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Nuclear-level effective theory of μ → e conversion: Formalism and applications

W. C. Haxton ,1,2 Evan Rule ,1 Ken McElvain,1 and Michael J. Ramsey-Musolf3,4

1Department of Physics, University of California, Berkeley, California 94720, USA
2Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

3Tsung-Dao Lee Institute and School of Physics and Astronomy, Shanghai Jiao Tong University,
800 Dongchuan Road, Shanghai 200240, China

4Amherst Center for Fundamental Interactions, Department of Physics, University of Massachusetts,
Amherst, Massachusetts 01003, USA

(Received 30 August 2022; accepted 3 January 2023; published 27 March 2023)

Over the next decade new μ → e conversion searches at Fermilab (Mu2e) and J-PARC (COMET, DeeMe) are
expected to advance limits on charged lepton flavor violation (CLFV) by more than four orders of magnitude. By
considering the consequence of P and CP on elastic μ → e conversion and the structure of possible charge and
current densities, we show that rates are governed by six nuclear responses and a single scale, q/mN , where q ≈
mμ is the momentum transferred from the leptons to the nucleus. To relate this result to microscopic formulations
of CLFV, we construct in nonrelativistic effective theory (NRET) the CLFV nucleon-level interaction, pointing
out the relevance of the dimensionless scales y = ( qb

2 )2 > |�vN | > |�vμ| > |�vT |, where b is the nuclear size, �vN

and �vμ are the nucleon and muon intrinsic velocities, and �vT is the target recoil velocity. We discuss previous
work, noting the lack of a systematic treatment of the various small parameters. Because the parameter y is not
small, a proper calculation of μ → e conversion requires a full multipole expansion of the nuclear response
functions, an apparently daunting task with Coulomb-distorted electron partial waves. We demonstrate that the
multipole expansion can be carried out to high precision by introducing a simplifying local momentum qeff for
the electron. Previous work has been limited to simple charge or spin interactions, thereby treating the nucleus
effectively as a point particle. We show that such formulations are not compatible with the general form of the
μ → e conversion rate, failing to generate three of the six allowed nuclear response functions. The inclusion of
the nucleon velocity �vN yields an NRET with 16 operators and a rate of the general form. Consequently, in the
current discovery era for CLFV, it provides the most sensible starting point for experimental analysis, defining
what can and cannot be determined about CLFV from the highly exclusive process of μ → e conversion. Finally,
we expand the NRET operator basis to account for the effects of �vμ, associated with the muon’s lower component,
generating corrections to the CLFV coefficients of the point-nucleus response functions. Using advanced shell-
model methods, we compute μ → e conversion rates for a series of experimental targets, deriving bounds on
the coefficients of the CLFV operators. These calculations are the first to include a general basis of CLFV
operators, full evaluation of the associated nuclear response functions, and an accurate treatment of electron and
muon Coulomb effects. We discuss target selection as an experimental “knob” that can be turned to probe the
microscopic origins of CLFV. We describe two types of coherence that enhance certain CLFV operators and
selection rules that blind elastic μ → e conversion to others. We discuss the matching of the NRET onto higher
level effective field theories, such as those constructed at the light quark level, noting opportunities to build on
existing work in direct detection of dark matter. We discuss the relation of μ → e conversion to μ → e + γ

and μ → 3e, showing how MEG II and Mu3e results will complement those of Mu2e and COMET. Finally we
describe a accompanying script—in Mathematica and Python versions—that can be used to compute μ → e
conversion rates in various nuclear targets for the full set of NRET operators.
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I. INTRODUCTION

Muon-to-electron conversion, in which a muon bound to a
nucleus converts to a monoenergetic outgoing electron, occurs
at an observable level only if there are new sources of flavor
violation, beyond those responsible for neutrino mixing [1–4].
It has long been recognized that μ → e conversion and other
charged lepton flavor violating (CLFV) processes (e.g., μ+ →
e+ + γ and μ+ → e+e−e+) are among our most sensitive

tests of new physics beyond the standard model [5–7]. This
has motivated a series of experimental advances that, in sum,
have improved limits on μ → e conversion rates by ≈12
orders of magnitude over the past 75 years [8].

The experimental attributes of μ → e conversion are quite
attractive. Intense muon beams exist, with rates on target of
≈1011/s expected in the experiments now under construction.
Muons can be readily stopped in thick targets, where they
quickly cascade into 1s Coulomb orbits around target nuclei.
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Conversion occurring without nuclear excitation produces a
monoenergetic electron carrying almost all of the energy re-
leased (≈mμ), generating a signal that can be distinguished
from the continuous spectrum of background electrons com-
ing from the free decay of the muon, μ− → e− + νμ + ν̄e.
If the process is mediated by photon exchange or otherwise
involves an operator that couples to nuclear charge, the rate
can be enhanced by the coherent elastic response [8].

Bounds on μ → e conversion are typically expressed as
the branching ratio with respect to muon capture in the same
nucleus. The best current limits on μ → e conversion cor-
respond to branching ratios ≈10−12–10−13. Depending on
the CLFV operator (including its isospin, which influences
the coherence), existing branching ratio limits are testing
CLFV up to energy scales of ≈103 TeV. Within the next
few years Fermilab’s Mu2e [9,10] experiment and J-PARC’s
COherent Muon to Electron Transition (COMET) [11,12]
and DeeMee [13] experiments should begin taking data.
Mu2E and COMET are designed to reach branching ratios of
≈10−17, probing CLFV scales up to ≈104 TeV.

The nuclear physics of μ → e conversion is somewhat
unusual. As experimentalists select out the elastic channel
in order to suppress backgrounds due to free muon decay,
contributing CLFV operators are constrained by both P and
CP selection rules. The energy transfer to the nucleus is negli-
gible, while the three-momentum scale q ≈ mμ is comparable
to the inverse nuclear size, guaranteeing sensitivity to the
internal structure of the nucleus. These same conditions arise
in another process of considerable interest, weakly interacting
massive particle (WIMP) dark matter (DM) direct detection,
where the low WIMP velocity restricts the scattering to the
elastic channel in almost all nuclei, but where the momentum
transfer typically peaks at q ≈ 100–150 MeV. These condi-
tions lead to unusual relations between nucleon-level effective
theories of DM direct detection and the nuclear responses that
matter to experiment, enhancing some operators and suppress-
ing others [14,15].

This paper is the second of two (see [16]) in which the
nonrelativistic effective theory (NRET) formulation of μ → e
conversion is developed at the nucleon level, and then em-
bedded in the nucleus. As was found in the DM studies,
this embedding has significant consequences for the CLFV
physics of elastic μ → e conversion, blinding experiment to
certain interactions while enhancing sensitivity to others. In
[16] we demonstrated that the rate for elastic μ → e con-
version depends on six symmetry-allowed nuclear response
functions Wi, evaluated at a momentum scale q ≈ mμ that
probes the structure of the nucleus; this result was obtained
through inclusion of the nucleon velocity operator �vN . In
fact, this general form of the elastic μ → e conversion rate
can be deduced without specifying the microscopic forms of
the nucleon charges and currents—all that is needed are the
parity and time-reversal properties of the available densities.
The derivation is presented in Sec. III A. The leptonic coef-
ficients of these response functions, denoted as Ri, represent
the CLFV physics that can be “mined” in experiments that
employ appropriately selected targets. Work prior to [16] con-
centrated on just two of the response functions, associated
with the simplest charge and spin interactions. As we will

illustrate in this paper, such interactions may not be present,
and even if they are present they do not always dominate the
conversion rate.

The Galilean-invariant nucleon-level microscopic descrip-
tion of CLFV we develop allows one to relate CLFV limits
obtained from different targets and also to connect limits
obtained at the nuclear level to higher-energy formulations.
A microscopic operator expansion can be used with the im-
pulse approximation (or its generalizations) to make these
comparisons and connections. The expansion, carried out to
a given order in the available small parameters, produces a
nucleon-level nonrelativistic effective theory (NRET) with a
complete set of operators in that order.

In an NRET, all possible interactions are constructed
consistent with the applicable symmetries and the available
nucleon and lepton operators, which include the nucleon and
lepton charges, their spins, the direction of the relativistic
electron q̂, the intrinsic nucleon �vN and muon �vμ velocities,
and the target recoil velocity �vT . Together with the momentum
transferred from the leptons q, these operators generate a
hierarchy of dimensionless scales, y ≡ ( qb

2 )2 > |�vN | > |�vμ| >

|�vT |, that should be respected in NRETs. Here b, the harmonic
oscillator parameter employed in building Slater determinants
for the nucleus, represents the nuclear size. In this paper we
construct three levels of NRET corresponding to successively
incorporating the physics associated with y, �vN , and �vμ.

We discuss past work and the approximations employed,
which in general has involved a very limited set of operators
and expansions that do not respect the above hierarchy. In
particular, the large value of y—which ranges from 0.20 (C)
to 0.37 (Cu) for the targets we explore here, and reaches
0.54 for the heavy target tungsten—implies significant angular
momentum transfer between the leptons and nucleus. That
is, several multipoles can contribute to the nuclear response
functions that govern elastic μ → e conversion.

Previous investigators, perhaps daunted by the task of
handling the required number of electron distorted waves,
have generally avoided calculating the full nuclear response
functions. This is an uncontrolled approximation, governed
by terms of higher order in y and sensitive to details of the
underlying nuclear microphysics; we show, among similar
targets, errors can range from negligible (≈5%) to o(1). Yet,
as summarized in Table I of Sec. II, only a few calculations
have gone beyond the the lowest multipole, and those em-
ployed electron plane waves and the simplest operators, spin
and charge. All work employing Dirac solutions limited the
electron waves to those with j = 1

2 (so Dirac |κ| =1), so that
(at most) only the lowest multipole operator contributes. The
error induced by this Dirac truncation generally exceeds the
size of the Coulomb corrections being evaluated.

In Sec. II we introduce a simple trick that, later in the
paper, enables us to properly evaluate the response functions:
the effects of the Coulomb interaction on the electron—its
shortened wavelength in the nuclear interior and its enhanced
amplitude—can be incorporated through the introduction of
an effective electron momentum qeff . We demonstrate this
approximation is very accurate for both low- and high-Z
targets and for the range of relevant Dirac partial waves.
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The introduction of qeff allows one to exploit the full power
of standard spherical vector harmonic Bessel expansions to
generate rather elegant expressions for the needed response
functions that include the Dirac physics of the electron and
bound muon.

Section II also includes a discussion of the upper and lower
1s muon radial wave functions g(r) and f (r) that appear in
the nuclear transition densities of the full rate formula. While
we later present such a formula, we note that in light- and
medium-mass nuclei the muon is weakly bound, with a Bohr
radius significantly larger than the nuclear size. Consequently,
its Dirac wave function varies slowly over the nucleus. Thus
there are opportunities to streamline rate formulas by taking
advantage of the relative simplicity of the muon physics. By
replacing the muon wave function with a suitably determined
average value, rate formulas can be obtained in which the nu-
clear and particle physics are more clearly factorized and the
roles of various small parameters more apparent. Noting that
past averaging has followed procedures more appropriate to
muon capture, we suggest an improved procedure that repro-
duces leading multipoles exactly but remains quite accurate
for others. We quantify errors associated with our procedure
for averaging, showing that they are quite small.

Section III begins with a derivation of the general form
of the elastic μ → e conversion rate, using only symmetry
arguments and an inventory of available charges and currents.
We then develop the nucleon-level NRET Hamiltonian, form-
ing the most general interaction from the available nucleon
and lepton operators. The NRET describes the nonrelativis-
tic intrinsic Hamiltonian, the physics that remains after the
phase-space integration removes the relative motion of the
relativistic electron with respect to the daughter nucleus. In
addition to the electron direction q̂ and the electron and nu-
cleon spin and charge operators, the various velocity operators
come into play: here one can make use of the hierarchy,
|�vN | > |�vμ| > |�vT | to develop various levels of NRET. We
show that this NRET operator basis needs to include at least
terms linear in �vN to be complete, in the sense of reproducing
the six nuclear response functions allowed by symmetry.

For completeness, we extend the NRET to include the
muon velocity operator �vμ and thus the contribution from the
muon’s lower component. This addition introduces no new
response function physics, but instead generates corrections
to the coefficients Ri proportional to 〈 f 〉/〈g〉, the ratio of the
muon’s lower and upper components. We stress that this dis-
tinguishes the effects of �vμ—corrections to response functions
that influence rates at the level of 5% for 27Al—from those
of �vN , which generates new response functions, sensitivity
to new aspects of CLFV, and contributions to rates that can
be o(1), depending on the source of the CLFV. This reflects
the fact that the leptonic vertex in elastic μ → e is inclu-
sive, with the sum over partial waves guaranteeing that muon
lower-component contributions are always accompanied by
upper-component contributions. In contrast, the nucleon ver-
tex is exclusive, with �vN changing the parity and CP of
operators it generates, thus altering the physics.

Until the present work, no formulation of μ → e conver-
sion has been available that combined the desired elements:
a complete basis of operators, the full form of the nuclear re-

sponse functions Wi, and an accurate treatment of electron and
muon Coulomb effects and lepton and nucleon velocities. In
fact, the effects of �vN appear to have been ignored universally.

Because the NRET basis is complete, any UV theory
should reduce at low energy to a form compatible with
the NRET. More importantly, as experiments are done with
largely nonrelativistic nuclei, the NRET provides one with
a complete but minimal basis for analyzing and comparing
limits or results obtained from a range of nuclear targets.
Consequently, information extracted from μ → e conversion
limits, encoded as constraints on the R′

is, can be “ported up-
ward” to constrain theories formulated at higher energy scales,
which necessarily have more degrees of freedom. Thus a
“top-down” reduction of a favored UV theory to make contact
with experiment would only need to be carried out to the
nucleon-level NRET: there would be no need to repeat the
nuclear physics performed here.

At the end of Sec. III we present a simple example of
such a reduction: we construct the 20 nucleon-level relativistic
operators that can arise for semileptonic CLFV interactions
mediated by scalar or vector mediators. We show that these
interactions reduce to a subset of the NRET operators we
introduced (reflecting the specialization to scalar and vector
exchanges), under a nonrelativistic reduction that treats the
velocities of bound nucleons and the muon to first order. We
also discuss at the end of this section some of the nontrivial as-
pects of such matching, including, the interpretation of NRET
operator coefficients derived from nuclei as effective.

This strategy follows one that has been used very effec-
tively in studies of DM direct detection, an elastic process
with very similar kinematics. The NRET DM formulation
[14] has become a very popular bridge between the nuclear
scale and UV theories or, more commonly, effective field
theories (EFTs) formulated at higher energy scales. For exam-
ple, open-source tools like DirectDM [17], based on operator
formulations at the light-quark and gluon level, were de-
signed to work with the analogous NRET tool DMFormFactor
[15]. This formalism that has been adopted by most of the
major experimental groups [18–22], some of whom have de-
veloped specialized cuts helpful in isolating specific NRET
interactions. We describe in Appendix C a script for μ → e
conversion quite analogous to DMFormFactor. By making
the code publicly available, we hope to encourage similar
developments for μ → e conversion.

In Sec. IV (and in Appendix B) we present details of the
standard multipole formalism for embedding the nucleon-
level interaction in a nucleus, leading to the elastic μ → e
conversion rate formula. We present rates for a succession of
NRETs, according to the hierarchy of small parameters: the
extreme nonrelativistic limit, the inclusion of effects linear in
�vN , and the inclusion of additional effects linear in �vμ.

Rates are expressed as sums over CLFV coefficients Ri

multiplied by nuclear response functions Wi, with the latter
expressed as a sum over contributing multipoles. Each Ri is
a bilinear function of the NRET operator coefficients. This
factorization can be helpful in experimental analysis, if CLFV
is discovered. It allows one to view the W ′

i s as experimental
“knobs” that can be dialed to isolate the CLFV coefficients
Ri: the nuclear response functions depend on properties of
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the ground state, such as its angular momentum, isospin,
spin-orbit properties of valence nucleons, and the spin-orbit
structure of the core. Separating the various contributions will
be challenging, of course. Yet by selecting nuclear targets with
specific properties, it should be possible to learn more about
the operator source of the CLFV found in μ → e conversion
than would be possible from results on a single nuclear target.

In Sec. V we discuss the nuclear physics of elastic μ → e,
taking the long-wavelength limit to isolate the leading nuclear
operator for each response function. We point out two distinct
forms of coherence, one of which is quite novel and especially
relevant to targets like 27Al due to the spin-orbit structure of
the ground state. We stress that the naive counting of operators
at the nucleon NRET level no longer holds at the nuclear level:
some operators are enhanced by the two coherence mech-
anisms, others are suppressed by nucleus-imposed selection
rules. We note that some of the nuclear response functions
Wi are closely related to standard-model responses, and thus
potentially could be measured in iso-elastic muon capture or
elastic electron scattering, while others are not and thus nec-
essarily require microscopic evaluation. We present graphics
showing the wide variation in target responses to CLFV oper-
ators; target attributes experimentalists may be able to exploit.

Section V also describes the large-basis configuration-
interaction shell-model calculations we performed to compute
nuclear responses, using the best available effective interac-
tions. The needed one-body density matrices are obtained
for a variety of nuclear targets that either have been used in
past experiments or might be suitable choices for future ones.
Calculations were performed for 11 targets ranging from C
to Cu. As the included spaces we use are separable and the
calculations are done without any basis truncations, we can
project spurious center-of-mass motion, for consistency with
our Galilean-invariant NRETs.

In Sec. VI we derive constraints on the operator
coefficients—the low-energy constants or LECs—from ex-
isting limits on μ → e conversion and estimate how these
limits will be sharpened when Mu2e and COMET results
become available. The constraints take the form of limits on
bilinear combinations of the LECs, thereby showing what can
and cannot be learned about the CLFV from elastic μ → e
conversion. We compare these constraints to those that can be
obtained from μ → e + γ and μ → 3e.

In the concluding Sec. VII we summarize this paper and
describe some future goals, including extending the current
formalism to allow for nuclear excitation. Such an extension
can yield additional physics: because of the absence of CP
constraints on inelastic transitions, four LECs that cannot be
probed in elastic μ → e conversion then play a role.

II. LEPTONIC INTERACTIONS

Figure 1 depicts the conversion of a muon, bound in a 1s
atomic orbital by the Coulomb field of the nucleus, into an
outgoing electron of fixed energy Ee ≈ mμ. If this CLFV pro-
cess occurs without nuclear excitation—the nucleus remains
in its ground state—one finds

Ee = mμ − Ebind
μ − �q 2

2MT
, (1)

FIG. 1. Depiction of elastic μ → e conversion. The nuclear
Coulomb potential binds the 1s initial-state muon and distorts the
outgoing electron wave function. Neglecting nuclear recoil, the elec-
tron’s energy is the muon mass minus its Coulomb binding.

where �q is the three-momentum transferred from the nucleus
to the electron, mμ and MT are respectively the muon and nu-
clear masses, and Ebind

μ is the muon’s binding energy, defined
here as a positive quantity. Working to first order in mμ/MT

and ignoring all smaller quantities in 1/MT one finds

�q 2 = MT

mμ + MT

[(
mμ − Ebind

μ

)2 − m2
e

]
, (2)

which can be substituted into Eq. (1) to determine the nuclear
recoil energy.

The CLFV Hamiltonian consists of a series of terms of the
form

Ĥi = ci

∫
d�r �̄e(�r)OL�μ(�r) �∗

N (�r)ON�N (�r). (3)

The four-fermion form is quite general: up to small nuclear
recoil effects, the momentum transfer �q is fixed, and, con-
sequently, any propagator effects can be absorbed into the
coefficients ci. In general, the leptonic and nucleon operators
OL and ON (and the corresponding currents) can be scalar or
vector (in which case they must couple to an overall scalar).
The choices of the OL and ON , and consequently the number
of coefficients ci, are limited by the available charge and
current densities that one can form. Elastic matrix elements
of the interaction can be further limited by parity and CP
selection rules. In this paper, we will construct a general
operator basis for this process, derive rates, and compare those
rates to existing and anticipated limits of μ → e conversion.
A first step is the derivation of the Coulomb-distorted lep-
tonic wave functions that appear in the transition density of
Eq. (3).
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TABLE I. An incomplete survey of elastic μ → e conversion studies including the nuclear targets considered, the nuclear multipole
operators evaluated, and the form of the lepton wave functions employed. OJ;τ means that both isospin structures and all allowed J were
included. For the Dirac electron, all of the references surveyed restrict attention to the lowest partial waves κ = ±1. Besides the Dirac solution,
the remaining forms of the muon wave function are all constant approximations: 〈|ψμ|2〉

ρ
is obtained by averaging the probability of the Dirac

solution over the nuclear density, |φZ
1s(�0)|2 is the probability of the point-like Schrodinger solution evaluated at the origin, |G(RN )|2 is the upper

component of the muon’s Dirac wave function evaluated at the nuclear radius. Superscript † indicates that the reference considers the inelastic
process as well, although the information in the table reflects only the treatment of the elastic process.

Author(s) Year [Ref.] Target Operators ψe ψμ

Weinberg and Feinberg† 1959 [23] Multiple M0;p Plane wave 〈|ψμ|2〉
ρ

Marciano and Sanda 1977 [24] Multiple M0;τ Plane wave 〈|ψμ|2〉
ρ

Shanker 1979 [25] Multiple M0;τ Dirac, |κ| = 1 Dirac
Kosmas and Vergados† 1990 [26] Multiple M0;τ Plane wave 〈|ψμ|2〉

ρ

Chiang et al.† 1993 [27] Multiple M0;τ Plane wave 〈|ψμ|2〉
ρ

Kosmas et al.† 1994 [28] 48Ti M0;τ Plane wave 〈|ψμ|2〉
ρ

Czarnecki, Marciano, and Melnikov 1998 [29] 27Al, 48Ti, 208Pb M0;τ Dirac, |κ| = 1 Dirac
Siiskonen, Suhonen, and Kosmas† 2000 [30] 27Al, 48Ti MJ;τ 
′

J;τ 
′′
J;τ Plane wave 〈|ψμ|2〉

ρ

Kosmas† 2001 [31] 48Ti, 208Pb MJ;τ 
′
J;τ 
′′

J;τ Plane wave 〈|ψμ|2〉
ρ

Kitano, Koike, and Okada 2002 [32] Multiple M0;τ Dirac, |κ| = 1 Dirac
Kosmas 2003 [33] Multiple M0;τ Plane wave Dirac
Cirigliano et al. 2009 [6] Multiple M0;τ Dirac, |κ| = 1 Dirac
Crivellin et al. 2017 [34] 27Al, 197Au M0;τ Dirac, |κ| = 1 Dirac
Bartolotta and Ramsey-Musolf 2018 [35] 27Al M0;τ Dirac, |κ| = 1 Dirac
Cirigliano, Davidson, and Kuno 2018 [36] 27Al M0;τ 
′

J;τ 
′′
J;τ Plane wave |φZ

1s(�0)|2
Davidson, Kuno, and Saporta 2018 [37] 27Al, Ti M0;τ 
′

J;τ 
′′
J;τ Plane wave |φZ

1s(�0)|2
Civitarese and Tarutina† 2019 [38] 208Pb M0;τ Plane wave |G(RN )|2
Rule, Haxton, and McElvain 2021 [16] 27Al, Ti MJ;τ 
′

J;τ 
′′
J;τ Full Dirac (qeff ) |φZeff

1s (�0)|2
�J;τ �̃′

J;τ �′′
J;τ

Heeck, Szafron, and Uesaka 2022 [39] Multiple M0;τ Dirac, |κ| = 1 Dirac
Cirigliano et al. 2022 [40] 27Al, 48Ti, 197Au, 208Pb M0;τ Dirac, |κ| = 1 Dirac
Hoferichter, Menéndez, and Noël 2022 [41] 27Al,Ti MJ;τ 
′

J;τ 
′′
J;τ Plane wave 〈|ψμ|2〉

ρ

�′′
J;τ

A. Coulomb effects

Taking the matrix element of the interaction in Eq. (3)
between lepton and nuclear states yields

ci〈OL〉
∫

d�r〈 f |�∗
e (�r)�μ(�r)

A∑
i=1

ÔN (i)δ(�r − �ri )|i〉, (4)

where |i〉 and | f 〉 are the initial and final nuclear states
and 〈OL〉 is the matrix element of the leptonic operator
between spin states. We consider here a nuclear operator
that is one-body, which we write somewhat schematically
in first quantization. The nuclear transition density thus in-
volves a convolution of the electron and muon wave functions
with the nuclear density. The outgoing highly relativistic
electron is distorted and enhanced in the region of the nu-
cleus by the Coulomb potential, which is sourced by the
nucleus’s extended charge distribution. The wave function
and bound-state energy of a muon in the 1s orbital are an
eigensolution of the Dirac equation for the same Coulomb
field.

