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Spheroidal expansion and freeze-out geometry of heavy-ion collisions in the few-GeV energy regime
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A spheroidal model of the expansion of hadronic matter produced in heavy-ion collisions in the few-GeV
energy regime is proposed. It constitutes an extension of the spherically symmetric Siemens-Rasmussen blast-
wave model used in our previous works. The spheroidal form of the expansion, combined with a single-freeze-out
scenario, allows for a significantly improved description of both the transverse-mass and the rapidity distributions
of the produced particles. With the model parameters determined by the hadronic abundances and spectra, we
make further predictions of the pion Hanbury-Brown–Twiss correlation radii that turn out to be in a qualitative
agreement with the measured ones. The overall successful description of the data supports the concept of
spheroidal symmetry of the produced hadronic systems in this energy range.
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I. INTRODUCTION

Thermal models of hadron production, based on the idea of
statistical hadronization, have been very successful in describ-
ing hadron yields and phase-space distributions in various
collision processes, especially in ultrarelativistic heavy-ion
collisions (UrHIC) in a wide range of beam energies and
for different projectile-target systems (see, e.g., Refs. [1–9]).
The reasons for studying thermal aspects of hadron pro-
duction in heavy-ion collisions are manifold. The hadron
abundances can be explained over several orders of magnitude
of multiplicity by fixing a small number of thermodynamic
parameters. Moreover, the assumption of local thermaliza-
tion of the expanding dense and hot matter formed in the
collision (called a fireball) allows for the application of hy-
drodynamic concepts [10–13] to describe its evolution and
emissivity of electromagnetic radiation [14]. Such an ap-
proach has been very successful in describing UrHIC and
helped to identify landmarks in the phase diagram of quan-
tum chromodynamics (QCD) in the region of vanishing
net-baryon density, which is also accessible by lattice-QCD
calculations [15,16].

Heavy-ion collisions (HICs) at lower beam energies
provide access to the strongly interacting matter at high
net-baryon densities where a rich structure in the QCD
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phase diagram is predicted [17,18], but lattice QCD is not
applicable. The question of whether the fireball formed in
the few-GeV beam-energy range (where in head-on collisions
essentially all nucleons are stopped in the center of mass)
is thermalized remains still a matter of debate [19–22]. The
study of hadron spectra is crucial to answering this question.
However, in a thermal analysis it must first be demonstrated
that the experimental hadron yields can be well described with
a few thermodynamic parameters such as temperature T and
the baryon chemical potential μB. Only in the second step
the transverse-mass spectra, which are typically falling off
exponentially, have to be reproduced. One should recall that
collective radial expansion (specified by the radial velocity v)
and resonance decays also affect the momentum distribution
of hadrons [3,23,24].

The two physical aspects mentioned above are unified in
a single-freeze-out model [24,25], which identifies the chem-
ical and kinetic freeze-outs by neglecting hadron rescattering
processes (after the chemical freeze-out). This model as-
sumes a sudden freeze-out governed by local thermodynamic
conditions. This concept is implemented in the THERMINA-
TOR Monte Carlo generator [26,27], which allows for studies
of hadron production taking place on arbitrary freeze-out
hypersurfaces defined in the four-dimensional space-time.
The most popular parametrization of such a freeze-out hy-
persurface [23], dubbed the blast-wave model, assumes the
symmetry of boost invariance (along the beam axis) which
was observed in UrHIC. In fact, it was introduced as a
modification of the original blast-wave model formulated by
Siemens and Rasmussen (SR) [28], which instead of the boost
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invariance, employed a spherical symmetry of the freeze-out
geometry [10].

In our previous work [29], using the SR model we in-
troduced a novel approach toward a consistent simultaneous
description of hadron yields and transverse-mass spectra. This
framework offered an alternative interpretation of experimen-
tal results in the analyzed energy domain because it was
based on the thermal equilibrium concept, as compared with
commonly used nonequilibrium transport model approaches
[30–34]. We assumed the spherical symmetry of a fireball
to be a natural approximation at low energies, where the
colliding nuclei are not transparent to each other (the en-
ergy dependence of this effect is shown in Ref. [35] and
recently also systematical investigated in terms od stopping
in Ref. [36]). The agreement between the transverse-mass
spectra of particles predicted by the model and measured by
the HADES collaboration in Au-Au collisions at

√
sNN =

2.4 GeV was of the order of 20% [29]. However, rapidity
distributions turned out to be systematically narrower in the
model than in the experiment. This indicated that our assump-
tion of the spherical symmetry was not exactly fulfilled, at
least in the momentum space.

