.180, and δ(αSn

D S0) = 0.186. This means that the
EOS dependence of �RPb

n is stronger than those of αPb
D S0 or

αSn
D S0. That is, if one considers the same errors in the exper-

imental observables, such as ±15 %, αPb
D S0 or αSn

D S0 easily
gets out from the applicable range. Actually, the values of
αPb

D S0 and αSn
D S0 with ±15 % errors from the test values are

out of the applicable range. This is a reason why the neutron
star mass and radius are relatively well predicted with the
empirical formula with �RPb

n . Conversely, we may conclude
that it is difficult to constrain the neutron star mass and radius
from the dipole polarizability.

This tendency can be understood as follows: The neutron-
skin thickness is basically determined by the isovector
properties of the effective interaction, and accordingly, the
neutron-skin thickness strongly correlates with the neutron
excess (N − Z )/A (equivalent to an asymmetric parameter α),
where N , Z , and A denote the neutron number, proton number,
and atomic mass number of each nucleus. Since the neutron
excess of 208Pb is smaller than 132Sn, the absolute value of
�Rn for 208Pb is smaller than that for 132Sn. On the other
hand, the deviation of �Rn among the models in 208Pb, i.e., y
axis of Fig. 1, is, eventually, almost the same as those in 132Sn.
Accordingly, δ(�RPb

n ) becomes larger than δ(�RSn
n ), although

the accuracy of �RPb
n is expected to be better than �RSn

n since
132Sn is an exotic nucleus.

In contrast, αD is associated with the isoscalar properties of
the effective interaction; indeed, αDS0 correlates with A〈r2〉
with the mean-square radius of the nucleus 〈r2〉 [51,68,69].
Eventually, the deviation of αDS0 among the models, i.e., y
axis of Fig. 2, scales with the absolute value. Isoscalar prop-
erties of the effective interaction are determined better than
isovector ones. Thus, δ(αDS0) is smaller than δ(�Rn).

Finally, in Fig. 12, we compare the expected region of
neutron star mass and radius with the resultant empirical for-
mula of �RPb

n , i.e., Eqs. (5a), (6a), (7a), and (8a), assuming
that �RPb

n = (0.9 ± 0.09) × 0.2 fm (±10 % deviation) to the
other constraints. As shown in Fig. 11, for the neutron star
model predicted with the empirical formula of �RPb

n , we
only plot the stellar model whose central density is up to
threefold the saturation density. In the same figure, we show
the constraints on the neutron star mass and radius obtained
from the various astronomical observations; the gravitational
wave observations in the GW170817 event, i.e., the 1.4M�
neutron star radius is less than 13.6 km [8], whose constraint
may become more severe by combining with the multimes-
senger observations and nuclear theory [70,71]; the x-ray
observations via NICER for PSR J0030+0451 [16,17] and
MSP J0740+6620 [18,19]; the observations of x-ray burst
through the theoretical models [72]; and the identification
of the magnetar quasiperiodic oscillations observed in GRB
200415A with the crustal torsional oscillations [73]. As the
theoretical constraint, the top-left region can be excluded
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FIG. 12. The neutron star mass and radius predicted with our
empirical formula given by Eqs. (5a), (6a), (7a), and (8a), assum-
ing that �RPb

n = (0.9 ± 0.09) × 0.2 fm. In the figure, we also plot
the constraints from the astronomical observations in GW170817,
by NICER (PSR J0030+451 and MSP J0740+6620), via x-ray
bursts, and with the magnetar QPOs (GRB 200415A), together with
the mass and radius region predicted with the mass formulas with
the nuclear saturation parameters, assuming L = 60 ± 20 and K0 =
240 ± 20 MeV. The top left region is excluded from the causality.
For reference, the mass and radius for the neutron stars constructed
with the SKa, SkMp, and SLy4 EOSs are shown with the dotted lines.
See the text for the details.

from the causality [74]. We also show the mass and radius
region predicted with the empirical formulas with the nuclear
saturation parameters, i.e., η = (K0L2)1/3 [24], assuming that
L = 60 ± 20 and K0 = 240 ± 20 MeV as their fiducial values,
where the central density is considered to be less than twice
the saturation density. Furthermore, for reference, the neutron
star models constructed with some of the EOS models adopted
in this study, such as the SKa, SkMp, and SLy4, are also
shown with dotted lines.

V. CONCLUSION

The nuclear saturation parameters must be important pa-
rameters characterizing the EOS models. But, they are usually
constrained from the experimental data through a kind of

theoretical model. To avoid such a circumvention way and
to directly discuss the neutron star properties, such as the
mass and radius, with the experimental data, we derive the
empirical formulas expressing the neutron star mass and its
gravitational redshift, as a function of the normalized cen-
tral density, uc = ρc/ρ0, and neutron-skin thickness or the
dipole polarizability for 208Pb or 132Sn. These formulas can
predict the neutron star mass and its gravitational redshift
within ≈10% accuracy, while the stellar radius is estimated
within a few % accuracy by combining the resultant empirical
formulas. Then, using the empirical formulas, we see how
the neutron star mass and radius depend on the experimental
data, i.e., the neutron-skin thickness and dipole polarizability
of 208Pb or 132Sn. As a result, we find that the neutron star
mass and radius are relatively more sensitive to the data of
the neutron-skin thickness 208Pb, while they seem to be less
sensitive to the dipole polarizability. As an example, we show
that the neutron star radius could be determined within a few
% accuracy once the neutron-skin thickness 208Pb would be
determined within 10% errors. In this study, we successfully
derive the empirical formulas expressing the neutron star mass
and its gravitational redshift, but the applicable range may not
be so wide. This is because the sample number of the EOS
models is not so much, due to the lack of availability of the
EOS models. To extend the applicable range, we will consider
if we could update the empirical formulas by collecting a
variety of EOS models as possible.
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