Two of the terms in the integrand of Eq. (4), the nuclear
density and the electron wave function, vary over a length sale
typical of the nuclear radius: the electron carries a momentum
q ≈ mμ ≈ 1/1.86 fm, while the shell-model oscillator param-
eter b for 27Al is 1.85 fm. The third term, the 1s muon wave

function, varies more slowly for the targets considered in this
paper, which range from C to Cu. The muon’s Bohr radius in
27Al is aμ

0 ≈ 20 fm.
As noted in the Introduction, the neglect of higher mul-

tipole operators in computing elastic μ → e rates will in
general lead to a response function that is correct only through
o(y). Such multipoles will contribute to elastic μ → e conver-
sion if the ground-state angular momentum jN � 1. In 27Al,
where jN = 5

2 , the symmetry-allowed charge multipoles are
M0, M2, and M4, while the allowed transverse (longitudinal)
spin operators are 
′

1, 
′
3, and 
′

5 (
′′
1 , 
′′

3 , and 
′′
5 ). (The spe-

cific forms of these operators will be given later in this paper.)
The error one induces by truncating the multipole expansion
is not simple to estimate: the numerical impact of o(y2) cor-
rections will depend on both the NRET operator under study
and the specific nuclear physics of the target. For example,
the M2 operator is related to the quadrupole moment, which
can be quite enhanced in mid-shell nuclei due to collective
deformation.

Most past work has retained only the leading multi-
pole contribution, while also making other simplifications,
such as neglecting the Coulomb distortion of the outgoing
electron partial waves and treating only the simplest nuclear
operators. A relatively complete compilation of past work
is given in Table I. In the few cases in Table I where the
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full response function was computed [30,31,36,37], electron
plane waves were employed and only the charge and/or spin
nuclear operators were considered. Others used distorted elec-
tron waves—solutions of the Coulomb Dirac equation—but
retained only those waves with Dirac |κ| = 1 ( j = 1

2 ). This
guarantees that (at most) one multipole operator is generated;
an approximation that one expects to become increasingly
problematic with increasing A and y. While the shell-model
rate calculations reported in this paper only extend up to Cu,
nearly 40% of the spin response probability in 63Cu is carried
by the J = 3 multipole.

In Sec. II B we show that a full multipole expansion using
distorted electron waves can be carried out to high accuracy
for any of our NRET operators. This is accomplished by em-
ploying an approximation familiar from relativistic electron
scattering: the effects of the Coulomb field in shortening the
wavelength of the electron wave function and enhancing its
overlap with the nucleus can be incorporated very accurately
through the introduction of an effective momentum qeff . We
demonstrate the accuracy of the qeff approximation as the
Dirac quantum number κ and target charge Z are varied.
This substitution allows us to complete the full multipole
expansion using standard Bessel vector spherical harmonic
expansions.

In Sec. II C we discuss the bound muon wave function.
The muon is largely nonrelativistic: in 27Al the ratio of lower
to upper components at the peak of the transition density is
≈0.027. Consequently, μ → e conversion rates are dominated
by the muon’s upper component. While in our master rate
formula g(r) and f (r) are retained in the transition densities,
we also simplify that result by replacing these functions with
average values. This is a common practice in muon capture
studies [42], as well as in μ → e conversion, as can be seen
in Table I. Here the purpose of the averaging is to simplify the
rate formula to bring out the underlying physics more clearly.
We also do the averaging in a way that exactly preserves the
values of leading multipoles and minimizes errors for other
multipoles. We demonstrate that the errors induced by using
averages 〈g〉 and 〈 f 〉 are small.

In our NRET the muon’s lower component is generated
from the upper component through the action of the muon’s
velocity operator. As the NRET forces one to think about
all of the theory’s velocity operators in a consistent way, it
brings out some inconsistencies in past work. Several of the
papers listed in Table I included the lower component, but
none prior to our work in [16] treated the nucleon veloc-
ity operator, whose magnitude for aluminum is about four
times larger. The two velocities have a common origin: the
NRET is the Galilean invariant intrinsic Hamiltonian that de-
scribes the relative motion of the nuclear constituents. A − 1
of the relative (Jacobi) coordinates describe the relative po-
sitions of the A nucleons, while the Ath Jacobi coordinate
gives the muon’s position relative to the center of mass of
the A nucleons. NRET velocity operators are conjugate to
these relative coordinates, with |�vN | > |�vμ| for all targets
considered here. We discuss the muon’s lower component
in Sec. II D and address its role in the NRET later in the
paper.

B. The electron’s distorted partial waves

Somewhat schematically, in the plane-wave limit of Eq. (4)
one obtains a nuclear transition density of the form

A∑
i=1

e−i �q·�riÔN (i),

where for simplicity we have omitted the s-wave contribution
of the muon. Here ÔN (i) would be one of the NRET operators
that we will construct from nucleon charges, spins, and ve-
locities and their longitudinal and transverse projections. As
�ri operates on nucleon i, one must expand the exponential,
regrouping powers of �ri with ÔN (i) to form nuclear operators.
Because | �q · �ri| ≈ o(1) for 27Al and other targets of interest, a
full expansion of the exponential should be made. The elegant
way to do this is by an expansion in spherical Bessel functions,
spherical harmonics, and vector spherical harmonics (depend-
ing on whether ÔN (i) is a charge or current operator). From
this construction emerge nuclear multipole operators of good
angular momentum, P, and CP. Such techniques are partic-
ularly powerful for elastic processes like μ → e conversion
because the contributing multipolarities J then are restricted
by the ground-state angular momentum jN , (J � 2 jN ), as well
as by good P and CP of the ground state.

However, the generalization of this construction for dis-
torted electron partial waves is nontrivial, especially when
a large NRET operator basis is used. The paper of Kitano,
Koike, and Okada [32] listed in Table I begins by discussing
an operator basis somewhat analogous to our NRET. The
authors also took the electron partial waves from solutions
of the Coulomb Dirac equation, but, in estimating rates, a
series of simplifications were made, including the retention
of just the |κ| = 1 partial waves. In the end, the pseudoscalar,
axial vector, tensor, and spacelike vector operators of their La-
grangian were eliminated from consideration. Only the lowest
multipole of the charge operator M0 was retained, generated
by the nucleon-level scalar interaction and the charge compo-
nent of the vector interaction.

This kind of procedure is not compatible with our “bot-
tom up” NRET approach, which requires that we construct
and evaluate all possible NRET operators, limited only by
basic symmetries: in this approach one makes no apriori
assumptions about the UV source of the CLFV, or, conse-
quently, how it will be manifested through specific low-energy
operators in elastic μ → e conversion. Thus we need to in-
clude the full set of NRET operators and, given our remarks
about the nuclear response functions, all contributing elec-
tron Coulomb-distorted partial waves. To accomplish this, we
show that the distorted-wave problem can be greatly simpli-
fied by recognizing that almost all of the distortion can be
absorbed through a simple scaling of the plane-wave solution.
This allows us to complete the full multipole expansion for the
entire set of NRET operators, and, when combined with muon
averaging, analytically evaluate all of the one-body matrix el-
ements of these operators. This is an enormous simplification
with very little sacrifice of accuracy, as we will show.

The Dirac solutions for the continuum electron and bound-
state muon can be expanded in partial waves. Assuming
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spherical symmetry,

ψκ (�r) =

⎛
⎜⎜⎜⎜⎜⎝

ig� j

[
〈 1

2 , 1
2 |(� 1

2 ) jm〉
〈 1

2 ,− 1
2 |(� 1

2 ) jm〉

]

− f� j

[
〈 1

2 , 1
2 |(� ± 1 1

2 ) jm〉
〈 1

2 ,− 1
2 |(� ± 1 1

2 ) jm〉

]
⎞
⎟⎟⎟⎟⎟⎠. (5)

Solutions are indexed by the parameter κ =
. . . ,−3,−2,−1, 1, 2, 3, . . . where j = |κ| − 1

2 and

κ =
{−(� + 1), κ < 0,

�, κ > 0.
(6)

The angular-spin wave functions are〈
θφ
∣∣(� 1

2

)
jm
〉 =∑m�ms

〈
�m�

1
2 ms

∣∣ jm〉Y�m�
(θ, φ)ξms , (7)

where ξms is the Pauli spinor.
In the plane-wave limit the radial solutions are spherical

Bessel functions,
g� j (r)

q
≡ G� j

qr
= j�(qr),

f� j (r)

q
≡ F� j

qr
=
[

E − m

E + m

] 1
2
{

j�−1(qr), κ > 0,

− j�+1(qr), κ < 0.
(8)

In the presence of a Coulomb potential, the radial solutions
satisfy

[E − μ − Vc(r)]G� j = − d

dr
F� j + κ

r
F� j,

(E + μ − Vc(r))F� j = d

dr
G� j + κ

r
G� j, (9)

where μ is the reduced mass of the lepton,

μ = mMT

m + MT

with m the lepton mass and MT the nuclear mass. Vc(r) is
the Coulomb potential, which we compute using an extended
nuclear charge distribution of the form

ρ(r) = n0

1 + exp
[

r−c
β

] with
∫ ∞

0
dr r2ρ(r) = Z, (10)

where the values of c and β, typically determined from elastic
electron scattering, are taken from Ref. [43] (see Table XI ). Z
is the nuclear charge. The normalization n0 can be evaluated
analytically in terms of the polylogarithm function Lin(z),

n0 = − Z

2β3Li3(−exp[c/β])
,

as can the associated potential.
A procedure familiar from electron scattering studies is the

replacement of the Coulomb solution in the vicinity of the
nucleus by a plane wave solution with a shifted momentum,
�q → �qeff :

ei �q·�r → qeff

q
ei �qeff ·�r, r � R, (11)

where �qeff is the local momentum in the Coulomb well and
R the nuclear radius. This is a local replacement, not affecting
the flux at infinity. For derivations and discussion see [44–46].

The use of �qeff in the exponential accounts for the more
rapid oscillation of the electron wave function in the attractive
Coulomb well created by the nucleus, while qeff/q accounts
for the enhancement of the amplitude due to that attraction.
Here we determine qeff using a constant potential whose depth
is equated to the average of the Coulomb potential over the
nuclear charge distribution:

V̄c =
∫∞

0 dr r2ρ(r)Vc(r)∫∞
0 dr r2ρ(r)

,

�q 2
eff = MT

mμ + MT

[(
mμ − Ebind

μ − V̄c
)2 − m2

e

]
. (12)

The values we obtained for a series of possible nuclear targets
are given in Table XI.

Consequently, for an ultrarelativistic electron, we identify

GCoulomb
� j

qr
↔ qeff

q
j�(qeffr),

F Coulomb
� j

qr
↔ qeff

q

{
j�−1(qeffr), κ > 0,

− j�+1(qeffr), κ < 0.
(13)

This approximate equivalence was exploited in electron scat-
tering studies using the targets 40Ca and 208Pb [47]. In early
work, the constant potential used in calculating qeff was set
to the Coulomb potential at the nuclear origin, which overes-
timates the attraction. A physically more reasonable choice,
as calculations later demonstrated, is to fix the potential to its
nuclear-density-weighted average, as is done here. In Figs. 2
and 3 the shifted plane waves of Eq. (13) are compared to
the numerically computed Dirac equation solutions. These
solutions and V̄c are both generated from the nuclear charge
distribution of Eq. (10). Results are shown for 27Al and 184W
for the partial waves |κ| � 2 to show the quality of the qeff

approximation in various partial waves and for low- and high-
Z targets. The computed V̄ ′

c s for 27Al and 184W are −5.84 and
−18.4 MeV, respectively.

The correspondence between the qeff approximation and
the exact Dirac solutions is very good. In 27Al, deviations
are only discernible on the far tail of the nuclear density,
where contributions to the convolution are very small. The
agreement is also excellent for 184W, where the Coulomb
distortion is very large. This agreement is achieved without
tuning: qeff is derived from V̄c, which is computed from the
same nuclear density used in the Dirac equation. qeff was not
determined by fitting the Dirac solution.

We employ in this paper the free-electron Dirac spinor [48]

U (q, s) =
√

Ee + me

2me

(
ξs

�σ · �q
Ee+me

ξs

)
(14)

with ξs the Pauli spinor. For our highly relativistic electron,
the net effect of the Coulomb interaction with the nucleus is
the replacement

U (q, s)ei �q·�r → qeff

q

√
Ee

2me

(
ξs

�σ · q̂ξs

)
ei �qeff ·�r, (15)

where q̂ is the unit vector in the direction of the electron.
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FIG. 2. The Dirac Coulomb solutions G(r) and F (r) for the highly relativistic outgoing electron produced in μ → e conversion in 27Al
(green line) are compared to the free solution (orange) and to the free solution evaluated with qeff (blue dashed), for low partial waves. The
nuclear charge distribution is shown by the shading (arbitrary normalization). The agreement between the Coulomb and free solutions evaluated
with qeff is quite good.

With qeff one can accurately account for Coulomb dis-
tortions of the electron while not abandoning the elegant
multipole formalism of plane waves. Table I includes four
calculations in which full response functions have been
calculated [30,31,36,37], but those calculations employed
undistorted plane waves. In all other cases, only the leading
multipole has been retained. The associated error depends on
the detailed nuclear physics of the ignored multipoles and
can be large. For example, among the 11 targets we will
consider in this paper, there are three—Na, Al, Cu—with
only odd isotopes, an unpaired proton, and a ground-state
angular momentum of at least 3

2 , so that more than one mul-
tipole contributes. We picked one familiar NRET interaction,
�σL · �σN , and set the isospin to be (1 + τ3)/2, so that the oper-
ator couples to the unpaired valence proton. Evaluating rates
first with the leading multipole and then with all contributing
multipoles, we find rate increases of 22.4% (Na), 4.7% (Al),
and 65.4% (Cu). In the case of Al, ignoring higher multipoles
produces a modest error, but in Cu the error is nearly o(1). All
three isotopes have strong spin responses. One concludes that
truncating the multipole expansion to the leading operator is
not in any sense a controlled approximation. The associated
error fluctuates considerably from nucleus to nucleus. Con-
sequently, there is no shortcut: to assess the importance of
neglected multipoles, one must calculate them. The use of qeff

makes this practical even if one’s operator basis is quite large,
as it is here.

The qeff substitution also helps one to see connections
between μ → e conversion and standard-model processes.
Experimental μ → e conversion rates are expressed as a
branching ratio with respect to the muon capture rate. In
treatments like that presented here, the use of qeff will allow
one to express the numerator and denominator in quite simi-
lar forms (polynomials in y), potentially making assessments
of nuclear structure uncertainties more transparent. In some
cases it may be possible to do more. For example, isovector
responses contributing to elastic μ → e conversion in 27Al
can be related directly to the isoelastic process of the mirror
β decay of 27Si to the ground state of 27Al. Such relationships
could be important if CLFV is discovered, and a more quanti-
tative assessment of nuclear structure uncertainties becomes a
priority.

C. The 1s muon’s upper component

We have computed bound muon Dirac wave functions for
the 11 targets listed in Table XI. These targets are both inter-
esting experimentally and tractable for the shell model: high
quality nuclear effective interactions are available, allowing us
to complete full-space diagonalizations with exact projection
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FIG. 3. As in Fig. 2 but for 184W.

of the center-of-mass, as we describe later. We also treat 184W,
as a high-Z comparison target.

Solutions were obtained by numerically integrating from
the origin outward. The eigenvalue is determined by requiring
the wave function to vanish at infinity. Results for the 27Al
and 48Ti 1s muon states (κ = −1) are shown in Fig. 4. The
corresponding Schrödinger solutions are also plotted; they
are almost indistinguishable from the Dirac radial solutions
g(r). The Dirac binding energies are nearly identical to the
Schrödinger values, exceeding the latter by just 0.18% and
0.37%, respectively.

Figure 4 shows that the muon is nearly nonrelativistic,
with g(r) and the Schrödinger solution effectively indis-
tinguishable. For the first 11 entries of Table II, the ratio
| f (r)/g(r)| evaluated at the peak of charge transition density

TABLE II. The ratio of the lower to upper components of the
muon wave function evaluated at the radius r0 where the monopole
charge transition density peaks.

Target | f (r0 )
g(r0 ) | Target | f (r0 )

g(r0 ) | Target | f (r0 )
g(r0 ) |

12C 0.014 27Al 0.027 48Ti 0.043
16O 0.017 28Si 0.030 56Fe 0.049
19F 0.019 32S 0.036 63Cu 0.061
23Na 0.024 40Ca 0.040 184W 0.132

r2 j0(qeffr)ρ(r) ranges from 0.014 (C) to 0.061 (Cu). The 27Al
value is 0.027, while that for the high-Z target 184W is 0.132.

The Dirac bound-state normalization∫ ∞

0
dr
[
G2

� j (r) + F 2
� j (r)

] = 1 (16)

provides an alternative measure of the relativity: the lower-
component contributions to this normalization integral are
0.2% and 0.5%, respectively, for 27Al and 48Ti. For 184W the
result is 2.2%.

One concludes that, for lighter nuclear targets, retention
of just the upper component of the muon wave function—
or nearly equivalently, use of the Schrödinger solution—can
be a sensible procedure. There is a long history of muon-
capture studies in light- and medium-mass nuclei that take
advantage of the muon’s low velocity in the initial state [42].
However, the three papers listed in Table I that have made
this approximation either did so for a high-Z nucleus (208Pb)
[38] or equated the Schrödinger density to its point-nucleus
value [36,37], which, as we will later discuss in this section,
can substantially overestimate the muon density even for a
relatively light nucleus like 27Al.

D. The 1s muon’s lower component

Despite the remarks made above, in most of the past work
summarized in Table I the muon’s lower component was
included (either explicitly in the transition density or as an
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FIG. 4. Lower panels: muon κ = −1 bound state Dirac solutions G(r) (orange line) and F (r) (green) are shown for 27Al (left) and
48Ti (right), along with the Schrödinger solution (blue dashed). These solutions are computed for extended nuclear charges, using the
parametrizations of Table XI, and are properly normalized. Upper panels: g(r) (orange), f (r) (green), and the Schrödinger solutions for
extended (blue dashed) and point (red) charge distributions. Also shown are the volume-weighted charge distributions r2ρ(r) j0(qr) and
r2ρ(r) j2(qr) (shaded). The overall normalization (but not the relative normalization) of the two densities is arbitrary. As the muon wave
function varies slowly over the nucleus, it is appropriate to use an average value: the black dotted line is the value obtained by averaging over
r2ρ(r) j0(qr) (see text).

average value). In those cases where the lower component
was treated explicitly, the electron partial-wave expansion
was truncated to |κ| = 1, and only the charge operator was
considered: the authors thus depend on the coherent enhance-
ment of the monopole charge operator to dilute contributions
from higher multipoles. As we have noted, this choice of
approximations would not in general be successful for opera-
tors other than the charge operator—so clearly would not be
appropriate in an NRET—and in fact would be a poor choice
even for the charge operator, were the coupling isovector and
thus not coherent. In cases where an average value was used,
the electron was treated as a plane wave. Thus it is difficult
to see a consistent pattern of approximations in past work,
even if we limit our attention to simple operators like the
charge.

All papers in Table I that treated the muon’s lower
component omitted internucleon velocities. Not only is this
parametrically difficult to justify, but nucleon velocities gener-
ate new operators and a new source of coherent enhancement,
as we will later see. This leads to new nuclear response contri-
butions to the rate that in principle might be new observables,
if they can be isolated by comparing rates in a variety of
targets.

In contrast, �vμ plays a relatively minor role in μ → e
conversion. Numerically, |�vN | � |�vμ| for the nuclear targets
considered here; for example,

√
〈�v 2

μ〉 ≈ 0.05 for 27Al while
for an unpaired 1d5/2 valence proton

√
〈�v 2

N 〉 ≈ 0.21. But there
are more important reasons than magnitude for �v′

μs relative
lack of impact.

The muon’s velocity is the operator that generates the lower
component Dirac solution f (r) from the upper component
g(r),

ψ
μ
κ=−1(�r) =

[
ξs

�σ · �pμ

2μ∗ ξs

]
ig(r)Y00(�)

≈
[

ξs
�σ ·�vμ

2 ξs

]
ig(r)√

4π
, (17)

as

f (r) ≈ 1

2μ∗
dg(r)

dr
≈ 1

2μ

dg(r)

dr
. (18)

Here μ is the muon’s reduced mass and μ∗ is the effective
reduced mass. If the Coulomb potential in the vicinity of the
nucleus is replaced by an average value V̄c, then μ∗ ≡ μ −
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FIG. 5. The muon’s lower-component wave function f (r) com-
puted for 184W from the Dirac equation (solid line), and approx-
imated as a derivative of g(r) using either μ (dotted line) or μ∗

(dashed line).

(|Ebind
μ | + V̄c)/2. (In 27Al the difference between μ and μ∗ is

2.6%.) The three functions in Eq. (18) are compared for the
high-Z target 184W in Fig. 5; differences are small.

The leptonic amplitude involves a product of this wave
function with that for the electron, given by Eq. (15), whose
upper and lower components are both o(1). Consequently,
whether the operator connecting the muon to the electron
is even or odd in the Foldy-Wouthuysen sense, �vμ always
appears in combination with the much larger electron velocity.
Furthermore, the leptonic amplitude is inclusive, a sum over
partial waves. As we will show by explicit calculation, these
properties limit the role of �vμ to that of a nuclear form factor
Coulomb correction, typically at the level of ≈5% for the light
and medium mass targets considered here. It plays no other
role in the CLFV physics of μ → e conversion.

Averaging the muon wave function. In most of the papers
listed in Table I, the gentle variation of the muon’s wave
function was exploited to remove it from the transition density
convolution integral, in favor of an average value. Rates are
reasonably insensitive to how this averaging is done, though
we point out below that past averaging has employed pro-
cedures more appropriate for the inclusive process of muon
capture. In contrast, the averaging we employ here is designed
for elastic μ → e conversion and reproduces the exact results
for the leading upper- and lower-component multipoles.

In this paper, as previously mentioned, we will use aver-
aging to simplify our full rate expression. For example, the
effects of �vμ are thereby reflected in one parameter 〈 f 〉/〈g〉,
which can be factored from all response functions. There is
a second advantage gained from averaging: it significantly
simplifies the nuclear physics. After averaging, we can exploit
properties of the harmonic oscillator to analytically evaluate
all charge and current one-body matrix elements and, con-
sequently, derive closed-form expressions for each nuclear
response function. This can be very helpful in understanding
the nuclear physics and how it effects CLFV sensitivities in
targets of interest. In addition, averaging produces μ → e
conversion multipole operators identical to those employed in
standard-model semileptonic weak interactions [42,49]. The

ability to use electron scattering or beta decay measurements
to determine CLFV transition densities could prove helpful in
reducing nuclear structure uncertainties.

The point-nucleus 1s muon Schrödinger solution provides
a convenient normalization for the average density,

φZ
1s(�r = 0) ≡ φZ

1s(�0) = 1√
π

[
Zαμc

h̄

]3/2

, (19)

where μ is the reduced mass of the muon. As the point density
exceeds that obtained by averaging over the nuclear volume, a
common practice is to express the volume-averaged result in
the same functional form, but with Z replaced by an effective
charge Zeff < Z ,

φ̄
μ
1s ≡ φ

Zeff
1s (�0).

The difference between the physical and effective charges Z −
Zeff will increase as Z increases. Alternatively [42] one can
express the probability density |φ̄μ

1s|2 as∣∣φ̄μ
1s

∣∣2 ≡ R
∣∣φZ

1s(�0)
∣∣2, (20)

with R < 1 decreasing as Z increases. Values of Zeff and R
for various nuclear targets are given in Table XI, using the
averaging procedure we describe below. Both of these ways
of expressing φ̄

μ
1s in terms of the point Schrödinger density

have been used extensively in muon capture studies.
The transition density for elastic μ → e conversion is a

convolution of a slowly varying muon wave function φ
μ
1s(r) =

1√
4π

g(r) with a more rapidly varying multipole density whose
shape is frequently nearly Gaussian (see Fig. 4). The standard
procedure for handling such convolution integrals is a Taylor
expansion around the integrand’s peak at r0, generating errors
that depends only on the second derivative of the slowly vary-
ing function.

When an isoscalar coupling to charge exists, the result-
ing coherence usually leads to a rate dominated by the
isoscalar monopole operator. Here we slightly modify the
Gaussian method described above, effectively choosing r0 so
that g(r0) ≡ 〈g〉 yields the exact integrated monopole strength

∣∣φZeff
1s (�0)

∣∣ = 1√
π

[
Zeffαμc

h̄

] 3
2

≡ ∣∣φ̄μ
1s

∣∣ ≡ 1√
4π

〈g〉

=
|〈g.s.| ∑i j0(qeffri)Y00(�i ) 1√

4π
g(ri ) |g.s.〉|

|〈g.s.|∑i j0(qeffri )Y00(�i) |g.s.〉|

=
∫

dr r2ρ(r) j0(qeffr) 1√
4π

g(r)∫
dr r2ρ(r) j0(qeffr)

. (21)

Here ρ(r) is the ground-state expectation value of the
isoscalar density. We make this choice not only because
the monopole operator is often dominant, but also because the
monopole charge density is the best understood property of
nuclei, tightly constrained by elastic electron scattering. Thus
a precise treatment of the Coulomb physics for this multipole
is warranted.