In this work, we extend our approach by allowing for
spheroidal symmetry of the system, parametrized by the two
eccentricities in the longitudinal (“beam,” z) direction, sepa-
rately in the momentum and the position space. For a more
systematic study, we present the results obtained with the two
sets of chemical freeze-out parameters, as found in Refs. [29]
and [37]. They are denoted below as Case A and Case B,
respectively. As before, we select a reaction centrality class
where thermalization is most likely to occur, i.e., we consider
the 10% most central collisions only. The decay of �(1232)
is included via density function obtained in Ref. [38] from the
pion-nucleon phase shift analysis. In Case B the same excited
nuclear states are included in the present calculations as those
used in Ref. [37].

II. SPHEROIDAL SIEMENS-RASMUSSEN MODEL

As in our previous study [29], the basis for this model
remains the Cooper-Frye formula [39] that describes the in-
variant momentum spectrum of particles emitted from an
expanding source,

Ep
dN

d3 p
=

∫
d3�(x) · p f (x, p). (1)

Here f is the phase-space distribution function of particles,
p is their four-momentum with the mass-shell energy, p0 =
Ep = (m2 + p2)1/2, and d3�μ(x) is the element of a three-
dimensional freeze-out hypersurface from which particles are
emitted.1

In the calculations of the total particle yields, one can
exchange the order of performing the integrals over the

1Three-vectors are shown in bold font (unless stated otherwise)
and a dot is used to denote the scalar product of both four- and
three-vectors. The metric convention is “mostly minuses,” gμν =
diag(+1, −1, −1, −1).

momentum space and the freeze-out hypersurface,

N =
∫

d3�μ(x)
∫

d3 p

Ep
pμ f (x, p). (2)

Since the equilibrium distribution function depends on the
product p · u and thermodynamic parameters only (which are
assumed to be constant on the freeze-out hypersurface), see
Eq. (6) in Ref. [29], we can further write

N = n(T, ϒ )
∫

d3�(x) · u(x) ≡ n(T, ϒ )V, (3)

where the invariant volume V = ∫
d3�(x) · u(x) is defined by

the integral in the middle part of Eq. (3). The fugacity ϒ is
defined as [40]

ϒ = γ
Nq+Nq̄
q γ Ns+Ns̄

s exp
(μ

T

)
. (4)

We note that, in the studies of the ratios of hadronic abun-
dances, the invariant volume cancels out.

We modify the hitherto spherically symmetric SR model
by allowing the system to be stretched or squeezed in the
beam direction. This is taken into account by the two eccen-
tricity parameters: δ (for the momentum space) and ε (for
the position space). Then, the space-time points lying on the
freeze-out hypersurface have the following parametrization:

xμ = (t, r
√

1 − ε sin θ êρ, r
√

1 + ε cos θ ), (5)

where êρ = (cos φ, sin φ), while φ and θ are azimuthal and
polar angles, respectively. To completely specify the freeze-
out hypersurface, a curve in the t-r plane has to be defined by
the mapping ζ → (t (ζ ), r(ζ )). This curve defines the (freeze-
out) times t when the hadrons in the (spheroidal) shells of
radius r stop to interact. The range of ζ may be always re-
stricted to the interval 0 � ζ � 1. The resulting infinitesimal
element of the spheroidal hypersurface has the form

d3�μ = (1 − ε)

(
r′√1 + ε, t ′

√
1 + ε√
1 − ε

sin θ êρ, t ′ cos θ

)

× r2d
dζ , (6)

where d
 = sin θdθdφ is an infinitesimal element of the
solid angle and the prime denotes the derivatives taken with
respect to ζ . If we assume the instantaneous freeze-out, t ′ = 0,
and use the parametrization ζ = r, Eq. (6) reduces to

d3�μ = (1 − ε)(
√

1 + ε, 0, 0, 0)d
r2dr. (7)

Besides the spheroidally symmetric hypersurface, we intro-
duce a spheroidally symmetric hydrodynamic flow,

uμ = γ (ζ , θ )(1, v(ζ )
√

1 − δ sin θ êρ, v(ζ )
√

1 + δ cos θ ),

(8)

where γ (ζ , θ ) is the Lorentz factor that, due to the normaliza-
tion condition u · u = 1, is given by the formula γ (ζ , θ ) =
{1 − [1 + δ cos(2θ )]v2(ζ )}−1/2; for graphical representation
of Eq. (8) for the values of δ obtained in this analysis see
Fig. 1. Thus, we can write explicit expressions for the two
dot products used in the numerical Monte Carlo calculations,
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FIG. 1. Graphical representation of the flow parametrization for the three studied cases. The points on the surfaces represent solutions of
the equation (v2

x + v2
y )/(1 − δ) + v2

z /(1 + δ) = v2.