The approximation induced by our averaging comes in
using the same 〈g〉 in other multipoles. Defining the muon-
wave-function weighted and unweighted multipole operators
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TABLE III. Exact calculations of transition probabilities involv-
ing the muon’s upper component g(r) have been calculated for the
charge M, transverse spin 
′, and longitudinal spin 
′′ operators,
evaluated using both leading multipoles (e.g., WM0M0 ) or full response
functions (e.g., WMM ), and employing isoscalar (00), isovector (11),
and proton (pp) couplings. From each calculation we extract a value
of R (see text; the top line for each target), the ratio of the exact
result to that obtained when g(r) is replaced by the point Schrödinger
analog. If we take R from W 00

M0M0
as a baseline, percentage variations

in R, representing the error introduced if the baseline is used globally,
are given in the second line.

R and % variation

Target W 00
M0M0

W 00
MM W pp

M0M0
W pp

MM W 11
M0M0

W 11
MM

27Al 0.6566 0.6565 0.6570 0.6569 0.6434 0.6417
0.00% −0.01% 0.07% 0.06% −2.01% −2.26%

63Cu 0.3204 0.3204 0.3200 0.3199 0.3287 0.3281
0.00% −0.01% −0.15% −0.16% 2.58% 2.38%

Target W 00

′

1
′
1

W 00

′
′ W pp


′
1
′

1
W pp


′
′ W 11

′

1
′
1

W 11

′
′

27Al 0.6475 0.6463 0.6513 0.6495 0.6561 0.6533
−1.38% −1.56% −0.81% −1.08% −0.07% −0.49%

63Cu 0.3689 0.3141 0.3673 0.3085 0.3655 0.3026
15.11% −1.99% 14.62% −3.72% 14.05% −5.58%

Target W 00

′′

1 
′′
1

W 00

′′
′′ W pp


′′
1 
′′

1
W pp


′′
′′ W 11

′′

1 
′′
1

W 11

′′
′′

27Al 0.6345 0.6339 0.6338 0.6332 0.6331 0.6323
−3.36% −3.45% −3.46% −3.56% −3.58% −3.69%

63Cu 0.3275 0.2951 0.3228 0.2921 0.3182 0.2891
2.20% −7.92% 0.74% −8.85% −0.71% −9.77%

by

Ôg
JM (q) ≡

A∑
i=1

1√
4π

g(xi )ÔJM (qxi ) (22)

(and similarly for f (r)), we have for the response function
generated by Ôg

JM (q)

W ττ ′
OgO′g ≡ 4π

2 jN + 1

∑
J

〈 jN ||Og
J;τ || jN 〉〈 jN ||O′g

J;τ ′ || jN 〉

→ 〈g〉2

2 jN + 1

∑
J

〈 jN ||OJ;τ || jN 〉〈 jN ||O′
J;τ ′ || jN 〉

= 4π
∣∣φZeff

1s (�0)
∣∣2

2 jN + 1

∑
J

〈 jN ||OJ;τ || jN 〉〈 jN ||O′
J;τ ′ || jN 〉.

(23)

To test the validity of this replacement, we have computed
the exact R (equivalent to Z3

eff ) for other multipole choices.
For the charge operator, we vary the isospin, and we repeat
the averaging using the full response function (not just the
monopole), thereby including higher multipoles. We have also
repeated these calculations for the transverse electric spin
operator 
′

J and longitudinal spin operator 
′′
J , which we

will introduce later in this paper. The results for 27Al and
63Cu are presented in Table III. Also shown in the table is

the percent error one would make in using R0, the reduction
factor obtained for the isoscalar monopole charge operator,
in all other cases. For 27Al the average value of the variation
in R is 0.018 and the worse case is a deviation of 0.037. As
R represents a probability, this means that use of R0 globally
would affect limits derived on CLFV LECs at the typical level
of �1% and in the worse case 2%. For 63Cu, the correspond-
ing typical uncertainty is ≈2.7% with a worse-case deviation
of 7.6%. Consequently, one should associate uncertainties of
this magnitude with the LEC bilinears we later extract from
experimental bounds. In cases where the isoscalar monopole
dominates due to its coherence, the error will be much smaller,
as this multipole is exactly reproduced by our averaging pro-
cedure.

As we will show in detail later, the lower component f (r)
alters the monopole transition density through an interference
term that similarly can be used to define an optimal 〈 f 〉:

1√
4π

〈 f 〉 ≡
∫

dr r2ρ(r) j1(qeffr) 1√
4π

f (r)∫
dr r2ρ(r) j1(qeffr)

. (24)

As above, we can then test the validity of using this monopole
value for 〈 f 〉 in other upper-lower component multipole inter-
ference terms (defined explicitly later in this paper),

W ττ ′
OgO(i) f ≡ 4π

2 jN + 1

∑
J

〈 jN ||Og
J;τ || jN 〉〈 jN |∣∣O(i) f

J;τ ′
∣∣| jN 〉

→ 〈g〉〈 f 〉
2 jN + 1

∑
J

〈 jN ||OJ;τ || jN 〉〈 jN ||O(i)
J;τ ′ || jN 〉

= 4π
∣∣φZeff

1s (�0)
∣∣2

2 jN + 1

〈 f 〉
〈g〉
∑

J

〈 jN ||OJ;τ || jN 〉〈 jN ||O(i)
J;τ ′ || jN 〉,

(25)

varying the operator and isospin. The small parameter that
represents the effects of �vμ is thus 〈 f 〉/〈g〉, for which results
are shown in Table IV for 27Al and Cu. The average deviation
is 6%. As the magnitude of the ratio |〈 f 〉/〈g〉| ≈ 0.027 for
27Al this implies a typical rate error of ≈0.1–0.2%; perhaps
less, as the leading interference term is reproduced exactly.

Previous averaging procedures. Many of the references
listed in Table I employed averaging. But typically the authors
followed the very early work [23], in which methods more
appropriate to muon capture were applied to elastic μ → e
conversion. For example, in [27]

〈φ1s〉2 ≡
∫

d3r ρ(r)
∣∣φμ

1s(�r )
∣∣2∫

d3r ρ(r)

⇒ 〈φ1s〉2 ≡ α3m3
μ

π

Z4
eff

Z
. (26)

A nuclear-density-weighted average of the probability arose
in Primakoff’s early work on the inclusive process of muon
capture, where∑

f

F (E f )|〈i|�φ
μ
1s(�r )| f 〉|2

≈ F (Ē f )
∑

f

|〈i|�φ
μ
1s(�r )| f 〉|2
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TABLE IV. Errors incurred when 4πW ττ ′
OgO(i) f is replaced by

〈g〉 〈 f 〉W ττ ′
OO(i) , where 〈g〉 is obtained by averaging over the isoscalar

monopole operator M00;0(qeff r) and 〈 f 〉 is obtained by averaging over
the corresponding lower-component operator M (2)

00;0(qeff r).

% variation in 〈g〉〈 f 〉
Target W 00

MM (2) W 11
MM (2) W 10

MM (2) W 01
MM (2)

27Al 0.00% −5.19% 0.98% −5.91%
63Cu 0.00% −4.05% −1.27% −2.83%

Target W 00

′
′(0) W 11


′
′(0) W 10

′
′(0) W 01


′
′(0)

27Al −5.58% −6.78% −6.20% −6.17%
63Cu −3.26% −4.16% −2.69% −4.76%

Target W 00

′
′(2) W 11


′
′(2) W 10

′
′(2) W 01


′
′(2)

27Al −5.61% −6.47% −6.38% −5.68%
63Cu −10.29% −13.03% −11.04% −12.27%

Target W 00

′′
′′(0) W 11


′′
′′(0) W 10

′′
′′(0) W 01


′′
′′(0)

27Al −2.70% −22.12% −2.59% −22.11%
63Cu 3.57% 3.27% 4.58% 2.37%

Target W 00

′′
′′(2) W 11


′′
′′(2) W 10

′′
′′(2) W 01


′′
′′(2)

27Al −5.33% −3.79% −5.29% −3.82
63Cu −5.78% −7.27% −4.15% −8.86%

≈ F (Ē f )〈i|��†|φμ
1s(�r )|2|i〉

≈
∫

d3r ρ(r)
∣∣φμ

1s(�r )
∣∣2∫

d3r ρ(r)
F (Ē f )〈i|��†|i〉. (27)

Here � is a nuclear operator. After replacing the final-state
phase space F (E f ) by an average value, the sum over final
states was completed by closure. The closure approximation
relates a transition probability to the ground-state expectation
value of the muon probability. However, the exclusive pro-
cess of μ → e conversion depends on a simpler ground-state
expectation value of an amplitude containing g(r), and the
average over this amplitude can be computed without approx-
imations, producing an exact result.

Similarly, the appearance of Z4
eff in Eq. (26) is another relic

of early muon capture studies, derived in phenomenological
fits to rates. The muon probability contributes a factor of
Z3. Muon capture rates are dominated by transitions to the
giant resonances, which are governed by the Thomas-Reiche-
Kuhn sum rule, which predicts a scaling of NZ/A ≈ Z/2.
The Z4

eff that arises in muon capture thus reflects a rather
complicated convolution of Coulomb and nuclear structure
approximations. The Zeff from muon capture is not simply
related to the Zeff of elastic μ → e conversion, which arises
solely from the impact of the finite nuclear size in softening
the Coulomb potential at small r.

III. EFFECTIVE THEORY FORMULATION

A. General construction of the response functions
for μ → e conversion

One can construct the general form of the elastic μ → e
conversion rate by considering the constraints imposed on

TABLE V. The constraints imposed by parity and time reversal
on candidate multipole operators mediating elastic μ → e conver-
sion, assuming nuclear ground states of good parity and CP. Slashes
and backslashes indicate symmetry-forbidden multipoles.

Symmetries: Parity�O Time�O

Current J even J odd J even J odd J even J odd

�JT LJ ����LJ T el
J ����T

el
J ���T mag

J
���T mag

J

�J /T ��LJ ��LJ ��T el
J ��T el

J
������T mag

J T mag
J

�JT
5 ��L

5
J ��L

5
J ��T 5 el

J
��T 5 el

J T 5 mag
J

������T 5 mag
J

�J /T
5 ����L

5
J L5

J
����T 5 el

J T 5 el
J

���T 5 mag
J ���T 5 mag

J

current and charge matrix elements by the good parity and CP
(or T ) of the nuclear ground state. We decompose the currents
�J and charges ρ into vector and axial-vector components

labeled by their transformation properties under T :

�J (�x) ≡ �J (�x) + �J5(�x), J0(�x) ≡ ρ(�x) + ρ5(�x),

�J (�x) = �JT(�x) + �J /T(�x), ρ(�x) = ρT(�x) + ρ
/T(�x),

�J5(�x) = �JT
5 (�x) + �J /T

5 (�x), ρ5(�x) = ρT
5 (�x) + ρ

/T
5 (�x), (28)

where T indicates time-reversal even and /T time-reversal
odd. No further assumptions are made about the currents and
charges: they can be one-body or multi-body, etc.

A current �J can be decomposed into its longitudinal, trans-
verse electric, and transverse magnetic components. Each
multipole contributing to an elastic matrix element can be
evaluated according to its transformation properties under P
and T , with those quantities odd in either quantity eliminated
due to the good P and T of the nuclear ground state [50]. We
can treat the charge multipoles similarly. As the transforma-
tion properties depend on whether the multipolarity J is even
or odd, we treat these separately. A straightforward exercise,
summarized in Tables V and VI, identifies the allowed elastic
multipoles.

We now add in constraints imposed by the quantum me-
chanical degrees of freedom available to us. Nucleon charges
generate a scalar density ρsc(�x). Velocities generate a convec-
tion current density �Jc(�x), and spins a magnetic density �μ(�x).

TABLE VI. The constraints imposed by parity and time reversal
on candidate multipole operators mediating elastic μ → e conver-
sion, assuming nuclear ground states of good parity and CP. Slashes
and backslashes indicate symmetry-forbidden multipoles.

Symmetries: Parity�O Time�O

Current J even J odd

ρT MJ ����MJ

ρ/T ��MJ ��MJ

ρT
5 ��M

5
J

��M
5
J

ρ
/T
5

����M
5
J M5

J
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One can form a dot product of spin and velocity to create
a pseudoscalar density ρps(�x) and a cross product to form
a vector density �ω(�x). Furthermore one can form gradients
of scalars and curls of currents. Distributing these densities
according to their transformation properties yields physical
representations of the currents and charges,

�JT(�x) = �ω(�x) + �∇ρsc(�x),

�J /T(�x) = �Jc(�x) + �∇ × �μ(�x),

�JT
5 (�x) = �∇ × �ω(�x) + �∇ρps(�x),

�J /T
5 (�x) = �μ(�x) + �∇ × �Jc(�x),

ρT(�x) = ρsc(�x) + �∇ · �ω(�x),

ρ
/T(�x) = �∇ · �Jc(�x),

ρT
5 (�x) = ρps(�x),

ρ
/T
5 (�x) = �∇ · �μ(�x). (29)

First consider the charges. Table VI allows us to eliminate
ρ/T(�x) and ρT

5 (�x). The divergences can be partially integrated
to yield longitudinal projections of �ω(�x) and �μ(�x), terms that
will already be generated by the currents above. Consequently,
the only contribution from the charges comes from the even
multipoles of

ρT(�x) = ρsc(�x).

This eliminates the candidate response function associated
with M5

j : elastic μ → e conversion cannot probe axial-charge
interactions.

For the currents, we note

(1) Table V establishes that �J /T and �JT
5 only contribute

through the transverse magnetic projection. Partially
integrating the curls generates transverse electric pro-
jectors, so we see both curls are redundant, as these
terms are already included in the transverse electric
contributions of �J /T

5 and �JT, respectively.
(2) The gradient contribution to �JT

5 is longitudinal, and
thus cannot contribute to a transverse magnetic mul-
tipole.

(3) The gradient contribution to �JT contributes to the
symmetry-allowed longitudinal multipole. But if par-
tially integrated, it generates a charge multipole of ρsc,
which we have already included.

(4) The curl term in �J /T
5 can only contribute to the al-

lowed transverse electric multipole. But on partially
integrating, the projector becomes magnetic, and thus
redundant with the convection current contribution
to �J /T.

It follows that all curls and gradients in the currents are
unnecessary, so that

�J /T(�x) = �Jc(�x),

�JT(�x) = �ω(�x),

�J /T
5 (�x) = �μ(�x),

�JT
5 (�x) = 0. (30)

This eliminates the otherwise symmetry-allowed axial trans-
verse magnetic multipole T 5 mag

J .
We conclude that the elastic μ → e conversion rate con-

tains six independent response functions,

MJ : even J � 0 multipoles of ρsc(�x) → MJ ,

T mag
J : odd J � 1 multipoles of �Jc(�x) → �J ,

LJ : even J � 0 multipoles of �ω(�x) → �′′
J ,

T el
J : even J � 2 multipoles of �ω(�x) → �̃′

J ,

L5
J : odd J � 1 multipoles of �μ(�x) → 
′′

J ,

T 5 el
J : odd J � 1 multipoles of �μ(�x) → 
′

J , (31)

where on the right we indicate the effective one-body opera-
tors that will generate these response functions in the NRET
formalism we introduce below. An NRET with a full basis of
operators should generate these six response functions.

B. Motivations for NRETs

The procedure in EFT is to construct a complete set of
operators, constrained by the applicable symmetries, up to a
given order in an expansion in one or more small parameters,
with the expectation that these operators and their coefficients
(the low-energy constants or LECs) will encompass all of
the physics relevant to the energy or momentum scale of the
construction.

Measurements of elastic μ → e conversion are performed
in nuclei, and, as detailed above, the constraints of P and
CP allow six response functions. The NRET’s charge and
current operators should generate these responses, providing a
microscopic basis for their evaluation. Absent a microscopic
formulation, it becomes difficult to relate CLFV constraints
obtained in different nuclei.

Another purpose of the NRET is to serve as an interface
with UV formulations of CLFV. After the nuclear physics is
done, μ → e conversion constraints on CLFV will be encoded
as limits on specific bilinear combinations of the NRET coef-
ficients, the LECs. These limits can then be used as constraints
on higher-level EFTs or UV theories. This is generally a more
efficient way to proceed than the alternative of repeatedly
selecting one UV theory and doing a “top down” reduction
to the nuclear scale, which requires one to repeat a series of
steps for each candidate UV theory being explored.

As we noted in the Introduction, this strategy has been
developed for DM direct detection over the past decade and
has proved to be very popular. The NRET formulation of
the nuclear physics has been incorporated into easily used
scripts, which others have then used as the starting point for
other scripts that treat the matching to higher-level EFTs, such
as those formulated at the light quark and gluon level. In
Appendix C we describe a publicly available script for μ → e
conversion that can be utilized in a similar fashion.

C. Constructing the NRET

In μ → e conversion the relativistic motion of the electron
can be easily removed, effectively replacing the electron’s
velocity by the observable q̂, the direction of three-momentum
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transfer. This was done in writing Eq. (15). (See also Ap-
pendix A.) As the remaining kinematics are nonrelativistic,
the general form of the transition amplitude can be written
somewhat schematically as

〈 f |Lint|i〉 →
√

Ee

2me

qeff

q

×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫
d�r ξ †

m f
OLξmi φ

μ
1s(�r )e−i �qeff ·�r

×〈 fN |∑i ON (i)δ(�r − �ri )|iN 〉,∫
d�r ξ †

m f
�OLξmi φ

μ
1s(�r ) e−i �qeff ·�r

·〈 fN |∑i
�ON (i)δ(�r − �ri )|iN 〉,

(32)

where the upper expression is taken if the operators acting
between the leptons and nucleons are scalars and the bottom
if they are vectors. Here ξm is the lepton Pauli spinor.

The next step is to construct all of the candidate NRET
operators that might contribute to the above expression. Her-
mitian operators can be constructed from the lepton and
nucleon identity operators 1L and 1N and from the four di-
mensionless three-vectors

iq̂ = i �q
| �q | , �v, �σL, �σN . (33)

Here q̂ is the unit vector along the three-momentum transfer to
the leptons and �v represents all bound-state relative velocities.
q̂ provides a natural quantization direction, relative to which
one can project out the longitudinal (q̂ ·) and transverse (q̂×)
components of nuclear currents. These building blocks for the
NRET transform as

† T P

�σL, �σN +1 −1 +1
iq̂ +1 +1 −1
�v +1 −1 −1

and thus from these Hermitian operators we can construct
various semileptonic CLFV interactions. From the table one
can also determine the transformation properties of the inter-
actions under P and T .

The velocity operator. The electron’s velocity is measured
with respect to that of the recoiling final-state nucleus. The
initial-state nucleus is assumed to be at rest. Thus, after
removal of the electron, only bound-state Jacobi velocities
remain.

The standard unitary transformation to the inter-particle
Jacobi velocities,

�̇vN (1) = 1√
2

[�vN (2) − �vN (1)],

�̇vN (2) = 1√
6

[2�vN (3) − (�vN (1) + �vN (2))] · · · , (34)

will generate A − 1 internucleon velocities. The last intrinsic
Jacobi velocity is that of the muon, defined relative to the

center-of-mass of nucleons in the same bound state:

�̇vμ =
[
�vμ − 1

A

A∑
i=1

�vN (i)

]
. (35)

Henceforth we will drop the superscript dot, with the under-
standing that all velocities are Galilean invariant and intrinsic.

All of the velocities defined are small, with |�vN (i)| > |�vμ|.
This hierarchy can be utilized in constructing the NRET. The
logical progression is

(1) Ignore all velocities, retaining only the point-nucleus
operators 1N and �σN .

(2) Retain �vN to first order but neglect the smaller �vμ,
which generates the muon lower component.

(3) Retain both �vN and �vμ to first order.

These NRET choices are intimately connected to the
CLFV nuclear response functions we later generate. The first
NRET—which we will label the allowed approximation—
generates three response functions, corresponding to charge,
longitudinal spin, and transverse spin. In the papers of Table I
prior to [16], the transverse and longitudinal spin responses
were lumped together, though their form factors and de-
pendence on nucleon-level operators are distinct. (This is
surprising as this issue in DM direct detection has been treated
properly since the early work of Engel [51].) Thus the proper
form of the lowest-level NRET for elastic μ → e conversion
has not been used until recently [16,41].

The second NRET, which includes �vN , is the minimal
theory capable of generating all six of the nuclear response
functions allowed by P and CP, and in our view consequently
plays a special role, defining what can and cannot be learned
about CLFV from elastic μ → e conversion. The inclusion
of �vN makes the treatment of μ → e conversion compatible
with standard formulations of semileptonic weak interactions
[42,49]. It also generates some interesting nuclear physics,
including a new form of coherence that is important for certain
targets, including 27Al. This NRET was introduced in [16];
none of the earlier papers listed in Table I considered the three
response functions generated by �vN . (See also [41].)

In the third step we extend the NRET to include �vμ.
This does not affect selection rules or create truly distinct
responses, reflecting the fact that the leptonic part of the
amplitude is not controlled by P or CP selection rules, as it
is inelastic and as a sum over all electron distorted waves is
done. The inclusion of �vμ does generate corrections to the
nuclear response functions that we are able to cast in a rela-
tively simple form, thanks to our use of qeff . These corrections
are typically at the few percent level for targets of current
experimental interest. In all three NRET’s we will carry out
the full multipole expansion, faithfully treating the largest of
the small parameters, y. We limit our treatment of velocities to
linear order as ambiguities arise in treating velocities in higher
order in bound nuclear systems [52].

We begin by developing the operators for the second NRET
described above. The nucleon spin operator can be combined
with �vN as �vN · �σN and �vN × �σN , but not as the rank-2 tensor
[�vN ⊗ �σN ]2, which would not triangulate between spin- 1

2 nu-
cleon states. As any propagator effects in the scattering of the
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leptons off the nucleon would be evaluated at fixed | �q |, they
can be absorbed into the LECs. Consequently, the operators
can be expressed as simple products of leptonic and nucleonic
operators.

The available lepton scalars are 1L and iq̂ · �σL, while
the vectors are �σL and its transverse projection iq̂ × �σL;
the nucleon scalars are 1N , �vN · �σN , iq̂ · �σN , iq̂ · �vN , and iq̂ ·
(�vN × �σN ), while the vectors are �σN , �vN , �vN × �σN and their
transverse projections. One forms all scalars, noting that
products of transverse projections can be eliminated using
(iq̂ × �A) · (iq̂ × �B) = − �A · �B − iq̂ · �A iq̂ · �B. We identify a to-
tal of 16 operators:

O1 = 1L 1N ,

O′
2 = 1L iq̂ · �vN ,

O3 = 1L iq̂ · [�vN × �σN ],

O4 = �σL · �σN ,

O5 = �σL · (iq̂ × �vN ),

O6 = iq̂ · �σL iq̂ · �σN ,

O7 = 1L �vN · �σN ,

O8 = �σL · �vN ,

O9 = �σL · (iq̂ × �σN ),

O10 = 1L iq̂ · �σN ,

O11 = iq̂ · �σL 1N ,

O12 = �σL · [�vN × �σN ],

O′
13 = �σL · (iq̂ × [�vN × �σN ]),

O14 = iq̂ · �σL �vN · �σN ,

O15 = iq̂ · �σL iq̂ · [�vN × �σN ],

O′
16 = iq̂ · �σL iq̂ · �vN . (36)

Alternatively, one can count the possibilities by noting that
two leptonic scalars, 1L and iq̂ · �σL, can be combined with two
hadronic scalars, 1N and �vN · �σN ; and four leptonic vectors, iq̂,
�σL, iq̂ × �σL, and [(iq̂ ⊗ iq̂)2 ⊗ �σL )]1, can be combined with
three hadronic vectors, �vN , �σN , and �vN × �σN . The tensor in
the electron’s velocity that appears in [(iq̂ ⊗ iq̂)2 ⊗ �σL )]1 is a
component of iq̂ · �σLiq̂.

The construction above is analogous to that performed
earlier for DM direct detection [14,15], and in fact we have
adopted a similar labeling of the operators. However there are
some significant differences that we discuss in Appendix A,
for those familiar with this earlier work.

Each operator can have distinct couplings to protons and
neutrons. Thus the NRET interaction we employ in this paper
takes the form

∑
α=n,p

16∑
i=1

cα
i Oα

i , (37)

where the unknown numerical coefficients ci would need to be
determined by experiment or matched to some predictive UV
theory. One can factorize the space/spin and proton/neutron

components of Eq. (37) by introducing isospin, which is also
useful as an approximate symmetry of the nuclear wave func-
tions. Thus an equivalent form for our interaction is

16∑
i=1

(
c0

i 1 + c1
i τ3
)
Oi =

∑
τ=0,1

16∑
i=1

cτ
i Oit

τ , (38)

where c0
i = 1

2 (cp
i + cn

i ) and c1
i = 1

2 (cp
i − cn

i ). The isospin ma-
trices are t0 = 1 and t1 = τ3.

The NRET has a total of 32 parameters, associated with 16
space/spin operators each of which can have distinct couplings
to protons and neutrons. If we exclude operators that are not
associated with spin-0 or spin-1 mediators, 12 space/spin op-
erators and 24 couplings remain. A main goal of this paper is
to determine the specific constraints that a program of elastic
μ → e conversion measurements can place on these LECs.

The coefficients ci in other application of NRET would be
functions of q2 [14],

ci = ci(0) + ci(2)q2 + ci(4)q4 + · · · ≡ Fi

(
q2

�2

)
.

In DM direct detection the presence of tree-level pions in
some channels would lead to Fi ≈ 1

q2+m2
π

, making ci a func-
tion of the observed nuclear recoil energy. If couplings were
treated as constants in fits, a bit of information would be
missing: the deduced coupling ci would be correct only at
some average momentum. But this is not a concern in μ → e
conversion, as q2 ≈ m2

μ is fixed. One can represent Fi by a
constant ci, and know exactly how to match to an EFT with
pions. This argument extends to interactions with massless
mediators, Fi ≈ 1/q2.

As defined in Eq. (38), the c′
is carry dimensions of

1/(mass)2. Conventionally limits on μ → e conversion are
expressed as a branching ratio with respect to the standard-
model muon capture rate

B = �[μ− + (A, Z ) → e− + (A, Z )]

�[μ− + (A, Z ) → νμ + (A, Z − 1)]
. (39)

Consequently, it makes sense to introduce a set of dimension-
less LECs c̃i that are normalized to the weak scale,

ci ≡ c̃i/v
2 =

√
2GF c̃i, (40)

where v = 246.2 GeV is the Higgs vacuum expectation value
and GF = 1.166 × 10−5/GeV2 is the Fermi constant. Alter-
natively, given an experimental measurement (or limit) on an
LEC, one can define an energy characteristic of the CLFV,

�τ
i ≡ 1√∣∣cτ

i

∣∣ = v√∣∣c̃τ
i

∣∣ .
This is the energy scale that one would associate with the
BSM source of the CLFV. Often, experimental sensitivities
are described in terms of their reach in �τ

i .

D. Matching

The NRET developed here, which follows closely a similar
construction for DM phenomenology, is frequently used in
conjunction with various “top-down” EFT constructions. The
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NRET is formulated at the nuclear level, with the impulse
approximation employed to relate observables in different
nuclear targets. The operator expansion linear in vN (so in-
cluding interactions of order 1/mN ) is consistent with their
use with nuclear wave functions derived from the many-body
Schroedinger equation [52]. The coefficients of the NRET
operators are constrained by fitting experiment. In μ → e
conversion the available information is limited in principle
to the coefficients of the six nuclear response functions that
we were able to identify by symmetry arguments. It will take
great effort and some good fortune to separate the response
functions: if that is not possible, the total rate becomes the
only constraint.

The NRET forms a convenient interface between the parti-
cle physics of CLFV and nuclear calculations of the μ→ e
rate. The NRET operator basis fits naturally with many-
body nuclear methods: formulating the physics in this basis
makes form factor calculations more accessible to nuclear
structure theorists. The NRET operators must be evaluated
at q ≈ mμ and include some interactions that cannot be
probed in standard-model semileptonic interactions. The qual-
ity of the form factor calculations directly impacts our ability
to extract meaningful constraints on CLFV from μ → e
conversion.

A recent Snowmass white paper on DM effective theory
[53] nicely describes the particle physics interface, specifi-
cally, “top-down” reductions that relate EFTs formulated at
higher energy scales to our NRET. For example, in [54,55]
an EFT formulated for operators with quarks, gluons, and
photons as the external states, is reduced to the NRET form
used here. This reduction uses techniques familiar from heavy
baryon effective theory, yielding in the DM case products of
DM and nucleon charges and currents. The end result—see
Appendix A of [54]—is a dictionary of Wilson coefficients
that relate the coefficients of the quark/gluon-level operators
to the LECs ci of the NRET we develop here. The reduction
from a covariant EFT to a Galilean-invariant NRET leads
to correlations between the NRET operators, encoded in the
dictionary. Connections between LO charge operators and
vN -dependent currents, or the reverse, necessarily accompany
the nonrelativistic reduction. The extensive literature on such
reductions is summarized in [53].

In this way, a theorist interested in a specific formulation
of CLFV at some higher energy scale, can test its consis-
tency with experimental constraints encoded in the NRET
LECs—more precisely, the combinations of these LECs that
are associated with six nuclear responses functions. We will
use the NRET to determine precisely what CLFV information
might be available from future studies of μ → e conversion.
There are always more candidate CLFV operators in the start-
ing EFT than nuclear observables, some of which play no role
in elastic μ → e conversion due to selection rules. Thus while
μ → e studies can establish that CLFV occurs, it will not
fully determine the particle physics origin of the symmetry
violation.

The work of [54,55] was incorporated into the code Di-
rectDM [17] that connects to the corresponding NRET code
[15]. A similar effort is described in [56]. Much of this work
can be readily adapted to connect light quark/gluon CLFV

EFTs to our NRET. Work is underway [57] to build a script
like DirectDM as an interface to the NRET script of Ap-
pendix C.

E. NRET variations

As described earlier, there are two natural variations of
this NRET construction. The first is the neglect of all Jacobi
velocities, the A − 1 relative nucleon velocities and the muon
velocity relative to the nuclear center of mass. As the available
nuclear operators are then limited to just charge and spin,
this can be regarded as the point nucleus (or allowed) limit.
In this limit we retain only six of the operators enumerated
above: O1, O4, O6, O9, O10, and O11. We will later see that
the coefficients of the charge (MJ ), longitudinal spin (
′′

J ),
and transverse electric spin (
′

J ) response functions are de-
termined by exactly the LECs of these operators.

The allowed limit is a fairly simple one, and consequently
it is notable that the general form of the μ → e conversion
rate in this limit has not appeared in past work. While four
papers listed in Table I have considered spin-mediated in-
teractions, all have assumed an interaction of the form of
O4 (Gamow-Teller). This interaction yields a specific linear
combination of longitudinal and transverse electric responses.
In general, however, these two responses are entirely in-
dependent. For example, as we will see in Sec. III F, a
pseudoscalar-pseudoscalar CLFV interaction generates only
the longitudinal response.

The second variation is to include both �vN and �vμ to first
order. The inclusion of �vμ generates new NRET operators as
well as corrections to nuclear response functions that, if we
employ averaging, enter parametrically as 〈 f 〉/〈g〉.

The new operators generated by this inclusion are

O f ′
2 = iq̂ · �vμ

2
1N ,

O f
3 = iq̂ ·

[ �vμ

2
× �σL

]
1N ,

O f
5 =

(
iq̂ × �vμ

2

)
· �σN ,

O f
7 = �vμ

2
· �σL 1N ,

O f
8 = �vμ

2
· �σN ,

O f
12 =

[ �vμ

2
× �σL

]
· �σN ,

O f ′
13 =

(
iq̂ ×

[ �vμ

2
× �σL

])
· �σN ,

O f
14 = �vμ

2
· �σL iq̂ · �σN ,

O f
15 = iq̂ ·

[ �vμ

2
× �σL

]
iq̂ · �σN ,

O f ′
16 = iq̂ · �vμ

2
iq̂ · �σN , (41)
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TABLE VII. Alternative Dirac forms of our NRET CLFV amplitudes L j
int are related to linear combinations of the Pauli forms (the

operators Oi). Bjorken and Drell spinor and gamma matrix conventions are used. Here χe = ( ξs

�σL · q̂ ξs
), χμ = (ξs

0 ), and N = (
ξs

�σN ·�vN
2 ξs

). The Dirac

forms are expanded to first order in �vN to maintain consistency with their use between Schrödinger wave functions.

j L j
int Pauli operator reduction

∑
i ciOi

1 χ̄eχμ N̄N 1L 1N O1

2 χ̄eχμ N̄iγ 5N 1L (i �q
2mN

· �σN ) q
2mN

O10

3 χ̄eiγ 5χμ N̄N (−iq̂ · �σL ) 1N −O11

4 χ̄eiγ 5χμN̄iγ 5N (−iq̂ · �σL ) (i �q
2mN

· �σN ) − q
2mN

O6

5 χ̄eγ
μχμN̄γμN 1L1N O1

−(q̂1L − iq̂ × �σL ) · (�vN + i �q
2mN

× �σN ) +iO′
2 − O5 − q

2mN
(O4 + O6)

6 χ̄eγ
μχμN̄iσμα

qα

mN
N −(q̂1L − iq̂ × �σL ) · (−i �q

mN
× �σN ) q

mN
(O4 + O6)

7 χ̄eγ
μχμN̄γμγ 5N 1L (�vN · �σN ) − (q̂1L − iq̂ × �σL ) · �σN O7 + iO10 − O9

8 χ̄eγ
μχμN̄σμα

qα

mN
γ 5N 1L (−i �q

mN
· �σN ) − q

mN
O10

9 χ̄eiσμν qν

mL
χμN̄γμN − q

mL
1L 1N − q

mL
O1

−(−i �q
mL

× �σL ) · (�vN + i �q
2mN

× �σN ) − q
mL

(O5 + q
2mN

(O4 + O6))

10 χ̄eiσμν qν

mL
χμN̄iσμα

qα

mN
N −(−i �q

mL
× �σL ) · (−i �q

mN
× �σN ) q

mL

q
mN

(O4 + O6)

11 χ̄eiσμν qν

mL
χμN̄γμγ 5N (− q

mL
1L )�vN · �σN − (−i �q

mL
× �σL ) · �σN − q

mL
(O7 + O9)

12 χ̄eiσμν qν

mL
χμN̄σμα

qα

mN
γ 5N (− q

mL
1L )(−i �q

mN
· �σN ) q

mL

q
mN

O10

13 χ̄eγ
μγ 5χμN̄γμN (q̂ · �σL )1N − �σL · (�vN + i �q

2mN
× �σN ) −iO11 − O8 − q

2mN
O9

14 χ̄eγ
μγ 5χμN̄iσμα

qα

mN
N −�σL · (−i �q

mN
× �σN ) q

mN
O9

15 χ̄eγ
μγ 5χμN̄γμγ 5N (q̂ · �σL )(�vN · �σN ) − �σL · �σN −iO14 − O4

16 χ̄eγ
μγ 5χμN̄σμα

qα

mN
γ 5N (q̂ · �σL )(−i �q

mN
· �σN ) i q

mN
O6

17 χ̄eσ
μν qν

mL
γ 5χμN̄γμN (−i �q

mL
· �σL )1N − q

mL
O11

−i q
mL

(�σL − q̂q̂ · �σL ) · (�vN + i �q
2mN

× �σN ) − q
mL

(iO8 + i q
2mN

O9 + iO′
16)

18 χ̄eσ
μν qν

mL
γ 5χμN̄iσμα

qα

mN
N −i q

mL
(�σL − q̂q̂ · �σL ) · (−i �q

mN
× �σN ) i q

mL

q
mN

O9

19 χ̄eσ
μν qν

mL
γ 5χμN̄γμγ 5N (−i �q

mL
· �σL )(�vN · �σN ) − q

mL
O14

−i q
mL

(�σL − q̂q̂ · �σL ) · �σN − q
mL

(iO4 + iO6)

20 χ̄eσ
μν qν

mL
γ 5χμN̄σμα

qα

mN
γ 5N (−i �q

mL
· �σL )(−i �q

mN
· �σN ) q

mL

q
mN

O6

where we employ �vμ/2 above, the operator that generates f (r)
when acting on the 1s muon wave function g(r). We will
denote interactions associated with �vμ (and thus the muon’s
lower component) by∑

i

(
b0

i 1 + b1
i τ3
)
O f

i =
∑
τ=0,1

∑
i

bτ
i O

f
i t τ , (42)

The sum over i extends only over the operators of Eq. (41),
with bi denoting the low-energy constants associated with
those operators.

F. Dirac spinor NRET equivalent

In some DM and μ → e conversion work operators are
expressed as matrix elements between Dirac spinors. For ex-
ample, DM experimentalists conducting generalized analyses
of spin-dependent scattering often write magnetic, electric
dipole, and anapole operators in the Dirac forms familiar from
textbooks [22]. In Table VII we write our NRET amplitudes
in the Dirac form, connecting this representation to the Pauli
spinor equivalent. The interactions included in the table are
limited to those generated through scalar or vector mediators.
We stress that this Dirac form is merely a rewriting of our
NRET: the expansion remains one linear in vN .

The amplitudes are constructed from the available leptonic
scalars

χ̄eχμ, χ̄eiγ 5χμ

and four-vectors

χ̄eγ
μχμ, χ̄eiσμν qν

mL
χμ, χ̄eγ

μγ 5χμ, χ̄eσ
μν qν

mL
γ 5χμ

which can be combined with their nucleon counterparts to
form all possible scalar interactions. We can assume a four-
fermion interaction: any propagator effects can be absorbed
into the LECs because q is fixed, as noted earlier. Thus there
are 22 + 42 = 20 combinations.

Including �vN but neglecting �vμ in the spinors,

χe =
(

ξs

�σL · q̂ ξs

)
, N =

(
ξs

�σN ·�vN
2 ξs

)
, χμ =

(
ξs

0

)
,

a Pauli reduction of the 20 Dirac forms yields various linear
combinations of 12 of the 16 NRET operators, shown in the
last column of Table VII. Thus the Dirac representation of
our NRET is rather inefficient. The four spin-velocity oper-
ators are not needed. The most general Dirac form of the
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TABLE VIII. As in Table VII, but listing the additional terms generated when the linear expansion in velocities includes �vμ, so that

χμ = (
ξs

�σL ·�vμ
2 ξs

).

j L j
int Pauli operator reduction

∑
i biO f

i

1 χ̄eχμ N̄N − 1
2 q̂ · �vμ 1N − i

2 q̂ · [�vμ × �σL] 1N iO f ′
2 − O f

3

3 χ̄eiγ 5χμ N̄N i
2 �vμ · �σL1N iO f

7

5 χ̄eγ
μχμN̄γμN 1

2 q̂ · �vμ 1N + i
2 q̂ · [�vμ × �σL] 1N −iO f ′

2 + O f
3

7 χ̄eγ
μχμN̄γμγ 5N − 1

2 �vμ · �σN − i
2 [�vμ × �σL] · �σN −O f

8 − iO f
12

9 χ̄eiσμν qν

mL
χμN̄γμN q

2mL
(q̂ · �vμ 1N + iq̂ · [�vμ × �σL] 1N ) q

mL
(−iO f ′

2 + O f
3 )

11 χ̄eiσμν qν

mL
χμN̄γμγ 5N q

2mL
(�vμ · �σN + i[�vμ × �σL] · �σN

q
mL

(O f
8 + iO f

12

−iq̂ · [�vμ × �σL]q̂ · �σN − q̂ · �vμq̂ · �σN ) +iO f
15 + O f ′

16 )
13 χ̄eγ

μγ 5χμN̄γμN 1
2 �vμ · �σL 1N O f

7

15 χ̄eγ
μγ 5χμN̄γμγ 5N i

2 [q̂ × �vμ] · �σN − 1
2 (q̂ × [�vμ × �σL]) · �σN O f

5 + iO f ′
13

− 1
2 �vμ · �σL q̂ · �σN +iO f

14

17 χ̄eσ
μν qν

mL
γ 5χμN̄γμN iq

2mL
�vμ · �σL 1N

iq
mL
O f

7

19 χ̄eσ
μν qν

mL
γ 5χμN̄γμγ 5N q

2mL
([q̂ × �vμ] · �σN + (iq̂ × [�vμ × �σL]) · �σN ) q

mL
(−iO f

5 + O f ′
13 )

interaction is

Lint ≡
20∑
j=1

d jL j
int.

Isospin labels can be added to this expression. Note that ex-
pressions for the ci in terms of the di can be read off the table,
e.g.,

c1 = d1 − q

mL
d9, c2 = id5, etc.

so that a rate given in terms of the ci can be easily converted.
Despite the redundancy in the d ′

i s, one might wonder
whether the Dirac operator representation offers an advan-
tage by connecting certain o(1) charge operators with their
associated o(1/mN ) currents, or the reverse. This is not the
case. Of the eight cases in Table VII where this situation
arises, four involve axial couplings, but nuclear selection rules
prevent the axial charge from playing any role in elastic
μ → e conversion. The remaining cases are vector, where
coherence enhances the charge coupling, which typically rel-
egates the convection current rate contribution to the level
� 10−4. Thus, although the vector charge and convection cur-
rent contributions are isolated in distinct response functions,
it is impractical to extract the convection current piece. The
situation can be summarized by stating that the embeddings
of these interactions in the nucleus destroys any operator
connections through covariance.

If the muon’s lower component is included in the reduction,

χμ =
(

ξs
�σL ·�vμ

2 ξs

)
,

and the expansion repeated to first order in velocities, the ad-
ditional terms shown in Table VIII are obtained. Note that all
ten NRET operators of Eq. (41) are generated. This occurs be-
cause the leptonic spin-velocity operator �vμ × �σL arises from
the coupling of leptonic lower components, as the electron

is relativistic. In contrast, such coupling on the nucleon side
would be second order in the nucleon velocity.

As already noted, the spin-velocity current �vN × �σN does
not appear because of the restriction to scalar and vector
mediators, eliminating the NRET operators O3, O12, O′

13, and
O15. If we include tensor-mediated interactions, e.g.,

χ̄eiσμνγ 5χμN̄iσμνγ
5N, (43)

they do. The equivalent Pauli form is

q

mN
1L1N + 2iq̂ · [�vN × �σN ] − 2�σL · �σN

− 2�σL · (q̂ × [�vN × �σN ]) − i(q̂ × �vμ) · �σN

+ �vμ · �σLq̂ · �σN + (q̂ × [�vμ × �σL]) · �σN

= q

mN
O1 + 2O3 − 2O4 + 2iO′

13

− 2O f
5 − 2iO f ′

13 − 2iO f
14 (44)

generating O3 and O′
13. In contrast to Table VII, we will

later find that the nuclear embedding of the spin-velocity
current leads to a novel enhancement of this vN -dependent
operator. Furthermore, that enhancement can be turned on and
off by picking appropriate targets. Consequently, if μ → e
conversion were dominated by tensor-mediated interactions,
covariance could be one of the sources of measurable operator
correlations.

G. Nuclear-level LECs as constraints on CLFV

Later in this paper we will describe shell-model treatments
of the nuclear many-body physics of μ → e conversion. We
know the underlying UV theory of the strong interaction
(QCD) and have available rather precise potentials, tuned to
experimental phase shifts, describing the interactions between
composite nucleons. Yet despite this knowledge, when we
treat the nuclear problem in the truncated spaces that current
technology allows in the shell model, we rely on phenomeno-
logical effective interactions. While some approaches may
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begin with the NN interaction and the ggmatrix it gener-
ates, the use of highly restricted Hilbert spaces excludes a
great deal of high-momentum physics and induces many-body
forces that are difficult to estimate theoretically. Conse-
quently, parameters in interactions are treated phenomenolog-
ically, adjusted to improve agreement between shell-model
predictions and measured nuclear properties, such as energy
levels. The end results are often quite impressive; a good
example of the state of the art is [58]. Yet the relationship
between the effective interaction and QCD is not simple.

The same issues will arise for the NRET interactions we
have developed at the nucleon level, but employ in the com-
plex nuclei where μ → e conversion experiments are done.
As described below, experience gained from the strong inter-
action suggests that the NRET can still be a very successful
phenomenology for analyzing CLFV, provided we consider
the LECs in the operator expansion to be effective. Because
the operator basis is complete, it has the flexibility to account
for the majority of the renormalization and operator mixing
that arises from Hilbert space truncation, provided the op-
erator coefficients are treated as parameters. This is in part
a consequence of the averaging of many-body charges and
currents when they are evaluated in nuclei with inert cores
and a few active valence nucleons near the Fermi surface.

That is, while one could envision extending the nucleon-
level NRET just constructed to include a complete set of two-
or three-nucleon Galilean-invariant interactions, the effects
of these more complicated charge and current operators can
be largely absorbed by adjusting the one-body LECs. In fact
if one were to simplify the shell-model description of 27Al,
treating the ground state as a hole in a 28Si core, two-body
operators would exactly reduce to density-dependent effec-
tive one-body operators. In more realistic descriptions, some
true two-body corrections would persist, but qualitatively
the argument would remain valid, reflecting the combina-
torics of having more core than valence nucleons. As nuclear
saturation leads to little variation in nuclear density, the
density-dependent renormalization will be only weakly de-
pendent on A: nucleons in 27Al and in Cu locally see a similar
nuclear medium.

This argument is not specific to CLFV, but instead familiar
in many nuclear contexts. One standard-model example is
the axial-vector coupling gA, which for a free nucleon has
the value ≈1.27, while the empirical value deduced in the
2s1d shell from β decay is ≈1.0 [59]. Limited Hilbert spaces
not only lead to operator renormalization of this sort, but
also to mixing among operators of the same symmetry. For
example, the axial-vector spin can mix with the orbital angular
momentum �� and spin-tensor [Y2(�r ) ⊗ �σ ]1 operators. One
nice aspect of an NRET is that it includes all operators up to
a designated order, so that the construction should include all
of the candidate mixing partners.

Truncated shell model spaces are not the only source of
renormalization and mixing. Even if a complete basis of Slater
determinants is used in a nuclear calculation, new charge
and current operators would arise from explicit pions, vector
mesons, and other degrees of freedom not present in such a
basis. For example, in standard-model electroweak interac-
tions, important pion exchange currents arise for the vector

three-current and the axial charge, as the one- and two-body
interactions arise at the same order in v/c. Again, because of
the averaging properties of nuclei, almost all of the effects of
these multinucleon currents can be absorbed into one-body
operators, if the operator LECs are regarded as effective. For
example, the axial charge operator and its two-nucleon pion-
range correction are both of order �vN . Phenomenologically,
the contributions of the latter can be absorbed into an effective
coupling of the axial charge operator, significantly enhancing
this coupling [60,61].

Consequently, there is a great deal of empirical evidence
that the current NRET formulation will be a reliable phe-
nomenology for analyzing and correlating μ → e conversion
results obtained over a range of nuclei. The fitted LECs
will encode the available CLFV information. The difficulty
though, will come in extracting from those phenomenological
LECs constraints on one’s favorite UV theory of CLFV.

As described in the introduction, CLFV requires physics
beyond the minimal standard model, and we know such
physics exists: the discovery of flavor violation in the oscilla-
tions of light neutrinos allows μ → e conversion to proceed
through a W -boson neutrino loop, though at a rate that is
not currently measurable. However there are many other
sources of new ultraviolet (UV) physics—supersymmetry,
heavy neutrinos, a more complicated Higgs sector, lepto-
quarks, compositeness, a new heavy Z—that can produce
observable μ → e conversion. What can we learn about those
sources, once we have a set of NRET LECs in hand? This is
the point where the complicated renormalization and operator
mixing effects discussed above must be confronted head on.
All of the sources of “effectiveness” that renormalize and mix
nuclear-level operators would have to be unwound.

Some of the nucleon-level issues described above, such as
the absence of the pion, other mesons, or baryonic resonances
in the nuclear Hilbert space, can be addressed, and in fact
have been extensively studied in the kinematically analogous
process of WIMP-nucleus scattering. At the three-momentum
transfer relevant to elastic μ → e conversion | �q | ≈ mμ ≈
mπ , pionic contributions to single-nucleon form factors could
be significant, depending on details of couplings and their
isospins. As these form factors are evaluated at fixed �q 2,
and as the magnitude of the three-momentum transfer varies
by only a few percent across the light- and medium-mass
nuclei of interest, their effects can be absorbed into the LECs,
yielding another source of renormalization. As demonstrated
for the analogous DM effective theory, the impact of single-
nucleon form factors on the LECs can be explicitly calculated
by matching the NRET to, for example, results from heavy
baryon chiral perturbation theory (HBChPT) [54,55,62–65].
When consistency of the chiral theory requires the intro-
duction of two-nucleon (or higher-body) interactions, these
corrections may be averaged to effective single-nucleon oper-
ators, generating couplings that can be fairly matched to those
determined from the NRET nuclear analysis.

However, a number of issues can arise in such match-
ing. Current experience with QCD provides some context.
Renormalization via ChPT does successfully produce softer
strong interactions more suitable for nuclear physics, but the
improvement ceases at a momentum scale ≈450 MeV, far
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above the shell-model scale. The softer interactions obtained
are also in some tension with the saturation density derived
from experiment. The reasons for this behavior are still under
study (and are certainly beyond the scope of present discus-
sions) but could involve issues like the incompatibility of the
plane-wave bases used in ChPT and the harmonic oscillator
bases required in nuclear physics to preserve translational
invariance. Some relevant discussion can be found in [66].
Significant progress has been made in developing numerical
methods of renormalization that can begin at 450 MeV and
continue to lower momenta [67].

But the essential point for us is the expectation that the
NRET operator expansion should provide a very successful
formalism for μ → e conversion analysis, correctly capturing
in its LECs the information needed to constrain UV CLFV.
Once a pattern of couplings emerges from experiment, the
challenge of making the detailed connection to UV theories
would raise all of the issues discussed above. As we have
noted that the NRET can be developed in various levels of
sophistication, we now turn to the question of what level
should be employed to yield a rate formula providing the right
balance between completeness and simplicity.