namely, the product of the four-velocity and four-momentum vectors,

u · p = γ (ζ , θ )[Ep − pv(ζ )(
√

1 + δ cos θ cos θp + √
1 − δ sin θ sin θp cos(φ − φp))], (9)

where the subscript “p” denotes quantities related to the momentum vector, and the product of the hypersurface element and the
four-momentum vector

d3� · p = (1 − ε)

[
Epr′√1 + ε − pt ′

(
cos θ cos θp +

√
1 + ε√
1 − ε

sin θ sin θp cos(φ − φp)

)]
r2d
dζ . (10)

In the case of the instantaneous freeze-out introduced above, this expression simplifies to

d3� · p = (1 − ε)Ep

√
1 + εd
r2dr. (11)

The invariant volume defined by Eq. (3) takes the following form for the spheroidally symmetric system:

V = (1 − ε)
∫

γ (ζ , θ )r2d
dζ

×
{

r′√1 + ε − t ′v(ζ )

√
1 − δ

2

[√
1 + δ√
1 − δ

+
√

1 + ε√
1 − ε

+
(√

1 + δ√
1 − δ

−
√

1 + ε√
1 − ε

)
cos (2θ )

]}
, (12)

which in the case of the instantaneous freeze-out and the
Hubble-like radial profile of the flow velocity [v = tanh(Hr),
where H is a constant parameter [41] ] reduces to

V = (1 − ε)
∫ R

0

∫
γ (ζ , θ )

√
1 + εd
r2dr. (13)

Here the parameter R is fixed by the abundance of one of the
particle species (note that the abundances of the other species
are known through the ratios set by thermodynamic parame-
ters). For ε = δ = 0, all the above equations reduce to the
standard, spherically symmetric version of the SR model used
in Ref. [29].

III. THERMAL PARAMETERS

Input parameters for our calculations were obtained
by different fitting strategies of the particle multiplicities
calculated in the grand-canonical ensemble to those mea-
sured by the HADES collaboration in Au-Au collisions at√

sNN = 2.4 GeV, as listed in Table I. As a result of
the fit, we consider two sets of thermodynamic parameters
whose values are listed in the upper section of Table II.

In the first case (dubbed below as Case A), the calcula-
tion method and resulting thermodynamic parameters are
the same as in Ref. [29]. The number of free parameters
equals the number of available particle yields. As the to-
tal number of protons we take the sum of those observed

TABLE I. Particle multiplicities used in the determination of the
freeze-out parameters. Protons bound in nuclei are taken into account
as shown.

Particle Multiplicity Uncertainty Ref.

p (free) 77.6 ± 2.4 [42,43]
p+n →2H 28.7 ± 0.8 [42,43]
p+2n→3H 8.7 ± 1.1 [42,43]
2p+n→3He 4.6 ± 0.3 [42,43]
p (bound) 46.5 ± 1.5 [42,43]
π+ 9.3 ± 0.6 [44]
π− 17.1 ± 1.1 [44]
K+ 5.98 × 10−2 ±6.79 × 10−3 [45]
K− 5.6 × 10−4 ±5.96 × 10−5 [45]
� 8.22 × 10−2 +5.2

−9.2 ×10−3 [46]
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TABLE II. Upper part: thermodynamic parameters obtained
from different fitting strategies to ratios of particle multiplicities
measured in Au-Au collisions at

√
sNN = 2.4 GeV. Lower part:

Hubble-like expansion parameter H and momentum-space longi-
tudinal eccentricity δ obtained from fitting to the experimentally
measured proton and pion spectra.