IV. THE μ → e CONVERSION RATE

The nuclear amplitude M for μ → e conversion is
obtained in the impulse approximation from the NRET inter-
actions described above. We will derive the full result for the
rate using the qeff representation of distorted electron waves,
where the muon’s upper and lower wave functions g(r) and
f (r) appear in transition densities. We then take advantage
of the much slower variation of the muon’s wave function
to simplify this result by averaging, a step that also allows
us to evaluate analytically all matrix elements of multipole
operators between harmonic-oscillator Slater determinants.
For each NRET operator, one can efficiently evaluate the
full nuclear response function, while employing large-basis
state-of-the-art shell-model wave functions. With this treat-
ment of the muon wave function, and after averaging over
initial lepton spins and nuclear magnetic quantum numbers

and summing over final magnetic quantum numbers, we find

1

2

1

2 jN + 1

∑
spins

|M|2

≈
∑

k

∑
τ=0,1

∑
τ ′=0,1

Rk ({cτ
i cτ ′

j })W ττ ′
k (y). (45)

The nuclear response functions Wk are quantities that vary
depending on the character of the nuclear ground state, in-
cluding its angular momentum and isospin, as well as aspects
of its internal structure, such as the spin and angular mo-
mentum content of valence nucleons. Thus an experimentalist
can “dial” this knob by selecting an optimal nucleus. The
leptonic response functions contain the particle physics: they
determine which combinations of the LECs ci can and cannot
be probed in μ → e conversion.

A. NRET form of the transition amplitude

The effective interaction derived in the previous section can
be written[

lτ
0 1N + lA τ

0 �vN · �σN + �lτ
5 · �σN + �lτ

M · �vN + i�lτ
E · (�σN × �vN )

]
t τ

(46)

where the leptonic factors obtained in our standard NRET
(where �vN is retained but the smaller �vμ neglected) are

lτ
0 = cτ

11L + cτ
11iq̂ · �σL,

lA τ
0 = cτ

71L + cτ
14iq̂ · �σL,

�lτ
5 = cτ

4 �σL + cτ
6 iq̂ · �σLiq̂ − cτ

9 iq̂ × �σL + cτ
10iq̂1L,

�lτ
M = cτ

2 iq̂1L − cτ
5 iq̂ × �σL + cτ

8 �σL + cτ
16iq̂ · �σLiq̂,

�lτ
E = −cτ

3 q̂1L + cτ
12i�σL + cτ

13q̂ × �σL − icτ
15q̂ · �σLq̂. (47)

If in addition one sets �vN ≡ 0, the point-nucleus NRET
limit, lτ

0 and �lτ
5 are unchanged, while lA τ

0 , �lτ
M , and �lτ

E all → 0.
Alternatively, if one includes �vμ, the muon’s lower compo-
nent generates corrections ≈ f to the point-nucleus leptonic
factors,

lτ
0 → lτ

0 + bτ
2iq̂ · �vμ

2
+ bτ

3iq̂ ·
[ �vμ

2
× �σL

]
+ b7

�vμ

2
· �σL ≡ lτ

0 + lτ
0 f ,

�lτ
5 → �lτ

5 + bτ
5iq̂ × �vμ

2
+ bτ

8
�vμ

2
+ bτ

12
�vμ

2
× �σL + bτ

13iq̂ ×
[ �vμ

2
× �σL

]
+ bτ

14
�vμ

2
· �σLiq̂ + bτ

15iq̂ ·
[ �vμ

2
× �σL

]
iq̂ + bτ

16iq̂ · �vμ

2
iq̂,

≡ �lτ
5 + �lτ

5 f . (48)

Henceforth, lτ
0 and �lτ

5 will denote the leptonic factors with �vμ ≡ 0, while lτ
0 f and �lτ

5 f will denote the corrections due to �vμ.
The prescription for embedding this interaction in the nucleus is the replacement of the nucleon operators above by their

one-body equivalents, summed over all nucleons in a nucleus. This yields the coordinate-space operator

∑
τ=0,1

[(
lτ
0 + lτ

0 f

) A∑
i=1

δ(�x − �xi ) + lAτ
0

A∑
i=1

1

2mN

(
−1

i

←−∇ i · �σN (i) δ(�x − �xi ) + δ(�x − �xi ) �σN (i) · 1

i

−→∇ i

)

+ (�lτ
5 + �lτ

5 f

) ·
A∑

i=1

�σN (i) δ(�x − �xi ) + �lτ
M ·

A∑
i=1

1

2mN

(
−1

i

←−∇ i δ(�x − �xi ) + δ(�x − �xi )
1

i

−→∇ i

)
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+ �lτ
E ·

A∑
i=1

1

2mN
(
←−∇ i × �σN (i) δ(�x − �xi ) + δ(�x − �xi ) �σN (i) × −→∇ i )

]
int

t τ (i). (49)

Here the subscript int denotes that the A single-nucleon velocities appearing in the above expression should be replaced by A − 1
relative (or Jacobi) velocities: the same issue has been discussed in connection with DM direct detection [15]. Provided one takes
care to remove the overcompleteness of the shell-model basis by projecting the center-of-mass into the harmonic oscillator 1s
state, the difference between the correct intrinsic operator and the usual impulse-approximation one-body operator is a recoil
correction, suppressed by 1/A (that is, by the target mass). The nuclear recoil velocity is much smaller than the internucleon
velocity �vN and beyond the order of our NRET expansion. Consequently, we can use the simple one-body form of operators.
This is equivalent to declaring the nucleus as infinitely heavy.

The matrix element of the decay amplitude can then be obtained by substituting this expression into Eq. (32). Including
contributions from �vμ we find

M =
√

Ee

2me

qeff

q

∑
τ=0,1

〈
1

2
s f ; jN m f

∣∣∣∣
[

A∑
i=1

e−i �qeff ·�xi

[
lτ
0

ig(xi )√
4π

+ lτ
0 f (x̂i )

f (xi )√
4π

]

+ lAτ
0

A∑
i=1

1

2mN

(
−1

i

←−∇ i · �σN (i) e−i �qeff ·�xi
ig(xi )√

4π
+ ig(xi)√

4π
e−i �qeff ·�xi �σN (i) · 1

i

−→∇ i

)

+
A∑

i=1

�σN (i) e−i �qeff ·�xi ·
[
�lτ
5

ig(xi )√
4π

+ �lτ
5 f (x̂i )

f (xi)√
4π

]
+ �lτ

M ·
A∑

i=1

1

2mN

(
−1

i

←−∇ ie
−i �qeff ·�xi

ig(xi )√
4π

+ ig(xi )√
4π

e−i �qeff ·�xi
1

i

−→∇ i

)

+ �lτ
E ·

A∑
i=1

1

2mN

(←−∇ i × �σN (i)e−i �qeff ·�xi
ig(xi )√

4π
+ ig(xi )√

4π
e−i �qeff ·�xi �σN (i) × −→∇ i

)]
int

t τ (i) | 1
2 si; jN mi〉, (50)

where the muon’s p-wave lower component generates an additional angular dependence through x̂i,

lτ
0 f (x̂i ) ≡ bτ

2iq̂ · x̂i + bτ
3iq̂ · [x̂i × �σL] + bτ

7x̂i · �σL,

�lτ
5 f (x̂i ) ≡ bτ

5iq̂ × x̂i + bτ
8x̂i + bτ

12x̂i × �σL + bτ
13iq̂ × [x̂i × �σL] + bτ

14x̂i · �σLiq̂ + bτ
15iq̂ · [x̂i × �σL]iq̂ + bτ

16iq̂ · x̂iiq̂. (51)

Note that the terms involving gradients can be partially integrated without concern about differentiating g(xi ), as this would
produce terms second order in velocities. The NRET with �vμ ≡ 0 is obtained by setting lτ

0 f (x̂i ) = �lτ
5 f (x̂i ) = 0, while the point

nucleus NRET corresponds to retaining only lτ
0 and �lτ

5 .
As we have previously discussed, the full multipole expansion of this operator should be carried out to avoid errors

that can be o(1): As qeff ≈ mμ ≈ 1/Rnuc where Rnuc is the nuclear radius, the momentum transfer in μ → e conversion is
sufficient to excite various angular and radial modes of the nucleus. The relevant operators carrying definite parity and angular
momentum are obtained by completing a standard multipole decomposition, expanding plane waves in Eq. (50) in spherical
components, combining these with the single-nucleon operators to form the needed multipoles. We quantize along q̂. For elastic
processes, as we described earlier in this section, the nearly exact parity and CP of the ground state impose selection rules
that eliminate certain operators entirely and restrict the allowed angular momenta of others to either even or odd J . Some of
these results are standard in semileptonic weak interactions, though terms associated with �vμ require some additional work. We
obtain

M =
√

Ee

2me

qeff

q

∑
τ=0,1

〈
1

2
s f ; jN m f

∣∣∣∣
[ ∞∑

J=0,2,...

√
4π (2J + 1)(−i)J

[
ilτ

0 Mg
J0;τ (qeff ) + lτ (2)

0 M (2) f
J0;τ (qeff ) + i

qeff

mN
lτ
E0�

′′ g
J0;τ (qeff )

]

+
∞∑

J=1,3,...

√
2π (2J + 1)(−i)J

∑
λ=±1

[
lτ
5λ


′ g
J−λ;τ (qeff ) + ilτ (0)

5λ



′ (0) f
J−λ;τ (qeff ) + ilτ (2)

5λ



′ (2) f
J−λ;τ (qeff ) − qeff

mN
lτ
Mλλ�

g
J−λ;τ (qeff )

]

+
∞∑

J=2,4,...

√
2π (2J + 1)(−i)J

∑
λ=±1

[
lτ (1)
λ M (1) f

J−λ;τ (qeff ) − i
qeff

mN
lτ
Eλ�̃

′ g
J−λ;τ (qeff )

]

+
∞∑

J=1,3,...

√
4π (2J + 1)(−i)J

[− lτ
50


′′ g
J0;τ (qeff ) + ilτ (0)

50 

′′ (0) f
J0;τ (qeff ) + ilτ (2)

50 

′′ (2) f
J0;τ (qeff )

]]∣∣∣∣12 si; jN mi

〉
. (52)
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Note that lA
0 does not appear above: it is associated with a

pseudoscalar nuclear operator that cannot contribute to elastic
scattering, as we demonstrated earlier from the P and CP
selection rules. Equation (52) divides the amplitude into four
terms, corresponding to longitudinal/transverse nuclear oper-
ators and even/odd angular momenta. When the spin sums are
completed in the rate evaluation, the Wigner-Eckart theorem
eliminates interferences among these terms.

We calculate the transition probability, squaring the ampli-
tude in Eq. (52), averaging over initial nuclear spins, summing
over final nuclear spins, and evaluating the phase space. De-
tails are given in Appendix B. The resulting “master rate
formula” is presented in two forms, by Eqs. (B3) and (B6).

As we established quantitatively earlier in this paper, the
nuclear matrix elements can be simplified with very little loss
of accuracy, put into a form where they can be evaluated
analytically as functions of y, once one computes the needed
shell-model one-body density matrices. Recalling our defini-
tion

Ôg
JM (q) ≡

A∑
i=1

1√
4π

g(xi )ÔJM (qxi ) (53)

and similarly for f (r), we replace g(r) and f (r) by the average
values obtained by the procedure described in Sec. II,

Ôg
JM (q) → ∣∣φZeff

1s (�0)
∣∣ A∑

i=1

ÔJM (qxi ),

Ô f
JM (q) → ∣∣φZeff

1s (�0)
∣∣ 〈 f 〉

〈g〉
A∑

i=1

ÔJM (qxi ). (54)

The effects of the muon’s lower component are encoded in the
ratio 〈 f 〉/〈g〉 The effects of higher multipoles, �vN , and �vμ are
then reflected in the dependence of our rate formula on the
parameters y, qeff/mN , and 〈 f 〉/〈g〉. Our master rate formula,
rewritten in this averaged form as Eq. (B7), then shows the
competition among these parameters. In the next section, we
emphasize the importance of such rate representations in the
“discovery phase” of CLFV, when the goals are to measure
nonzero rates and use them to deduce the underlying operator
structure of the CLFV.

In Eq. (52), the six nuclear operators associated with the muon’s upper component are familiar from standard-model
electroweak interaction theory. They are constructed from the Bessel spherical harmonics and vector spherical harmonics,
MJM (q�x) ≡ jJ (qx)YJM (�x ) and �MM

JL(q�x) ≡ jL(qx) �YJLM (�x ):

MJM;τ (q) ≡
A∑

i=1

MJM (q�xi ) t τ (i),

�JM;τ (q) ≡
A∑

i=1

�MM
JJ (q�xi ) · 1

q
�∇i t τ (i),


′
JM;τ (q) ≡ −i

A∑
i=1

[
1

q
�∇i × �MM

JJ (q�xi )

]
· �σN (i) t τ (i)

=
A∑

i=1

[
−
√

J

2J + 1
�MM

JJ+1(q�xi ) +
√

J + 1

2J + 1
�MM

JJ−1(q�xi )

]
· �σN (i) t τ (i),


′′
JM;τ (q) ≡

A∑
i=1

[
1

q
�∇i MJM (q�xi )

]
· �σN (i) t τ (i)

=
A∑

i=1

[√
J + 1

2J + 1
�MM

JJ+1(q�xi ) +
√

J

2J + 1
�MM

JJ−1(q�xi )

]
· �σN (i) t τ (i).

�̃′
JM;τ (q) ≡

A∑
i=1

[(
1

q
�∇i × �MM

JJ (q�xi )

)
·
(

�σN (i) × 1

q
�∇i

)
+ 1

2
�MM

JJ (q�xi ) · �σN (i)

]
t τ (i).

�′′
JM;τ (q) ≡ i

A∑
i=1

(
1

q
�∇iMJM (q�xi )

)
·
(

�σN (i) × 1

q
�∇i

)
t τ (i). (55)

Six new nuclear operators for elastic μ → e conversion arise from the muon’s lower component:

M (1)
JM;τ (q) ≡

A∑
i=1

√
J (J + 1)

1

qxi
jJ (qxi )YJM (�xi ) t τ (i) M (2)

JM;τ (q) ≡
A∑

i=1

d

dqxi
jJ (qxi )YJM (�xi ) t τ (i),



′(0)
JM;τ ≡

A∑
i=1

jJ (qxi )

[√
J

2J + 1
�YJJ+1M (�i ) · �σN (i) +

√
J + 1

2J + 1
�YJJ−1M (�i ) · �σN (i)

]
,
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′(2)
JM;τ ≡

A∑
i=1

[
− d

dqxi
jJ+1(qxi )

√
J

2J + 1
�YJJ+1M (�i ) · �σN (i) + d

dqxi
jJ−1(qxi )

√
J + 1

2J + 1
�YJJ−1M (�i ) · �σN (i)

]
,



′′(0)
JM;τ ≡

A∑
i=1

jJ (qxi )

[
−
√

J + 1

2J + 1
�YJJ+1M (�i ) · �σN (i) +

√
J

2J + 1
�YJJ−1M (�i ) · �σN (i)

]
,



′′(2)
JM;τ ≡

A∑
i=1

[
d

dqxi
jJ+1(qxi )

√
J + 1

2J + 1
�YJJ+1M (�i ) · �σN (i) + d

dqxi
jJ−1(qxi )

√
J

2J + 1
�YJJ−1M (�i ) · �σN (i)

]
, (56)

with the superscripts (0), (1), (2) denoting the radial dependence. In all case above we have given the operators with 〈g〉 and
〈 f 〉 removed. This rather elegant result for the lower-component Coulomb physics is another benefit of introducing qeff . In
treating �vμ, the muon’s lower component yields x̂i, which is a ladder operator in angular momentum, while in treating �vN , the
nucleon’s lower component yields �∇, which is a ladder operator for both angular momentum and the radial functions jJ (r). This
difference leads to the contrasting structures of Eqs. (55) and (56). The parity and time-reversal properties of the new operators
M (i)

J , 

′(i)
J , and 


′′(i)
J reflect those of their namesakes in Eq. (55). If the nuclear physics is done with Slater determinants in a

harmonic oscillator basis, matrix elements of all operators in Eq. (56) can be evaluated analytically, though not in terms of finite
polynomials in y, as is possible for the operators of Eq. (55).

B. NRET decay rates

In 1936, Gamow and Teller [68] concluded from the systematics of β decay that Fermi’s charge (vector) weak amplitude was
accompanied by a spin-dependent (axial) amplitude of comparable strength. Yet more than two decades were to pass before it
could be concluded that the low-energy weak interaction was V − A, with scalar, pseudoscalar, and tensor interactions eliminated
as leading operators. One motivation for developing an NRET of μ → e conversion is to provide a general framework that will
allow experimentalists—once CLFV is detected—to analyze their data in a systematic way, to deduce which NRET operators
are responsible for the CLFV. The NRET provides a complete set of operators, organized in a hierarchy. One can test for the
presence of leading operators, exploiting nuclear physics properties, very much as Gamow and Teller used nuclear selection
rules to demonstrate the presence of an allowed axial interaction in β decay. We will see below that secondary interactions can
also be explored, given the number of nuclear “knobs” available through judicious choices of nuclear targets.

The “allowed” NRET response. We define the allowed approximation as the rate one obtains by omitting velocity-dependent
operators from the NRET, �vN ≡ 0 and �vμ ≡ 0. From Eq. (B3) we have

ω = G2
F

π

q2
eff

1 + q
MT

∣∣φZeff
1s (�0)

∣∣2 ∑
τ=0,1

∑
τ ′=0,1

[
R̃ττ ′

MM W ττ ′
MM (qeff ) + R̃ττ ′


′
′ W ττ ′

′
′ (qeff ) + R̃ττ ′


′′
′′W ττ ′

′′
′′ (qeff )

]
(57)

where

R̃ττ ′
MM = c̃τ

1 c̃τ ′∗
1 + c̃τ

11c̃τ ′∗
11 , R̃ττ ′


′
′ = c̃τ
4 c̃τ ′∗

4 + c̃τ
9 c̃τ ′∗

9 , R̃ττ ′

′′
′′ = (

c̃τ
4 − c̃τ

6

)(
c̃τ ′∗

4 − c̃τ ′∗
6

)+ c̃τ
10c̃τ ′∗

10 .

Alternatively, the leptonic responses can be expressed in terms of the covariant couplings,

R̃ττ ′
MM =

(
d̃τ

1 + d̃τ
5 − q

mL
d̃τ

9

)
(τ → τ ′) +

(
d̃τ

3 + q

mL
d̃τ

17

)
(τ → τ ′) + d̃τ

13d̃τ ′
13,

R̃ττ ′

′
′ =

[
d̃τ

15 + q

2mN

(
d̃τ

5 − 2d̃τ
6 + q

mL

(
d̃τ

9 − 2d̃τ
10

))]
(τ → τ ′) + q2

m2
L

d̃τ
19d̃τ ′

19

+
(

d̃τ
7 + q

mL
d̃τ

11 + q

2mN

(
d̃τ

13 − 2d̃τ
14

))
(τ → τ ′) + q2

4m2
N

q2

m2
L

(
d̃τ

17 − 2d̃τ
18

)
(τ → τ ′),

R̃ττ ′

′′
′′ =

[
d̃τ

15 − q

2mN

(
d̃τ

4 − q

mL
2d̃20

)]
(τ → τ ′) + q2

m2
N

d̃τ
16d̃τ ′

16 + d̃τ
7 d̃τ ′

7 + q2

4m2
N

(
d̃τ

2 − 2d̃τ
8 + q

mL
2d̃τ

12

)
(τ → τ ′),

where (τ → τ ′) indicates that the second term is obtained
from the first by the indicated isospin index change. The
nuclear response functions W , given by Eq. (B5), involve
sums over even multipoles for the charge operator and odd
multipoles for the spin operators, a consequence of the P and
CP selection rules. We note

(1) All of the work reported in Table I prior to [16] em-
ployed the simplest point operators, the interactions
O1 and O4. These operators generate responses of the
allowed form. They couple to the nucleus’s charge and
spin, with sensitivity to the nucleus’s internal structure
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arising only through the response functions W ττ ′
(qeff ),

sampled at a momentum transfer qeff ≈ mμ.
(2) The two spin-dependent responses—transverse elec-

tric 
′ and longitudinal 
′′—have distinct form
factors, allowing one in principle to distinguish lon-
gitudinal operators, e.g., O6 and O10, from transverse
ones, e.g., O9. Measurements in multiple targets with
specific nuclear properties would be needed.

(3) In standard-model weak interactions like beta decay,
the allowed limit generally is synonymous with reten-
tion of just the Fermi and Gamow-Teller operators. But
because the momentum transfer in μ → e conversion
is fixed, other operators can mimic these responses.
This is apparent from the expressions for R̃ττ ′


′
′ and
R̃ττ ′


′′
′′ in terms of the d̃i. These responses are also
generated by convection currents, magnetic moments,
etc.

We noted previously that in past work on Coulomb effects
in μ → e conversion (see Table I) Coulomb corrections to the
allowed response were made by including the muon’s lower
component while simultaneously excluding electron partial
waves with |κ| > 1 (and also the effects of �vN ). We now illus-
trate why this choice does not properly respect the hierarchy
of small parameters.

We take the example of the scalar operator O1, which
because of its simplicity has been frequently studied (see
Table I). We also assume the operator isospin is isovector.
Eq. (B7) yields a rate proportional to

(
d̃1

1

)2 ∑
J=0,2,...

[〈
MJ − 〈 f 〉

〈g〉 M (2)
J

〉2

+ 〈 f 〉2

〈g〉2

〈
M (1)

J

〉2]
.

In 27Al the parameters are 〈 f 〉/〈g〉 ≈ −0.027 and y ≈ 0.27.
Evaluating the structure functions, one finds

〈M0〉2 ≈ 0.477 + o(y) ≈ 0.125,

〈M2〉2 ≈ 0.160y2 + o(y3) ≈ 0.006,

−2
〈 f 〉
〈g〉 〈M0〉

〈
M (2)

0

〉 ≈ −2
〈 f 〉
〈g〉 y

1
2 [−0.568 + o(y)],

≈ −0.006.

One sees that the last line—the included correction—is equal
and opposite to the contribution from the quadrupole response
function, which is excluded by the restriction |κ| = 1. The
magnitude of each correction is about 5%. One would have
been better off making no correction for the muon’s rel-
ativity, rather than including this correction at the cost of
limiting the electron’s partial wave expansion. This is true
even for a nucleus with a relatively weak quadrupole re-
sponse that contributes only as a probability, not through
interference.

In fact, the consequences of selectively including cor-
rections, in the absence of a systematic expansion, can be
considerably more severe. Several of the potential pitfalls can
be illustrated with the tensor-mediated interaction of Eq. (44).

For an isoscalar coupling of strength d̃ 0
T one has

(
2d̃ 0

T

)2[ ∑
J=0,2,...

〈
q

2mN
MJ − qeff

mN
�′′

J

〉2

+
∑

J=1,3,...

(〈

′

J − 〈 f 〉
〈g〉 


′(0)
J

〉2

+
〈

′′

J + 〈 f 〉
〈g〉 


′′(0)
J

〉2)

+
∑

J=2,4,...

〈
qeff

mN
�̃′

J

〉2
]
. (58)

On expanding in the small parameters and evaluating response
functions, one finds for 27Al

q2

4m2
N

〈M0〉2 ≈ q2

4m2
N

[348.1 + o(y)] ≈ 0.392,

q2
eff

m2
N

〈�′′
0〉2 ≈ q2

eff

m2
N

[11.9 + o(y)] ≈ 0.077,

−qeff

mN

q

mN
〈M0〉 〈�′′

0〉 ≈ −qeff

mN

q

mN
[−64.3 + o(y)]

≈ 0.348,

〈
′
1〉2 ≈ 0.237 + o(y) ≈ 0.046,

〈
′′
1 〉2 ≈ 0.118 + o(y) ≈ 0.051.

Here we see that (1) the allowed spin operators that have
�vμ corrections are themselves relatively weak, so that the
corrections are well below the 1% level and thus are ignored
above; (2) the allowed response is dominated by the coher-
ent isoscalar charge operator, though for the tensor-mediated
operator under study there is a q/mN suppression; (3) con-
sequently, operators generated by �vN are of the same order
in 1/mN ; (4) the leading such operator numerically is �′′

0,
which both interferes with the charge operator and exhibits
its own coherence (see Sec. V); and (5) the error one makes
from ignoring �vN -dependent operators beyond the allowed
approximation is o(1).

Repeating this calculation for Cu, a heavier target with
properties similar to 27Al, yields

q2

4m2
N

〈M0〉2 ≈ q2

4m2
N

[1290 + o(y)] ≈ 0.629,

q2
eff

m2
N

〈�′′
0〉2 ≈ q2

eff

m2
N

[65.2 + o(y)] ≈ 0.248,

−qeff

mN

q

mN
〈M0〉 〈�′′

0〉 ≈ −qeff

mN

q

mN
[−289.4 + o(y)]

≈ 0.790,

〈
′
1〉2 ≈ 0.326 + o(y) ≈ 0.028,

〈
′′
1 〉2 ≈ 0.163 + o(y) ≈ 0.026.

Corrections beyond the allowed limit associated with �vN en-
hance the rate by nearly a factor of 3.

The NRET response to o(�vN ). A conclusion one can draw
from the above examples is that, because the CLFV operator
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structure is unknown, the best guide for experimental inves-
tigations is symmetry; the P and CP constraints that apply to
the elastic process do limit the possible responses to the six we
have defined. This also makes practical sense, as the principal
tool available to diagnose the source of CLFV is variation of
the nuclear target, with the various response functions serving
as knobs: the experimentalist can control target spin, isospin,
its spin-orbit structure, its valence structure (e.g., whether the
angular momentum is dominated by intrinsic spin or is or-

bital), etc. But we cannot insist, without a theory of CLFV, that
we have a hierarchy of allowed and first-forbidden responses
that make certain operators more important than others. One
cannot tell whether an LEC is o(1) or o(q/mN ); one shortcom-
ing of μ → e conversion is that it allows us to sample physics
at only one momentum transfer ≈mμ,

As we previously pointed out [16] and also discuss below,
this makes an NRET that includes the effects of �vN but not �vμ

of particular interest:

ω = G2
F

π

q2
eff

1 + q
MT

∣∣φZeff
1s (�0)

∣∣2 ∑
τ=0,1

∑
τ ′=0,1

{ [
R̃ττ ′

MM W ττ ′
MM (qeff ) + R̃ττ ′


′′
′′ W ττ ′

′′
′′ (qeff ) + R̃ττ ′


′
′ W ττ ′

′
′ (qeff )

]

+q 2
eff

m2
N

[
R̃ττ ′

�′′�′′ W ττ ′
�′′�′′ (qeff ) + R̃ττ ′

�̃′�̃′ W
ττ ′
�̃′�̃′ (qeff ) + R̃ττ ′

�� W ττ ′
�� (qeff )

]− 2qeff

mN

[
R̃ττ ′

�′′M W ττ ′
�′′M (qeff ) + R̃ττ ′

�
′ W ττ ′
�
′ (qeff )

]}
(59)

Here we have chosen to remove the muon’s upper component
wave function g from the multipole operators, using Eq. (B7)
rather than Eq. (B6). The leptonic tensors not already defined
in Eq. (57) are

R̃ττ ′
�′′�′′ = c̃τ

3 c̃τ ′∗
3 + (c̃τ

12 − c̃τ
15

)(
c̃τ ′∗

12 − c̃τ ′∗
15

)
,

R̃ττ ′
�′′M = Re

[
c̃τ

3 c̃τ ′∗
1 − (c̃τ

12 − c̃τ
15

)
c̃τ ′∗

11

]
,

R̃ττ ′
�� = c̃τ

5 c̃τ ′∗
5 + c̃τ

8 c̃τ ′∗
8 ,

R̃ττ ′
�
′ = Re

[
c̃τ

5 c̃τ ′∗
4 + c̃τ

8 c̃τ ′∗
9

]
,

R̃ττ ′
�̃′�̃′ = c̃τ

12c̃τ ′∗
12 + c̃τ

13c̃τ ′∗
13 .

The terms accompanied by factors of qeff

mN
depend on the intrin-

sic nucleon velocity operator and thus are a reflection of the
finite size of the nucleus.

Arguably, this result provides the optimal formalism for an-
alyzing μ → e conversion as experimentalist seek to discover
CLFV:

(1) The result is complete. It provides leading-order ex-
pressions for each of the six response functions and
two interference terms that, as we argued in the dis-
cussion around Eq. (31), are allowed by symmetry
arguments.

(2) These eight terms can in principle be separately
measured: their associated nuclear structure func-
tions W are “knobs” the experimentalist can turn
by selecting nuclear targets with appropriate proper-
ties. The leptonic tensors accompanying these eight
terms thus represent the available information that
can be extracted from a comprehensive program of
μ → e conversion experiments. In the current impulse
approximation NRET formalism, this information
consists of constraints on the R′s, bilinears in the LECs
of the nucleon-level NRET.

(3) This result is effectively equivalent to the full result of
Eq. (B6), if we interpret the deduced LECs as effective,
incorporating small form-factor corrections associated
with �vμ and thus proportional to 〈 f 〉/〈g〉. Until CLFV
is measured with such precision, the effects of such

corrections will not be apparent. In contrast to �vμ, �vN

generates new operators that can, as we have seen,
generate leading contributions to CLFV.

In Appendix C we describe a publicly available script that
evaluates μ → e conversion rates for the targets investigated
in this paper, using Eq. (60).

The NRET response linear in velocities. For completeness
the rate linear in both velocities is given in two forms in
Eqs. (B3) and (B6), with the muon’s upper and lower com-
ponents included in the transition densities, and in Eq. (B7)
in a factorized form, where f and g are replaced by their
multipole averages. The impact of including �vμ is to add a
Coulomb correction to nuclear form factors proportional to
the ratio of the muon’s upper and lower components, 〈 f 〉/〈g〉.
See Appendix B for further discussion.

V. μ → e CONVERSION NUCLEAR PHYSICS

Here we discuss the nuclear physics of the response
functions that govern elastic μ → e conversion. We discuss
differences between the nuclear-level theory for elastic μ → e
conversion and the nucleon-level NRET: the nucleus imposes
selection rules that suppress certain interactions and generates
two types of coherence that enhances sensitivities to others.
We also describe the shell model calculations performed for
27Al and the other nuclear targets considered here.

A. Response function properties

The leading multipole operators for the three response
functions included in the allowed rate of Eq. (57) take on
the following familiar forms in the long-wavelength (q → 0)
limit:

√
4π M00(0) =

A∑
i=1

1(i)
√

6π 
′
1M (0) =

A∑
i=1

σ1M (i),

√
12π 
′′

1M (0) =
A∑

i=1

σ1M (i). (60)
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FIG. 6. The nuclear response functions for the six operators contributing to elastic μ → e conversion on 27Al. Here W ττ
O (qeff ) denotes

W ττ
OO(qeff ). The left (right) panel gives the results for isoscalar (isovector) coupling. The response functions are needed at the qeff indicated

by the dashed line. The results in blue correspond to charge and spin couplings, while those in orange correspond to the velocity-dependent
operators where the response functions are accompanied by the additional factor q2

eff/m2
N ≈ 0.014.

These operators would be present even if all effects of nuclear
size are ignored. The coherent operator M00 can be isolated
by using a jN = 0 target like 12C, while the transverse electric
and longitudinal operators 
′ and 
′′, respectively, require
jN � 1

2 . As these spin-dependent operators appear as an in-
coherent sum in our rate equations, they would appear to be
difficult to separate, implying that the c′

is associated with these
operators should be treated as a single set. However, when
the full form factors are considered, there can be significant
variations in the relative strengths of 
′ and 
′′ from target

to target, opening up possibilities for separating them. The
incoherent sum arises from completing the traces over lep-
tonic spins; we mention in Appendix B that muon hyperfine
interactions can affect this trace.

The remaining three operators are associated with cou-
plings to nucleon relative velocities, and thus arise from
nuclear compositeness. In the expression for the decay rate
Eq. (60), each such operator is accompanied by a factor
qeff/mN that vanishes in the long-wavelength limit. For small
but nonzero qeff/mN , these operators reduce to

�1M (0) = − 1√
24π

A∑
i=1

�1M (i), �̃′
2M (0) = − 1√

20π

A∑
i=1

[
x(i) ⊗

(
�σ (i) × 1

i
�∇(i)

)
1

]
2M

,

�′′
JM (0) =

⎧⎨
⎩

− 1
6
√

π

∑A
i=1 �σ (i) · ��(i), J = 0,

− 1√
30π

∑A
i=1

[
x(i) ⊗ (�σ (i) × 1

i
�∇(i)

)
1

]
2M

, J = 2,
(61)

where �� is the orbital angular momentum operator.
The response functions W ττ

OO′ (qeff ) for 27Al are given
in Fig. 6, taken from 2s1d shell-model calculations using
the USDA interaction (to be described later). For compar-
ison, we show results for Cu in Fig. 7—a case analogous
to Al as the stable isotopes of Cu have an unpaired
proton—evaluated from wave functions obtained by diago-
nalizing the GCN2850 interaction in the shell-model space
2p3/21 f5/22p1/21g9/2. One might naïvely expect that the con-
tribution to the rate—and thus sensitivity to the associated
c2′

i s—of the velocity-dependent response functions would be
typically reduced by a factor of 100, due to the accompanying
q2

eff/m2
N . But the figures show a more interesting pattern.

For isoscalar coupling, the contribution of M00 to WMM is
enhanced by a factor � A: with increasing A, the coherent
sum over the core involves more nucleons, but the associ-
ated point q ≈ mμ on the elastic form factor moves closer
to the first diffraction minimum. The isoscalar response per

target nucleon is maximized for medium-mass nuclei in the
neighborhood of Cu. No such coherence operates for the spin
and convection current operators: the responses W 00


′
′ , W 00

′′
′′ ,

and W 00
�� have roughly the expected single-particle value. This

pattern is seen in both Al and Cu, with differences reflecting
nuclear structure details, e.g., whether the angular momentum
carried by the unpaired nucleon is dominated by orbital angu-
lar momentum or spin.

In contrast, W 00
�′′�′′ , which is associated with the scalar

spin-orbit operator �σ · ��, exhibits a coherence in the two cases
illustrated. The naïve shell-model picture of 27Al corresponds
to a nearly full 1d5/2 shell, but an empty 1d3/2; similarly, the
1 f7/2 is closed for Cu but the 1 f5/2 mostly open. This is a
consequence of the strong spin-orbit contribution to the nu-
clear mean field in these mid-shell nuclei. If the operator �σ · ��
is summed over all 2(� + 1) states of the j = � + 1

2 subshell
and all 2� states of the j = � − 1

2 subshell, it vanishes. But the
sum is coherent if done over half shells. Al and Cu are nearly
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FIG. 7. As in Fig. 6 but for Cu.

optimal cases for exploiting this coherence. If CLFV is seen
in a J = 0 target, it will be very easy to determine which of
the two candidates scalar operators is responsible, due to this
distinctive nuclear physics.

Consequently, in cases like 27Al and Cu, where this spin-
orbit coherence operates, we find a hierarchy of nuclear opera-
tors that differs from that of the nucleon-level NRET: W 00

MM �
{W 00


′
′ ,W 00

′′
′′ ,

q2
eff

m2
N

W 00
�′′�′′ } � { q2

eff

m2
N

W 00
��,

q2
eff

m2
N

W 00
�̃′�̃′ }. W 00

�′′�′′ is
“elevated” by the nucleus, with the coherent enhancement

sufficient to overcome the q2
eff

m2
N

suppression, making �′′

numerically as relevant as the allowed spin operators. As this
operator is associated with the spin-velocity current �vN × �σN

and thus a set of LECs distinct from those accompanying M,

′, or 
′′, it provides experimentalists with a nice probe of
tensor-mediated and other more exotic interactions.

In the case of isovector coupling, an isospin symmetric
core makes no contribution, and consequently for light targets
like Al the operator hierarchy is determined simply by qeff

mN
,

with {W 11
MM,W 11


′
′ ,W 11

′′
′′ } � { q2

eff

m2
N

W 11
��,

q2
eff

m2
N

W 11
�̃′�̃′ ,

q2
eff

m2
N

W 11
�′′�′′ }.

This pattern does change a bit as the neutron excess grows in
heavier nuclei, as the coherence grows over that excess (other
conditions being satisfied). This is apparent in the comparison
between the panels on the right in Figs. 6 and 7.

Of course, all of these general expectations may vary con-
siderably from nucleus to nucleus, reflecting specific aspects
of the structure: properties that potentially could be exploited
to determine the operators responsible for CLFV. In Fig. 8
we compare the operator sensitivities of the eleven targets
discussed here. The spin-orbit coherent amplification of �′′
is present in mid-shell nuclei like Al, Si, and Cu but absent
in closed-shell nuclei like O and Ca. The valence nucleon
structure of F produces a strong response to spin, but a weak
one to orbital motion; Al is the reverse. O and Ca are effec-
tively sensitive to only M. Were CLFV to be discovered, a
lot could be learned from the relative responses of different
targets about its operator origin.

In addition to sources of coherence, the other important
nuclear aspect of elastic μ → e conversion is its blindness
to certain LECs of the NRET, as a consequence of P and
CP selection rules. The LECs {c2, c16} are associated with

the longitudinal projection of �vN , but the only symmetry-
allowed multipoles of �vN are odd-J transverse magnetic ones.
The LECs {c7, c14} are associated with the axial charge op-
erator �vN · �σN , but Coulomb multipoles of this operator are
parity odd when J is even and time-reversal odd when J
is odd. Thus there are no surviving multipoles. The P and
T symmetry constraints utilized above will be broken very
slightly by weak corrections that generate small parity or
CP admixtures in the nuclear ground state, and also in some
cases by nuclear recoil corrections, which we have neglected
as they are of order mμ/AmN � 0.01 in amplitude. The ef-
fects of nuclear embedding on the NRET are summarized in
Fig. 9.

Such symmetry constraints do not limit μ → e conver-
sion accompanied by nuclear excitation. Despite the increased
background from free muon decay, forthcoming experiments
should be able to extract significant limits on inelastic μ → e
conversion involving low-lying nuclear states. The formalism
presented here can be generalized to include inelastic excita-
tion: the NRET then generates additional operators as well
as additional multipoles of the operators defined here. We
discuss this generalization elsewhere [69].

B. Nuclear response function evaluation

Here we describe the evaluations we have done of the
nuclear response functions for 11 selected targets ranging up
to Cu. We assume natural targets and sum responses over all
significant isotopes. In each case we use empirically deter-
mined effective interactions, usually exploring several when
multiple good choices exist. We limit ourselves to cases where
full-basis calculations can be done, retaining all Slater deter-
minants that can be formed in the spaces appropriate to the
effective interaction. This is the proper use of the effective
interaction.

Our calculations were performed with BIGSTICK [70,71],
a Lanczos-algorithm code capable of handling Hilbert spaces
of dimension up to 1011. While effective interactions can
be determined without referencing the underlying single-
particle basis, we use a harmonic oscillator single-particle
basis with a size parameter b chosen to reproduce the nuclear
charge density, as deduced from electron scattering. This basis
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FIG. 8. The nuclear responses to both allowed (left two panels) and velocity-induced (right) operators, for the 11 targets considered in this
paper. Target properties can significantly alter operator responses, providing an important diagnostic tool for determining the source of CLFV,
should it be observed.

FIG. 9. Nuclear- vs nucleon-level NRET, with strong operators
to the left and weak ones to the right. Naïvely, NRET operators
are either allowed (blue-green) or velocity suppressed (yellow). The
nucleus alters this pattern, as indicated in pink. Distinct forms of
nuclear coherence enhance the responses W 00

M and W 00
�′′ by factors

typically ≈100 in 27Al. Other nucleon-level NRET operators, O2,
O7, O14, and O16, are forbidden by selection rules or current con-
servation, apart from small nuclear recoil effects, suppressing these
operators by ≈ 1

100 .

choice is unique in allowing exact projection of center-of-
mass motion, preserving translational invariance, provided the
requisite complete sets of Slater determinants are employed,
which is the case in the present work. A second advantage of
the harmonic oscillator basis is that, if one chooses to replace
g(r) and f (r) by average values, all nuclear matrix elements
can be evaluated analytically. The momentum dependence
of all form factors is encoded into a single dimensionless
parameter y = (qeffb/2)2, a result we have utilized repeatedly
in our NRET discussions, W ττ ′

i → W ττ ′
i (y).

We have employed the impulse approximation, though, as
discussed earlier, this approach is more general in work that
includes a complete basis of single-particle operators, as we
do here. The nuclear core effectively averages multi-body
operators to density-dependent one-body forms—forms that
would be in our operator basis—effectively renormalizing the
impulse approximation LECs. It is these renormalized cou-
plings that would be determined from fitting to experiment,
were CLFV observed.

The many-body matrix element of any one-body operator
ÔJ;T of good J and T can be expressed in terms of the one-
body density matrix〈

f
...
...

A∑
i=1

ÔJT (qeff �xi )
...
... i

〉

=
∑

|α|,|β|
�

f i;JT
|α|,|β| 〈|α| ...

... OJT (qeff �x)
...
... |β|〉, (62)

where i and f denote the initial and final nuclear states,
...
...

indicates a matrix element reduced in angular momentum and
isospin, and the sum extends over a complete set of non-
magnetic single-particle matrix elements |α| and |β|. This
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result is exact: the density matrix extracts from fully corre-
lated many-body nuclear wave functions just the information
necessary to exactly evaluate any one-body spherical tensor
operator of the indicated rank in J and T . The shell model
approximates this result by truncating the summations in |α|
and |β| to the shell-model valence space and core, hopefully
capturing the physics most important to the evaluation of
low-momentum operators. As the operators considered here
have isospin 1 or τ3, one obtains

〈|α| ...
... ÔJT (qeff �x)

...
... |β|〉

= [ 1
2

]
[T ] 〈nα (�α1/2) jα ||ÔJ (qeff �x)|| nβ (�β1/2) jβ〉, (63)

where ÔJ denotes the space-spin part of the operator and
[T ] ≡ √

2T + 1.
For the harmonic oscillator single-particle basis we em-

ploy, the reduced matrix elements of OJ = {MJ , 
′
J , 
′′

J , �J ,
�̃′

J , �′′
J } can be obtained analytically as

〈nα (�α1/2) jα||OJ (q�x)||nβ (�β1/2) jβ〉

= 1√
4π

y(J−K )/2e−y p(y). (64)

where K = 2 for the normal parity operators MJ , �̃′
J , and

�′′
J , and K = 1 for the abnormal parity operators �J , 
′

J ,
and 
′′

J . Here p(y) is a finite polynomial in y. Thus the nu-
clear response functions W displayed in Figs. 6 and 7 have
this polynomial form [49]. The additional operators generated
from the muon’s lower component—designated by super-
scripts (0), (1), or (2)—can also be evaluated analytically but
yield hypergeometric functions that cannot be represented as
finite polynomials.

As detailed in Appendix C, for most targets we were able to
generate wave functions and one-body density matrices using
several available, well-tested effective interactions. While the
nuclear physics is model based, thus ruling out quantitative
error estimation, we can get some feel for uncertainties by
exploring the differences associated with the choice of interac-
tion. Thus, while the results we present in Sec. VI use specific
effective interactions—the Cohen and Kurath 1p3/2-1p1/2 in-
teraction [72] for C; USDB 1d5/2-2s1/2-1d3/2 interaction [73]
for Al, Si, and S; the KB3G 1 f7/2-2p3/2-2p1/2-1 f5/2 interac-
tion [74] for Ti; and the GCN2850 2p3/2-2p1/2-1 f5/2-1g9/2

interaction [58] for Cu—the code described in Appendix C
allows users to compute rates with density matrices derived
from other effective interactions. Appendix C also details
other aspects of the nuclear physics, such as the procedure
for choosing oscillator parameters consistent with electron
scattering determinations of nuclear charge radii.

VI. LEC LIMITS: Mu2e, COMET, AND DeeMe IMPACTS

Table IX summarizes existing limits on μ → e conversion.
We focus here on measurements employing lighter nuclei in
the table, those less massive than Au, especially Mu2e and
COMET measurements using Al, as well as future DeeMe
measurements using graphite and silicon carbide (SiC) tar-
gets. For such targets full-space, translationally invariant wave
functions can be computed, as just described. As noted pre-

TABLE IX. Existing limits on branching ratios for μ → e con-
version, taken from the tabulation of [75].

Process Limit Lab/Reference

μ− + 32S → e− + 32S 7 × 10−11 SIN [76]
μ−+Ti → e−+Ti 1.6 × 10−11 TRIUMF [77]
μ−+Ti → e−+Ti 4.6 × 10−12 TRIUMF [78]
μ−+Ti → e−+Ti 4.3 × 10−12 PSI [79]
μ−+Ti → e−+Ti 6.1 × 10−13 PSI [80]
μ−+Cu → e−+Cu 1.6 × 10−8 SREL [81]
μ−+Au → e−+Au 7 × 10−13 PSI [82]
μ−+Pb → e−+Pb 4.9 × 10−10 TRIUMF [78]
μ−+Pb → e−+Pb 4.6 × 10−11 PSI [83]

viously, the coherent response tends to peak near Ti due to
competition between increasing A2 and the decreasing nuclear
form factor. Thus light- and medium-mass nuclei are attractive
experimental choices, in addition to being simpler in terms of
their nuclear physics.

The branching ratios for μ → e conversion are given with
respect to the corresponding muon capture rates. We adopt the
values

ωμ→νμ
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0.0378 C
0.703 Al
0.865 Si
1.351 S
2.592 Ti
5.673 Cu

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

× 106/s, (65)

which were obtained by computing the weighted averages of
the measurements compiled in Ref. [84]. These values can be
used to convert μ → e rates to branching ratios.

Over the next five years, new experiments employing
high-intensity pulsed muon beams should lead to substan-
tial improvements on μ → e conversion limits. The COMET
experiment at J-PARC is expected to reach a branching ra-
tio sensitivity of 7 × 10−15 (90% C.L.) in Phase I [11] and
ultimately a Phase II sensitivity of ≈10−17 [12]. The Mu2e
experiment at Fermilab is expected to reach a branching
ratio sensitivity of 7 × 10−17 (90% C.L.), and a proposed
followup experiment Mu2e-II, which will take advantage of
future beam upgrades at Fermilab, could improve this limit
by another order of magnitude, so to 7 × 10−18 (90% C.L.)
[10]. Both COMET and Mu2e will employ Al targets. A
second J-PARC experiment has been proposed by the DeeMe
Collaboration, to be mounted at the Materials and Life Sci-
ences Facility. Its goal is a branching ratio of 1 × 10−13 for a
graphite target. A followup experiment using a silicon carbide
target has also been discussed. In this phase, the branching
ratio goal would be 2 × 10−14 [85].

Our rate calculations were performed with the code
described in Appendix C, which is available in both Math-
ematica and Python versions. The formalism follows stan-
dard multipole treatments of semileptonic weak interactions
[42,49]. The code’s nuclear physics consists of a library of
density matrices, computed as described previously for the
effective interactions listed in Appendix C.
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TABLE X. Limits on the dimensionless CLFV LECs |c̃τ
i | (defined relative to the weak scale) and the associated energy scale �̃τ

i ≡
�τ

i /TeV = 0.246/
√|c̃τ

i | (see text), imposed by the indicated μ → e conversion branching ratios. Branching ratios anticipated in upcoming
experiments are indicated by †.

Target Al C SiC 32S Ti Cu

���������
Limits
|c̃τ

i |/�̃τ
i

Branch
ratio

10−17 † 10−13 † 2 × 10−14 † 7 × 10−11[76] 6.1 × 10−13[80] 1.6 × 10−8[81]

i = 1, 11 τ = 0 4.0 × 10−10/1.2 × 104 5.1 × 10−8/1.1 × 103 1.8 × 10−8/1.9 × 103 1.0 × 10−6/240 7.4 × 10−8/910 1.2 × 10−5/71
i = 1, 11 τ = 1 1.2 × 10−8 /2.2 × 103 6.3 × 10−6/98 1.4 × 10−6/ 210 1.3 × 10−6/210 1.9 × 10−4/18
i = 3, 15 τ = 0 1.6 × 10−8/1.9 × 103 4.0 × 10−6/120 7.3 × 10−7/290 4.5 × 10−5/37 3.8 × 10−6/130 3.5 × 10−4/13
i = 3, 15 τ = 1 1.9 × 10−7/570 1.3 × 10−4/21 4.0 × 10−5/39 7.3 × 10−6/91 2.1 × 10−3/5.3
i = 4 τ = 0 1.4 × 10−8/2.1 × 103 9.4 × 10−6/80 4.1 × 10−6/120 1.5 × 10−5/63 5.9 × 10−4/10
i = 4 τ = 1 1.7 × 10−8/1.9 × 103 1.1 × 10−5/76 4.9 × 10−6/110 1.7 × 10−5/59 6.1 × 10−4/9.9
i = 5, 8 τ = 0 7.8 × 10−8/880 9.6 × 10−5/25 7.1 × 10−5/29 5.8 × 10−5/32 9.0 × 10−3/2.6
i = 5, 8 τ = 1 1.2 × 10−7/720 1.6 × 10−4/20 7.3 × 10−5/29 6.5 × 10−5/30 2.7 × 10−2/1.5
i = 6, 10 τ = 0 2.0 × 10−8/1.8 × 103 1.1 × 10−5/75 5.5 × 10−6/110 1.8 × 10−5/59 8.7 × 10−4/8.3
i = 6, 10 τ = 1 2.2 × 10−8/1.7 × 103 1.2 × 10−5/71 6.1 × 10−6/99 2.0 × 10−5/55 8.7 × 10−4/8.3
i = 9 τ = 0 2.1 × 10−8/1.7 × 103 1.9 × 10−5/57 6.2 × 10−6/99 2.8 × 10−5/47 8.0 × 10−4/8.7
i = 9 τ = 1 2.8 × 10−8/1.5 × 103 2.2 × 10−5/52 8.1 × 10−6/87 3.4 × 10−5/42 8.7 × 10−4/8.4
i = 12 τ = 0 1.6 × 10−8/1.9 × 103 4.0 × 10−6/120 7.3 × 10−7/290 4.5 × 10−5/37 3.8 × 10−6/130 3.5 × 10−4/13
i = 12 τ = 1 1.4 × 10−7/660 1.3 × 10−4/21 4.0 × 10−5/39 7.3 × 10−6/91 2.1 × 10−3/5.4
i = 13 τ = 0 1.8 × 10−6/180 8.4 × 10−5/27 5.3 × 10−2/1.1
i = 13 τ = 1 2.1 × 10−7/540 3.7 × 10−4/13 1.2 × 10−2/2.3

A. LEC Analysis

The resulting limits on CLFV are given in Table X,
expressed in terms of the magnitude of the dimensionless cou-
plings |c̃τ

i |, where c̃τ
i = 1 corresponds to the weak scale, and

alternatively in terms of the CLFV energy scale �τ
i . Recall

cτ
i =

√
2GF c̃τ

i = 1(
�τ

i

)2 .

As 12 LECs contribute to elastic μ → e conversion and each
operator has two isospin components, there are 24 degrees
of freedom. We have explored each LEC separately, as an
exercise to assess the comparative sensitivity of past and an-
ticipated experiments.

Some observations follow about the tables:

(1) In addition to its favorable properties as a muon stop-
ping target, 27Al is a versatile choice theoretically, with
a ground-state angular momentum of 5

2
+

that allows all
NRET operators to contribute, and with an isospin of
1
2 that tests both isoscalar and isovector operators.

(2) We have chosen to explore isoscalar and isovector,
rather than proton and neutron, isospin directions.
While the former is more natural theoretically, one
would see greater contrast in operator sensitivity, in
cases where the valence nucleon is an odd proton or
neutron, by choosing the latter, incases where oper-
ators act primarily on valence nucleons. The script
described in Appendix C can treat arbitrary isospin
choices.

(3) The Ti branching ratio we have used is 6.1 × 10−13

from Ref. [80], a conference proceeding. If one were

to instead use the SINDRUM II bound of 4.3 × 10−12,
the Ti entries for �τ

i in Table X would need to be
decreased by a factor of 1.63, weakening the bounds.

(4) The calculations for silicon carbide (SiC) were per-
formed under the assumption that 30% of the muons
capture on C and 70% on Si, as the capture probability
in a composite material is expected to be proportional
to Z [86]. From the free lifetime of the muon and
the muon capture rates given earlier, one finds that
only 7.6% of the muons bound to C are captured (the
rest decay in orbit), while 66% of the Si muons are
captured. Similarly, μ → e conversion rates for C are
typically one to two orders of magnitude lower than
for Si, depending on the operator choice. So while
the table treats the target as composite, the results are
nearly equivalent to those one would obtain for a Si
target.

(5) The nuclear density matrices were calculated from
standard effective interactions that conserve isospin.
This is reflected in the table, e.g., 32Si as a T = 0 target
is blind to all isovector operators. Were the Coulomb
or other isospin-violating interactions included in the
nuclear effective interaction, these operators would be
quite suppressed, but not forbidden.

B. Electromagnetic couplings

Our μ → e conversion NRET formalism includes cases
where the CLFV resides in an electromagnetic coupling to
the leptons, induced by a loop, which then allows a coherent
interaction with the nucleus through the exchange of a virtual
photon. But this source of CLFV could also be explored in
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purely leptonic processes such as μ → eγ and μ → 3e. Here
we consider this scenario, evaluating the comparative sensi-
tivities of μ → e and these leptonic processes.

The most general CLFV electromagnetic vertex is

�μ
μ→e = 1

m2
μ

(q2γ μ − qμ
/q)
[

f μ→e
R (q2) + i f μ→e

A (q2)γ5
]

+ iσμν qν

mμ

[
f μ→e
M (q2) + i f μ→e

E (q2)γ5
]
. (66)

Here the subscripts R, A, M, and E denote the induced (di-
mensionless) CLFV charge radius, anapole, magnetic dipole,
and electric dipole form factors, respectively. This leads to
the nucleon-level relativistic amplitude for electromagnetic
μ → e conversion,

4πα

q2
χ̄e�

μ
μ→e(q2)χμ N̄γμ

(
1 + τ3

2

)
N. (67)

where in this process the square of the four-momentum
q2 ≈ −m2

μ.
The nonrelativistic reduction produces two coherent EFT

operators O1 and O11 that couple to protons with strengths:

c0
1 = c1

1 = 2πα

m2
μ

[
f μ→e
R

(−m2
μ

)+ f μ→e
M

(−m2
μ

)]
,

c0
11 = c1

11 = 2πα

m2
μ

[
f μ→e
A

(−m2
μ

)− f μ→e
E

(−m2
μ

)]
. (68)

As the CLFV couplings fi are suppressed, induced by leptonic
loops controlled by some heavy scale �, it is helpful to make
this explicit by defining a new set of dimensionless couplings
f̃i ≈ 1 through the relationship

fi ≡ m2
μ

�2
f̃i, i = R, A, M, E ,

in terms of which the dimensionless c̃i used in our rate formula
are

c̃0
1 = c̃1

1 = 2πα
v2

�2

[
f̃ μ→e
R

(−m2
μ

)+ f̃ μ→e
M

(−m2
μ

)]
,

c̃0
11 = c̃1

11 = 2πα
v2

�2

[
f̃ μ→e
A

(−m2
μ

)− f̃ μ→e
E

(−m2
μ

)]
. (69)

The coherent rate is generated through the leptonic tensor
R̃ττ ′

MM which yields, after summing over isospin, the coupling
to target protons(∣∣c̃p

1

∣∣2 + ∣∣c̃p
11

∣∣2), where c̃p
i ≡ c̃0

i + c̃1
i = 2c0

i .

Thus the contributions of the LECs associated with the two
coherent operators cannot be disentangled.

New information could come from μ → eγ , as the charge-
radius and anapole terms in Eq. (67) vanish for on-shell
photons. A calculation of the decay rate for the electromag-
netic vertex of Eq. (67) yields

ωμ→eγ = α
mμ

2

(∣∣ f μ→e
M (0)

∣∣2 + ∣∣ f μ→e
E (0)

∣∣2)

= α
m5

μ

2�4

(∣∣ f̃ μ→e
M (0)

∣∣2 + ∣∣ f̃ μ→e
E (0)

∣∣2). (70)

FIG. 10. Exclusion curves for the CLFV electromagnetic cou-
pling considered in Eq. (66), for the case f̃A = f̃E = 0 and | f̃R| +
| f̃M | = 1. The dashed (solid) black curve shows the (expected) limit
for on-shell μ → eγ conversion obtained from MEG (MEG II).
The branching ratio limits are B(μ → eγ ) < 4.2 × 10−13 [87] and
6 × 10−14 [88], respectively. The dashed (Phase I) and solid (Phase
II) green curves show the μ → 3e results expected from Mu3e. The
respective branching ratios limits are <2.0 × 10−15 and 10−16. The
orange curve is the SINDRUM result, B(μ → 3e) < 1.0 × 10−12

[89]. The solid red (blue) curve corresponds to a μ → e branching
ratio limit B(μ → e) < 10−17 (7 × 10−15) where f̃R and f̃M con-
tribute with the same sign. The dashed red (blue) curve is the case
where f̃R and f̃M are opposite in sign. In this case, the charge radius
and magnetic dipole contributions to coherent conversion on nuclei
cancel when | f̃R/ f̃M | = 1.

Under the assumption that the CLFV arises only from
the coupling in Eq. (67), Fig. 10 compares the constraints
obtained from μ → e conversion and μ → eγ when f̃M and
f̃R are nonzero, but their ratio is varied (or equivalently, when
f̃E and f̃A are nonzero, but their ratio is varied). Furthermore it
is assumed that | f̃R| + | f̃M | = 1. Then the MEG and MEG II
experiments, which look for μ → eγ with a final state photon,
provide a more stringent constraint than Phase I COMET
measurements of μ → e conversion mediated by a virtual
photon, provided that the magnetic dipole form factor f̃M is
not small compared to the charge radius form factor f̃R. On
the other hand, a branching ratio limit B(μ → e) � 10−17 for
an Al target will provide a more stringent constraint on CLFV
electromagnetic couplings than MEG II, unless significant
cancellation occurs between the two couplings f̃R and f̃M .

C. Connection to μ → 3e

The case of electromagnetic CLFV can also be related to
the process μ± → e±e+e−. Like μ → e conversion, improve-
ments in μ → 3e branching ratio sensitivities of potentially
four orders of magnitude are expected within the next decade,
due to the Mu3e experiment at PSI [90]. The CLFV μ → 3e
process can be mediated by the effective Lagrangian

L = 1

�2

(
CL

μeeeēc
LμLēLec

L + CR
μeeeēc

RμRēRec
R

)
, (71)
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with a corresponding branching ratio

B(μ → 3e) = 1

2

( v

�

)4(∣∣CL
μeee

∣∣2 + ∣∣CR
μeee

∣∣2). (72)

In general, there are dimension-6 operators that mediate μ →
3e beyond those included in Eq. (72), but we have restricted to
these operators unique in that at one-loop order they generate
an effective μ → eγ vertex that is enhanced by a large loga-
rithm; the resulting electromagnetic couplings are [91–93]

f̃ μ→e
R (q2) = − 1

(4π )2

2

3

(
CL

μeee + CR
μeee

)
ln

−q2

�2
,

f̃ μ→e
A (q2) = −i

1

(4π )2

2

3

(
CL

μeee − CR
μeee

)
ln

−q2

�2
,

(73)

where we have retained only the large logarithm contribu-
tions. Assuming that these are the only contributions to the
charge radius and anapole form factors, these relations can be
inverted to write the μ → 3e branching ratio in terms of the
induced couplings,

B(μ → 3e) =
( v

�

)4
(

12π2

ln
(
m2

μ/�2
)
)2

× (∣∣ f̃ μ→e
R

(−m2
μ

)∣∣2 + ∣∣ f̃ μ→e
A

(−m2
μ

)∣∣2). (74)

As before, let us take f̃A = f̃E = 0 and vary the couplings
f̃R and f̃M subject to the constraint | f̃R| + | f̃M | = 1. Although
the four fermion μ → 3e vertex in Eq. (72) contributes only
to the charge radius form factor, in the limit that | f̃M | �
| f̃R| the μ → eγ magnetic dipole dominates, and μ → 3e
then proceeds through a virtual photon decaying to an elec-
tron/positron pair. In this limit, the branching ratios satisfy
[94]

B(μ → 3e) ≈ α

3π

(
ln

m2
μ

m2
e

− 2

)
B(μ → eγ ). (75)

For this scenario, Fig. 10 compares the constraints ob-
tained from μ → 3e, μ → e, and μ → eγ . If the charge
radius is dominant, it is very unlikely for any signal to be
detected at MEG II, but signals are possible in both μ → e
at Mu2e/COMET and μ → 3e at Mu3e. There is a modest re-
gion just above � ≈ 3000 TeV where a signal could arise only
in Mu3e. If the charge-radius and magnetic dipole couplings
are roughly equal, | f̃R/ f̃M | ≈ 1, then multiple scenarios are
possible. For relatively low � � 1000 TeV, signals could be
seen in both MEG II and Mu3e. Detection at Mu2e/COMET
then depends on the relative sign of f̃R and f̃M . For f̃R ≈
− f̃M signals could be seen in MEG II and Mu3e, but not
Mu2e/COMET. (Note that Mu3e limits are based on single-
event sensitivities: small changes in Fig. 10 would occur if
these are converted to 90% C.L. limits [95].)

For a dominant magnetic dipole coupling, signals could be
seen in all three processes, only μ → e and μ → 3e, or only
μ → e. While in these examples we have assumed that the
only contribution to the electromagnetic charge radius form
factor is that induced by μ → 3e at one loop, this scenario is
sufficient to establish the complementarity of these different
probes of CLFV.

VII. SUMMARY AND DISCUSSION

The main goal of this paper has been the construction of
a nuclear-level EFT for μ → e conversion that exploits the
largely nonrelativistic behavior of the bound nucleons and
muon. Because experiments are performed at low energy with
composite nuclear targets, an NRET formulation provides the
most efficient phenomenology for their analysis: the operator
basis is complete but not overcomplete. The nucleon-level
NRET is compatible with standard nonrelativistic treatments
of the nuclear physics, providing through the impulse ap-
proximation a convenient way to relate measurements made
in different targets. We have discussed how this approach is
in fact more general, due to the core averaging—the mean
field physics—that occurs naturally in heavier nuclei, when
multi-nucleon charge and current operators are introduced.
The LECs being fit can thus be regarded as the effective LECs
of a nuclear-level NRET.

We have emphasized the hierarchy of scales that arises
in elastic μ → e conversion, y > |�vN | > |�vμ| for all targets
of current interest. This allows one to develop consistent
nucleon-level NRETs of varying levels of sophistication. We
have formulated such NRETs, embedding them in the nucleus
using complete operator bases, retaining all electron partial
waves, thus properly generating both the full nuclear response
functions W (y) and all effects linear in the Jacobi veloci-
ties. Our formulation exploits an important simplification: the
Dirac Coulomb electron partial waves can be very accurately
represented by a shifted and enhanced plane wave governed
by a qeff we determine from the intra-nucleus Coulomb po-
tential.

Calculations employing a full basis of operators, a full
summation over electron partial waves, a proper treatment
of the muon’s lower component, and the nucleon velocity
operator have not been presented previously. We stress that
even in the lowest level of the NRET—the allowed approx-
imation, in which only the point-nucleus charge and spin
operators are retained—there are three independent response
functions, with the transverse electric and longitudinal spin
operators probing largely distinct underlying CLFV opera-
tors. The addition of the next most important scale, |�vN |, is
new and proved exceedingly interesting. This is the mini-
mal theory that generates all six nuclear response functions
allowed by symmetry: the coefficients of these response func-
tions thus provide the answer to an important question, what
can and cannot be learned about CLFV from elastic μ → e
conversion? As noted below, this NRET also produces some
surprises, including the promotion of one velocity-dependent
operator to a strength comparable to or even exceeding that
of the allowed spin operators. Finally, we develop an NRET
linear in both �vN and �vμ, thereby including the muon’s lower
component.

Some previous efforts have treated �vμ but in a way that
does not respect the hierarchy of scales y > |�vN | > |�vμ|.
Specifically, the inclusion of �vμ has been accompanied by
a severe restriction on the electron partial waves, |κ| = 1.
From our full result it can be seen that operationally, the
inclusion of �vμ generates no new operator physics but in-
stead adds new components to response functions, which
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alter the net response by an amount ≈5%, for targets
like 27Al. But the truncation |κ| = 1, limiting the angular
momentum transfer to the nucleus, eliminates higher mul-
tipoles, leading to errors that are typically o(y2). In 27Al,
y ≈ 0.27 � |�vμ| ≈ 0.027.

We showed that the embedding of a nucleon-level NRET
in a nucleus has a significant impact on operator physics,
enhancing some interactions while suppressing others. Two
sources of coherence, one of which was previously unrec-
ognized, boost sensitivity to certain LECs. The new source
of coherence arises from the strong spin-orbit interaction,
which in some nuclei leads to the occupation of the magnetic
substates of just one of the two spin-orbit partners. Both 27Al
and Cu are cases where this occurs. The resulting enhance-
ment elevates a velocity-dependent operator that nominally is
suppressed by qeff/mN to allowed strength, competitive with
or even stronger than the allowed spin operators. We also
find that four NRET interactions do not contribute to elastic
μ → e conversion due to P and CP selection rules, apart
from tiny nuclear recoil corrections. As these selection rules
would not operate for inelastic nuclear transitions, additional
CLFV constraints could be obtained by looking for electrons
slightly below the kinematic maximum, where backgrounds
from free muon decay are still suppressed. 27Al has low-
lying 1

2
+

and 3
2

+
excited states at 0.842 and 1.013 MeV,

respectively.
We intend to generalize the present NRET analysis for

inelastic μ → e conversion [69]. The relaxation of the P and
CP selection rules leads to five new operators as well as
additional multipoles of the operators we have introduced for
elastic μ → e conversion.

The formulation we developed allows one to factor the
nuclear response function physics from the CLFV physics,
which is isolated in leptonic response functions R that are
bilinear in the LECs. This identifies precisely what CLFV
physics can be extracted from elastic μ → e conversion and
what cannot. Once these constraints are obtained, they can
be matched to any higher-level theory, where more degrees
of freedom will exist. We provided an example, the matching
to a relativistic nucleon-level interaction, though one limited
to relativistic interactions mediated by scalar or vector ex-
changes. In fact, because the NRET formulation of elastic
μ → e conversion is so similar to that developed a decade
ago for WIMP direct detection, much of the work done to
match UV DM theories to NRET [54,55,63–65] carries over
to μ → e conversion.

Were μ → e conversion observed, a program of measure-
ments in properly selected targets could, in principle, isolate
the various leptonic response functions R. These coefficients
would then serve as constraints on UV formulations of CLFV.
The accompanying nuclear response functions can be viewed
as experimental “knobs” that can be turned by selecting tar-
gets with specific properties. These include the ground-state
angular momentum, the character of the valence nucleon in
odd-A targets (e.g., whether dominated by spin or orbital
angular momentum), and target isospin. It would also include
the spin-orbit structure of the ground state. We discussed the
physics of these knobs, describing the threshold behavior of

the operators that govern the various nuclear response func-
tions. The level of success possible in such a program will
depend on details: a favorable case would be a pattern of LECs
generating comparable responses in several channels, which
could be disentangled by selecting targets that isolate those
channels.

While the full rate formula is given by Eq. (B3), or alter-
natively Eq. (B6), the forms presented in the text replace the
muon wave functions g(r) and f (r) by average values. This is
done to expose the small parameters qeff

mN
and 〈 f 〉/〈g〉 generated

by the velocity operators �vN and �vμ, respectively. The averag-
ing done by others (see Table I) has followed that for muon
capture, a more complex, inclusive process where averaging
is typically done after performing an approximate summation
over excited states by closure. This procedure also generates
a Z4

eff scaling of rates, in contrast to the Z3
eff Coulomb scaling

of μ → e conversion. In contrast, the averaging we do is with
respect to the dominant μ → e conversion multipole, and thus
exactly reproduces the result that would have been obtained by
including g(r) [or f (r)] in that multipole. Errors only result
from the use of the same average in other multipoles. We
have quantified this error for both 〈g〉 and 〈 f 〉, finding typical
deviations in rates on the few percent level, and thus small
compared to the nuclear structure uncertainties that arise in
multipole matrix element evaluation.

We recommend using Eq. (60), which neglects the muon’s
lower component and employs averaging, during the search
and early discovery phase of CLFV. That result is consistent
with the general form of the rate we deduced from sym-
metry considerations, but has the phase-space effects of the
Coulomb interaction (encoded in Zeff and qeff ), the particle
physics (encoded in the LEC bilinears R), and the nuclear
physics (encoded in the nuclear response functions W ) all
nicely factored. When the field has progressed to the point
that the CLFV operator structure is known and the LECs
are determined to better than 10%, then small corrections
due to �vμ can be included. Even then, as these corrections
effectively alter the nuclear form factors—see Eqs. (B6) and
(B8)—their inclusion would have impact only if the nuclear
structure uncertainties affecting these same form factors have
been reduced to below 10%.

We examined the impact of future experiments that may
achieve branching ratio sensitivities of �10−17, such as the
27Al experiments Mu2e and COMET. While the choice of
27Al as a target is driven largely by experimental consider-
ations, it is also quite a nice choice for theoretical reasons.
As a single isotope with a ground-state spin/parity of 5

2
+

and
an unpaired valence proton, it responds to all of the NRET
operators that can contribute to elastic μ → e conversion,
including both isoscalar and isovector interactions. We have
noted its favorable spin-orbit structure that leads to a new
form of coherence. Our results are presented as limits on the
couplings c̃i and the associated energy scales �i. The energy
scales probed are operator dependent and range from ≈102 to
≈104 TeV.

These calculations were performed with the Mathematica
script (and its Python analog) described in Appendix C and
currently available.
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Finally, for μ → e conversion generated by a lepton-
photon vertex, we have examined the relation of this process
to μ → eγ and μ → 3e. There is sufficient freedom in the
four available electromagnetic couplings to allow CLFV dis-
covery in any of these channels, motivating efforts to improve
all of their sensitivities.
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APPENDIX A: RELATIONSHIP TO DARK MATTER NRETs

The NRET for DM scattering off nuclei has a similar op-
erator structure [14,15], and we have tried to retain here that
earlier notation. The thirteen unprimed operators of Eq. (36)
are identical to, or proportional to, those employed in dark
matter studies. Differences arise from the use of Pauli spin
matrices for the leptons (in the DM work the WIMP spin is
arbitrary) and from the fully relativistic electron velocity q̂
(the scattered WIMPs are nonrelativistic). We have reordered
several of the operators to more clearly display the role of iq̂
as a longitudinal or transverse projector.

The three primed operators are new, connected with
the treatment of the nuclear convection current �vN . In the
DM direct detection EFT work a modified current was
introduced:

�v⊥ ≡ 1

2

(
�pχ

i

mχ

+ �pχ

f

mχ

− �pi

mN
− �p f

mN

)

= 1

2

(
�pχ

i

mχ

+ �pχ

f

mχ

)
− �vN , (A1)

where �pχ
i and �pχ

f are the incoming and outgoing WIMP
velocities and mχ the WIMP mass. Using energy conservation
for free-particle scattering, one finds q̂ · �v⊥ = 0, which allows
one to eliminate one scalar from the operator construction.
This step depends on the relation

�q · �vN = �p2
i

2mN
− �p2

f

2mN
. (A2)

However, the operators in Eq. (36) will be embedded in a
nucleus where they act on all nucleons, and where these nu-
cleons are bound in a strong potential. The relation above has
an analog in the nuclear case, where the relevant velocities
are those of the center of mass of the nucleus. The center-

of-mass motion is of no interest here as it is integrated in
the phase space computation. As discussed in more detail in
[15], the interesting velocities are the A − 1 intrinsic velocities
that characterize the relative motions of the bound nucleons.
These velocities are intrinsic nuclear operators unconstrained
by external kinematics.

Consequently, in the present work we retain the longi-
tudinal projection of the nuclear convection current iq̂ · �vN ,
generating a slightly more general nucleon-level effective the-
ory that does not assume free nucleons. Two new operators
O′

2 and O′
16 then arise, increasing the number of operators

from the 14 of DM elastic scattering to the 16 of μ → e
conversion. (Initially O2 ≡ (v⊥)2 [14] was included in the
DM EFT expansion, but it was later eliminated [15], be-
ing of order 1/m2

N .) In addition, one operator introduced in
DM studies is modified. The O′

13 we have defined can be
rewritten

O′
13 = �σL · �vN iq̂ · �σN − �σL · �σN iq̂ · �vN . (A3)

The first term on the right side corresponds to the DM EFT
operator O13; the addition of the second term, which depends
on iq̂ · �vN , ensures that our μ → e operator expansion is not
contaminated by [�vN ⊗ �σN ]2.

The operators O′
2 and O′

16 do not contribute to μ → e con-
version if the nucleus remains in its ground state. In this case,
selection rules imposed by the assumed good parity and CP
properties of the nuclear ground state restrict �vN to transverse
magnetic nuclear multipoles, while iq̂ · �vN is longitudinal.
However, no similar restriction exists for inelastic scattering.
The primed operators generate a nucleon-level interaction that
can be used in either elastic or inelastic reactions.

Another difference in the present construction is that we
have treated the LECs of the NRET as complex, though all
operators we constructed are Hermitian. In the DM work
the LECs are real. This difference arises because, in μ → e
conversion, the theory is reduced to a nonrelativistic form
by integrating out the relativistic electron’s velocity, leaving
only bound-state nonrelativistic degrees of freedom. In the
spinor of Eq. (15), the electron velocity operator has been
replaced by the three-momentum direction q̂. While the elec-
tron’s velocity and q̂ are identical, the underlying operators,
the leptonic velocity and three-momentum transfer i �q, are
distinct:

�vL = − 1

i
�∇ rδ(�r − �ri) + δ(�r − �ri )

1

i
�∇r

i �q =[ �∇r, δ(�r − �ri )
] = − �∇ rδ(�r − �ri ) − δ(�r − �ri ) �∇r .

Thus iq̂ represents two operators, accounting for the ambigu-
ity in whether the coefficient is real or pure imaginary. Further,
the component of the lepton velocity operator we retain and
treat explicitly, the nonrelativistic operator �vμ, acts only on
the initial state.

APPENDIX B: DECAY RATE CALCULATION

The amplitude of Eq. (52) can be squared to yield the transition probability, then averaged over nuclear spins and summed
over final spins to obtain a probability.
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We find

1

2 jN + 1

∑
m f mi

∣∣∣∣
〈

1

2
s f ; jN m f

∣∣∣∣M
∣∣∣∣12 si; jN mi

〉∣∣∣∣
2

= Ee

2me

q2
eff

q2

4π

2 jN + 1

∑
τ=0,1

∑
τ ′=0,1

⎧⎨
⎩

∞∑
J=0,2,...

( 〈
lτ
0

〉〈
lτ ′
0

〉∗〈 jN || Mg
J;τ (qeff ) || jN 〉〈 jN ∣∣∣∣Mg

J;τ ′ (qeff )
∣∣∣∣ jN 〉

+ 2 Re
[
i
〈
lτ
0

〉〈
lτ ′(2)
0

〉∗]〈 jN || Mg
J;τ (qeff ) || jN 〉〈 jN || M (2) f

J;τ ′ (qeff ) || jN 〉 + 〈
lτ (2)
0

〉〈
lτ ′(2)
0

〉∗〈 jN || M (2) f
J;τ (qeff ) || jN 〉〈 jN || M (2) f

J;τ ′ (qeff ) || jN 〉

+ �qeff

mN
· 〈�lτ

E

〉 �qeff

mN
· 〈�lτ ′

E 〉∗ 〈 jN || �′′g
J;τ (qeff ) || jN 〉〈 jN || �′′g

J;τ ′ (qeff ) || jN 〉

+ 2�qeff

mN
· Re

[〈�lτ
E

〉 〈
lτ ′
0

〉∗] 〈 jN || �′′g
J;τ (qeff ) || jN 〉〈 jN || Mg

J;τ ′ (qeff ) || jN 〉

+ 2�qeff

mN
· Re

[
i
〈�lτ

E

〉 〈
lτ ′(2)
0

〉∗] 〈 jN || �′′g
J;τ (qeff ) || jN 〉〈 jN || M (2) f

J;τ ′ (qeff ) || jN 〉
)

+
∞∑

J=1,3,...

(
1

2

(〈�lτ
5

〉 · 〈�lτ ′
5

〉∗ − q̂ · 〈�lτ
5

〉
q̂ · 〈�lτ ′

5

〉∗)〈 jN || 
′g
J;τ (qeff ) || jN 〉〈 jN || 
′g

J;τ ′ (qeff ) || jN 〉

+ 1

2

(〈�lτ (0)
5

〉 · 〈�lτ ′(0)
5 〉∗ − q̂ · 〈�lτ (0)

5

〉
q̂ · 〈�lτ ′(0)

5

〉∗)〈 jN || 
′(0) f
J;τ (qeff ) || jN 〉〈 jN || 
′(0) f

J;τ ′ (qeff ) || jN 〉

+ 1

2

(〈�lτ (2)
5

〉 · 〈�lτ ′(2)
5

〉∗ − q̂ · 〈�lτ (2)
5

〉
q̂ · 〈�lτ ′(2)

5

〉∗)〈 jN || 
′(2) f
J;τ (qeff ) || jN 〉〈 jN || 
′(2) f

J;τ ′ (qeff ) || jN 〉

+ Re
[
i
〈�lτ (0)

5

〉 · 〈�lτ ′
5

〉∗ − iq̂ · 〈�lτ (0)
5

〉
q̂ · 〈�lτ ′

5

〉∗]〈 jN || 
′(0) f
J;τ (qeff ) || jN 〉〈 jN || 
′g

J;τ ′ (qeff ) || jN 〉
+ Re

[
i
〈�lτ (2)

5

〉 · 〈�lτ ′
5

〉∗ − iq̂ · 〈�lτ (2)
5 〉 q̂ · 〈�lτ ′

5

〉∗]〈 jN || 
′(2) f
J;τ (qeff ) || jN 〉〈 jN || 
′g

J;τ ′ (qeff ) || jN 〉
+ Re

[〈�lτ (0)
5

〉 · 〈�lτ ′(2)
5

〉∗ − q̂ · 〈�lτ (0)
5

〉
q̂ · 〈�lτ ′(2)

5

〉∗]〈 jN || 
′(0) f
J;τ (qeff ) || jN 〉〈 jN || 
′(2) f

J;τ ′ (qeff ) || jN 〉

+ 1

2

(
q2

eff

m2
N

〈�lτ
M

〉 · 〈�lτ ′
M

〉∗ − �qeff

mN
· 〈�lτ

M

〉 �qeff

mN
· 〈�lτ ′

M

〉∗)〈 jN || �g
J;τ (qeff ) || jN 〉〈 jN || �g

J;τ ′ (qeff ) || jN 〉

+ �qeff

mN
· Re

[
i
〈�lτ

M

〉× 〈�lτ ′
5

〉∗]〈 jN || �g
J;τ (qeff ) || jN 〉〈 jN || 
′g

J;τ ′ (qeff ) || jN 〉

+ �qeff

mN
· Re

[〈�lτ
M

〉× 〈�lτ ′(0)
5

〉∗]〈 jN || �g
J;τ (qeff ) || jN 〉〈 jN || 
′(0) f

J;τ ′ (qeff ) || jN 〉

+ �qeff

mN
· Re

[〈�lτ
M

〉× 〈�lτ ′(2)
5 〉∗]〈 jN || �g

J;τ (qeff ) || jN 〉〈 jN || 
′(2) f
J;τ ′ (qeff ) || jN 〉

)

+
∞∑

J=2,4,...

(
1

2

(
q2

eff

m2
N

〈�lτ
E

〉 · 〈�lτ ′
E 〉∗ − �qeff

mN
· 〈�lτ

E

〉 �qeff

mN
· 〈�lτ ′

E 〉∗
)

〈 jN || �̃′g
J;τ (qeff ) || jN 〉〈 jN || �̃′g

J;τ ′ (qeff ) || jN 〉

+ 1

2
(〈�lτ (1)〉 · 〈�lτ ′(1)〉∗ − q̂ · 〈�lτ (1)〉 q̂ · 〈�lτ ′(1)〉∗)〈 jN || M (1) f

J;τ (qeff ) || jN 〉〈 jN || M (1) f
J;τ ′ (qeff ) || jN 〉

− Re

[
qeff

mN
i
〈�lτ

E

〉 · 〈�lτ ′(1)〉∗ − �qeff

mN
· i
〈�lτ

E

〉
q̂ · 〈�lτ ′(1)〉∗

]
〈 jN || �̃′g

J;τ (qeff ) || jN 〉〈 jN || M (1) f
J;τ ′ (qeff ) || jN 〉

)

+
∞∑

J=1,3,...

(
q̂ · 〈�lτ

5

〉
q̂ · 〈�lτ ′

5

〉∗ 〈 jN || 
′′g
J;τ (qeff ) || jN 〉〈 jN || 
′′g

J;τ ′ (qeff ) || jN 〉

+ q̂ · 〈�lτ (0)
5

〉
q̂ · 〈�lτ ′(0)

5

〉∗ 〈 jN || 
′′(0) f
J;τ (qeff ) || jN 〉〈 jN || 
′′(0) f

J;τ ′ (qeff ) || jN 〉
+ q̂ · 〈�lτ (2)

5 〉 q̂ · 〈�lτ ′(2)
5

〉∗ 〈 jN || 
′′(2) f
J;τ (qeff ) || jN 〉〈 jN || 
′′(2) f

J;τ ′ (qeff ) || jN 〉
+ 2Re

[
q̂ · 〈�lτ (0)

5

〉
q̂ · 〈�lτ ′(2)

5

〉∗] 〈 jN || 
′′(0) f
J;τ (qeff ) || jN 〉〈 jN || 
′′(2) f

J;τ ′ (qeff ) || jN 〉
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− 2Re
[
q̂ · i
〈�lτ (0)

5

〉
q̂ · 〈�lτ ′

5

〉∗] 〈 jN || 
′′(0) f
J;τ (qeff ) || jN 〉〈 jN || 
′′g

J;τ ′ (qeff ) || jN 〉

− 2Re
[
q̂ · i〈�lτ (2)

5 〉 q̂ · 〈�lτ ′
5

〉∗] 〈 jN || 
′′(2) f
J;τ (qeff ) || jN 〉〈 jN || 
′′g

J;τ ′ (qeff ) || jN 〉
)}

. (B1)

We have used the shorthand for the leptonic matrix elements 〈l〉 ≡ 〈 1
2 s f |l| 1

2 si〉. With the angular conventions used here [96], all
nuclear matrix elements are real; we have assumed this above.

This expression contains several new lower-component leptonic operators that are generated from lτ
0 f (x̂i ) and �lτ

5 f (x̂i ) of
Eq. (51), once the effect of the angular momentum ladder operator x̂ on nuclear multipoles is evaluated:

lτ (1)
λ = −i(bτ

3λ + bτ
7 )σLλ,

lτ (2)
0 = −bτ

2 + ibτ
7 σL0,

lτ (0)
5λ

= [
λ
(−bτ

12 + bτ
15

)+ bτ
14

]
σLλ,

lτ (2)
5λ

= [−bτ
13 + bτ

14 + λbτ
15

]
σLλ,

lτ (0)
5 0 = −ibτ

8 + b13σL0,

lτ (2)
5 0 = (bτ

13 − bτ
14)σL0 − ibτ

16. (B2)

We then do the leptonic spin sums, averaging over the muon’s spin and summing over the spin states of the outgoing electron.
We note that this step should be examined for each specific nucleus, as the hyperfine splittings of the muon spin states due to
interactions with the nuclear magnetic or quadrupole moments may be sufficient to alter the spin sum, for nuclear targets with
jN �= 0. Evaluating the needed 25 traces yields

ω = G2
F

π

q2
eff

1 + q
MT

∑
τ=0,1

∑
τ ′=0,1

{ [
R̃ττ ′

MM W ττ ′
MgMg (qeff ) + 2R̃ττ ′

MM (2) W ττ ′
MgM (2) f (qeff ) + R̃ττ ′

M (2)M (2) W ττ ′
M (2) f M (2) f (qeff )

+ q2
eff

m2
N

R̃ττ ′
�′′�′′ W ττ ′

�′′g�′′g (qeff ) − 2qeff

mN

(
R̃ττ ′

�′′M W ττ ′
�′′gMg (qeff ) + R̃ττ ′

�′′M (2) W ττ ′
�′′gM (2) f (qeff )

)]
+ [ R̃ττ ′


′
′ W ττ ′

′g
′g (qeff ) + R̃ττ ′


′(0)
′(0) W ττ ′

′(0) f 
′(0) f (qeff ) + R̃ττ ′


′(2)
′(2) W ττ ′

′(2) f 
′(2) f (qeff )

− 2
(
R̃ττ ′


′(0)
′ W ττ ′

′(0) f 
′g (qeff ) + R̃ττ ′


′(2)
′ W ττ ′

′(2) f 
′g (qeff ) + R̃ττ ′
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′(2) W ττ ′
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′(2) f (qeff )

)
+ q2

eff
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N

R̃ττ ′
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+
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)] }
. (B3)

In the phase space integration we include the tiny nonrelativistic correction for nuclear recoil, which depends on the mass of the
daughter nucleus MT .

Equation (B3) separates the nuclear physics from the particle physics of the LECs, which is isolated in the various leptonic
coefficients R̃. The dimensionful quantities R are obtained by doing the traces over the 25 leptonic scalars appearing in Eq. (B1):

R̃ττ ′
MM = c̃τ

1 c̃τ ′∗
1 + c̃τ

11c̃τ ′∗
11 ,

R̃ττ ′
MM (2) = Im

[
c̃τ

1 b̃τ ′∗
2 − c̃τ

11b̃τ ′∗
7

]
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R̃ττ ′
M (2)M (2) = b̃τ

2b̃τ ′∗
2 + b̃τ

7b̃τ ′∗
7 ,

R̃ττ ′
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3 c̃τ ′∗
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12 − c̃τ
15

)(
c̃τ ′∗

12 − c̃τ ′∗
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)
,

R̃ττ ′
�′′M = Re

[
c̃τ

3 c̃τ ′∗
1 − (c̃τ

12 − c̃τ
15

)
c̃τ ′∗

11

]
,

R̃ττ ′

′
′ = c̃τ
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9 c̃τ ′∗
9 ,

R̃ττ ′

′(0)
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14 ,
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16 ,
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, (B4)

R̃ττ ′

′′(2)
′′ = Im

[(
b̃τ

13 − b̃τ
14

)(
c̃τ ′∗

4 − c̃τ ′∗
6

)− b̃τ
16c̃τ ′∗

10

]
.

The dimensionless hadronic tensors associated with the four square-bracketed response functions of Eq. (B3) correspond to
the multipole sums

W ττ ′
OO′ (qeff ) ≡ 4π

2 jN + 1

∞∑
J=0,2,...

〈 jN || OJ;τ (qeff ) || jN 〉〈 jN || O′
J;τ ′ (qeff ) || jN 〉 if O, O′ ∈ {Mg, M (2) f ,�′′g},

W ττ ′
OO′ (qeff ) ≡ 4π

2 jN + 1

∞∑
J=1,3,...

〈 jN || OJ;τ (qeff ) || jN 〉〈 jN || O′
J;τ ′ (qeff ) || jN 〉 if O, O′ ∈ {
′g, 
′(0) f , 
′(2) f ,�g}

or O, O′ ∈ {
′′g, 
′′(0) f , 
′′(2) f },

W ττ ′
OO′ (qeff ) ≡ 4π

2 jN + 1

∞∑
J=2,4,...

〈 jN || O′
J;τ (qeff ) || jN 〉〈 jN || O′

J;τ ′ (qeff ) || jN 〉 if O, O′ ∈ {�̃′ g, M (1) f }. (B5)

The LECs for the operators O7, O14, O2, and O16 do not appear in Eq. (B4). O7 and O14 are generated by �vN · �σN : parity
and time-reversal (or CP) selection rules exclude all nuclear multipoles of this axial charge operator. O2 and O16, generated
by �q · �vN , do not arise in elastic μ → e conversion because Siegert’s theorem eliminates the longitudinal projection of the
convection current for elastic transitions. Similarly b5, the LEC for O f

5 , contributes to a nuclear multipole operator that cannot
simultaneously satisfy the parity and CP constraints for an elastic transition. If μ → e conversion is accompanied by nuclear
excitation, all of these operators will contribute.

The interplay of the various NRET scales implicit in the rate can be made more explicit by rewriting Eq. (B3) after
“completing the squares.” The decay rate becomes
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, (B6)

where 〈O〉 ≡ 〈 jN ||O(qeff )|| jN 〉 and |Aτ |2ττ ′ ≡ Aτ A∗
τ ′ .

Alternatively, one can employ our averaging procedures to recast this “master rate formula” in a form where its dependence on
small parameters is manifest, with response functions that can be evaluated analytically as functions of y, for harmonic oscillator
Slater determinants. We find
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If we specialize to the case of interactions involving scalar or vector mediators, then we can use Tables VII and VIII to
reexpress Eq. (B6) in terms of the 20 relativistic LECs d̃i. One finds
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These results are used Sec. IV B.
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TABLE XI. Input parameters and output quantities for the muon and electron Dirac solutions discussed in the text.

Nucleus c (fm) β (fm)
√

〈r2〉 (fm) E bind
μ (MeV)

∫∞
0 |F1s|2dr Z f Zeff R q (MeV) qeff (MeV)

12C 2.215 0.491 2.505 0.1000 0.00047 6 5.7030 0.8587 105.07 108.40
16O 2.534 0.514 2.739 0.1775 0.00083 8 7.4210 0.7982 105.11 109.16
19F 2.580 0.567 2.904 0.2242 0.00104 9 8.2298 0.7646 105.12 109.44
23Na 2.760 0.543 2.940 0.3337 0.00154 11 9.8547 0.7190 105.07 110.25
27Al 3.070 0.519 3.062 0.4630 0.00211 13 11.3086 0.6583 104.98 110.81
28Si 3.140 0.537 3.146 0.5346 0.00241 14 12.0009 0.6299 104.91 111.03
32S 3.161 0.578 3.239 0.6924 0.00308 16 13.1839 0.5595 104.78 111.56
40Ca 3.621 0.563 3.499 1.0585 0.00453 20 15.6916 0.4830 104.45 112.28
48Ti 3.843 0.588 3.693 1.2615 0.00527 22 16.6562 0.4340 104.28 112.43
56Fe 4.111 0.558 3.800 1.7182 0.00690 26 18.6028 0.3663 103.84 113.16
63Cu 4.218 0.596 3.947 2.0884 0.00811 29 19.8563 0.3210 103.48 113.50
184W 6.510 0.535 5.421 9.0851 0.01169 74 32.2914 0.0831 96.54 114.95

APPENDIX C: NRET MATHEMATICA
AND PYTHON SCRIPTS

In this Appendix, we describe the open-source Mathemat-
ica and Python scripts that were employed for the calculations
reported in this paper, which as noted below are available
to others. Possible uses include explorations of specific UV
theories of CLFV that can be reduced to a nucleon-level oper-
ator basis or experimental investigations of alternative targets
to explore relative LEC sensitivities. The Mathematica script
interrogates users about desired input, and generally includes
defaults as well as menus allowing parameter investigation.

Atomic and nuclear physics input. The atomic input is de-
rived from solving the Dirac equation in the nuclear Coulomb
field, using the nuclear charge density profile described in the
text; the parameters c and β were either taken directly from
Ref. [43] or fit to the alternative density profiles provided in
that reference. The density profiles were determined from fits
to elastic electron scattering and thus are consistent with the
known charge radii of the targets. Table XI gives for each
target the values of c and β we employed, as well as the re-
sulting rms charge radius, the muon binding energy, the muon
lower-component probability, the computed Zeff that relates

the muon wave function (averaged over the nuclear density,
weighted by j0(qr)) to the point Schrödinger density at the
origin, the equivalent reduction factor R, the three-momentum
transfer q, and the computed qeff . The values for Ebinding

μ , Zeff ,
and qeff are embedded in the script. The atomic physics is
evaluated for the principal isotope indicated in the table, then
used for all contributing isotopes.

The script includes options for 11 targets, ranging from
C to Cu. The selection includes the light- and medium-mass
nuclei that were employed in past μ → e conversion exper-
iments or are under consideration for future experiments, as
well as a few other common targets. As described in the text,
response function evaluation requires the one-body density
matrix: knowledge of the full one-body density matrix allows
one to calculate the exact many-body matrix element of any
one-body operator. The shell model (SM) approximation to
the density matrix truncates the many-body Hilbert space to
some valence space and adopts a single-particle basis for
representing the Slater determinants in that space. We use the
harmonic oscillator, a choice that allows us to preserve trans-
lational invariance (as we use separable SM spaces). With this
choice, all multipole operator single-particle matrix elements

TABLE XII. Shell-model values of the six nuclear response functions W ττ ′
O = W ττ ′

OO (qeff ).

Response C O F Na Al Si S Ca Ti Fe Cu

W 00
M 72 1.3 × 102 1.5 × 102 2.1 × 102 2.6 × 102 2.8 × 102 3.3 × 102 4.4 × 102 5.2 × 102 5.9 × 102 6.5 × 102

W 11
M 4.7 × 10−3 2.6 × 10−3 0.28 0.28 0.28 4.5 × 10−2 4.2 × 10−2 4.2 × 10−2 1.6 1.5 2.7

W 00

′ 5.4 × 10−4 0 0.51 7.9 × 10−2 9.1 × 10−2 1.9 × 10−3 1.2 × 10−4 0 3.7 × 10−3 1.9 × 10−4 0.15

W 11

′ 3.8 × 10−4 0 4.7 × 10−2 5.7 × 10−2 5.4 × 10−2 1.1 × 10−3 2.5 × 10−5 0 2.5 × 10−3 1.2 × 10−4 0.13

W 00

′′ 1.6 × 10−3 0 0.25 6.1 × 10−2 0.11 2.6 × 10−3 5.8 × 10−4 0 8.8 × 10−3 3.9 × 10−5 0.12

W 11

′′ 1.3 × 10−3 0 0.27 4.8 × 10−2 9.2 × 10−2 2.2 × 10−3 3.2 × 10−4 0 7.1 × 10−3 7.4 × 10−7 0.12

W 00
� 1.5 × 10−3 0 1.6 × 10−4 0.21 0.50 1.2 × 10−3 2.7 × 10−3 0 5.9 × 10−2 1.0 × 10−3 8.0 × 10−2

W 11
� 5.8 × 10−4 0 4.3 × 10−2 4.6 × 10−2 0.21 1.2 × 10−3 1.2 × 10−3 0 4.7 × 10−2 1.3 × 10−3 9.0 × 10−3

W 00
�̃′ 0 0 0 5.7 × 10−3 8.8 × 10−4 0 2.9 × 10−4 0 2.8 × 10−2 0 2.3 × 10−3

W 11
�̃′ 0 0 0 5.0 × 10−4 6.6 × 10−2 0 8.8 × 10−5 0 1.4 × 10−3 0 4.7 × 10−2

W 00
�′′ 0.90 1.0 × 10−3 0.28 3.9 11 10 10 0.10 14 38 53

W 11
�′′ 8.1 × 10−4 1.0 × 10−3 6.3 × 10−2 5.6 × 10−2 8.3 × 10−2 5.0 × 10−3 4.9 × 10−2 0.10 3.7 0.56 1.4
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TABLE XIII. Shell-model spaces employed and options avail-
able for the corresponding effective interactions. See text for
descriptions of the two procedures used to determine the oscillator
parameter b.

Interaction
Target Isotopes SM space options b (fm)

C 12,13 1p [72] 1.67/1.70
O 16,18 2s-1d [73,97] 1.73/1.83

4h̄ω [98] 1.73/1.80
F 19 2s-1d [73,97] 1.76/1.88
Na 23 2s-1d as above 1.80/1.83
Al 27 2s-1d as above 1.84/1.85
Si 28–30 2s-1d as above 1.85/1.89
S 32–34 2s-1d as above 1.88/1.91
Ca 40,42,44 2p-1 f [74,99,100] 1.94/2.02
Ti 46–50 2p-1 f as above 1.99/2.09
Fe 54,56–58 2p-1 f as above 2.03/2.08
Cu 63,65 1 f 5

2
-2p-1g 9

2
[58,101,102] 2.07/2.12

can be evaluated analytically. Table XII gives the resulting
nuclear response functions for the 11 targets we considered.

Typically, natural targets are used in experiments, so the
script accesses density matrices for every isotope with an
abundance �0.2%, computing the corresponding responses
by weighting each density matrix by the appropriate abun-
dance. There is an option in the script, however, to compute
the μ → e conversion rate for a selected single isotope, in
which case the abundance for that isotope is set to unity.

The nuclear model dependence arises from the density
matrix truncation (inherent in the choice of the finite SM
space of interacting Slater determinants) and from the choice
of the single-particle basis employed in the determinants.
The truncation generates the dependence on the choice of
single-particle basis; absent truncation, all complete bases are
equivalent. The SM spaces used are shown in Table XIII along
with a list of effective interactions that were used to generate
the one-body density matrices in those spaces. Effective in-
teractions are typically constructed from iterated two-nucleon
potentials derived from NN phase shift analyses, augmented
by phenomenological terms whose strengths are carefully
tuned to reproduce nuclear spectra and other properties in the
mass range being addressed. In most cases, density matrices
are provided for more than one interaction, so that users can
explore uncertainties associated with alternative schemes for
fitting the effective interaction. The uncertainties associated
with the SM itself—the basis truncation and the choice of
single particle basis—are more difficult to assess. Shell model
calculations were done with the BIGSTICK code [70,71].

The script provides a default value for the harmonic oscil-
lator size parameter b, but allows the user to replace that with
any desired alternative value.

User options. The script gives the user various choices:

(1) Target: The 11 options listed in Table XIII are avail-
able.

(2) Isotopic composition: The default option is a natural
target, in which case all isotopes with abundance �
0.2% are included, weighted by their abundances, as
described above. The user has the option to instead
select a single isotope.

(3) Density matrix: The user is prompted with a set of
shell-model effective interactions. Once a choice is
made, the script extracts the corresponding one-body
density from a library, for use in evaluating the nuclear
response functions.

(4) Oscillator parameter: The first entries for b in the last
column of Table XIII are the default values obtained
from the formula

b =
√

41.467

45Ā−1/3 − 25Ā−2/3
fm,

but the user can specify another value. (For example,
the b values listed second in Table XIII reproduce the
experimental rms charge radius when point protons
are assumed. This choice could be for consistency
with the distributions used to evaluate lepton Coulomb
wave functions, as these were determined from fits to
measured electron scattering form factors.) Here Ā is
the atomic mass computed for the natural isotope, and
thus weighted over the abundances.

(5) Response functions: The user has the option to request
that the calculated nuclear response functions be dis-
played either as analytic functions in y or as a graph. If
this option is exercised, the user is queried about each
of the six response functions and can chose to display
any subset of them. The user is also asked to specify
the isospin, with options including isoscalar, isovector,
proton-only, and neutron-only couplings.

(6) Relativistic or nonrelativistic LECs: The user has the
option of using the 20 relativistic operators of Ta-
ble VII that arise for scalar and vector exchanges,
rather than the basis of nonrelativistic operators. If
this option is exercised, it asks the user to specify the
leptonic scale mL (in MeV) that is used in Table VII.

(7) LEC input: The user either inserts the relativis-
tic LECs {i, d̃i(0), d̃i(1)} or nonrelativistic LECs
{i, c̃i(0), c̃i(1)}. Here i is the operator index corre-
sponding to the lists within this paper, and the two
couplings are the isoscalar and isovector components.
Relativistic LECs are immediately converted into their
nonrelativistic equivalents, as in Table VII. The LECs
are dimensionless, given in units of 1/v2. Only those
LECs of interest have to be inserted: entry of a triad
with i = 0 terminates the input. LECs can be inserted
as numbers or as symbols.

The output is the μ → e conversion rate in 1/s.
Obtaining the script and accessing the density matrix

library: The Mathematica and Python scripts may be ac-
cessed via the public GitHub repository [103]. The included
README file describes the setup of the scripts. The associ-
ated library of elastic one-body density matrices for relevant
isotopes is available from a second public repository [104].
The branch label for both repositories corresponding to this
paper is v1.0.
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