Parameter Spherical geometry Ref. [29] Case A Case B

T (MeV) 49.6 49.6 70.3
R (fm) 16.0 15.7 6.06
μB (MeV) 776 776 876
μS (MeV) 123.4 123.4 198.3
μI3 (MeV) −14.1 −14.1 −21.5
γS 0.16 0.16 0.05
χ 2/Ndf Ndf = 0 Ndf = 0 1.13/2

H (GeV) 0.008 0.01 0.0225
δ 0 0.2 0.4√

Q2 0.285 0.238 0.256

directly in the experiment and those observed as bound in
detected light nuclei. The second case (Case B) has been
elaborated in Ref. [37]. The same experimental data and
the same approach to proton counting have been used as
in Ref. [29]. However, additional constraints of S = 0 and
Q/B = 0.4 have been applied to the total values of the
conserved quantum numbers, which reduced the number of
free parameters by two. This allows us to calculate the χ2

of the fit, in contrast to Case A where the number of degrees
of freedom is zero. The χ2 profile turns out to have two nearly
degenerate minima. The first one corresponds to thermody-
namic parameters nearly identical to those found in Case A,
so we do not consider it separately. The second minimum
has resulted in substantially higher temperature and chemical
potential but smaller fireball size, this defines Case B.

IV. PARTICLE INTERFEROMETRY

By measuring quantum-mechanical correlations between
particles emitted from a given source, it is possible to estimate
the spatial extension of the source (or at least of homogeneity
regions within it). It is beneficial for the sources which cannot
be measured by other means, like distant stars [47] or hadron
sources in heavy-ion collisions [48]. We study the two-pion
interferometry in analogy to Ref. [49]. The main object of in-
terest is the two-particle correlation function, which is defined
in general as

C(p1, p2) = W2(p1, p2)

W1(p1)W1(p2)
, (14)

where one- and two-particle emission functions are defined as
follows:

W1(p1) = Ep1

dN

d3 p1

=
∫

S(x1, p1)d4x1,

W2(p1, p2) = Ep1 Ep2

dN

d3 p1d3 p2

=
∫

S(x1, x2, p1, p2)d4x1d4x2.

Here S(x1, p1) and S(x1, x2, p1, p2) are one- and two-particle
distributions in position and momentum spaces. Making the
smoothness approximation, the correlation function can be
written as

C(q, k) =
∫

S(x1, p1)S(x2, p2)|�(k∗, r∗)|2d4x1d4x2∫
S(x1, p1)d4x1

∫
S(x2, p2)d4x2

, (15)

where the wave function of two particles �(k∗, r∗) has been
introduced, depending on their relative momentum k∗ and
position r∗ in the pair rest frame. Furthermore, q = (Ep1 −
Ep2 , p1 − p2) denotes the momentum difference between the
two particles and k = 1

2 (Ep1 + Ep2 , p1 + p2) is the average
momentum of the pair. THERMINATOR generates primordial
particles independently. Even though the Bose-Einstein or
Fermi-Dirac statistics enters the particle distribution function
f (x, p) in Eq. (1), particles are classical, having well-defined
positions and momenta. To introduce quantum-mechanical
correlations, we consider the wave function of two noninter-
acting particles

�(k∗, r∗) = 1√
2

(eik∗r∗ + e−ik∗r∗
). (16)

Its square, which enters the correlation function, reads

|�(k∗, r∗)|2 = 1 + cos (2k∗r∗).

In the Monte Carlo simulation, particles are grouped into
events, as in the experiment, and the integrals in Eq. (15) are
represented by sums over all two-particle combinations in a
given event. This is realized by assigning pairs to bins, which
can be formally expressed with the help of the function

δ�(x) =
{

1 if |x| � �
2

0 otherwise.
(17)

The correlation function then takes the form

C(q, k) =
∑

i

∑
j �=i δ�(q − pi + p j )δ�

(
k − 1

2 (pi + p j )
)|�(k∗, r∗)|2∑

i

∑
j δ�(q − pi + p j )δ�

(
k − 1

2 (pi + p j )
) . (18)

This allows us to build histograms of the usual momentum
projections qinv for the one-dimensional representation or qout,
qside, qlong for the three-dimensional Bertsch-Pratt decomposi-
tion [50]. The size of the homogeneity region in the fireball

is then estimated by reciprocals of widths of the respective
distributions. Assuming pion wave function as defined in
Eq. (16), and the single-particle emission function to be a
three-dimensional ellipsoid with three parallel components:
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FIG. 2. Midrapidity transverse-mass distributions of protons measured in Au-Au collisions at
√

sNN = 2.4 GeV compared with the model
calculations done for the three different strategies of obtaining thermodynamic parameters: Case A (left), Case B (middle), and spherical
geometry (right). Colored lines show different contributions as explained in the legend. Ratios of experimental data to the model are shown in
the lower panels.

out, side, and long, Eq. (15) leads to the formula

C(q, k) = 1 + λosle
−R2

outq
2
out−R2

sideq2
side−R2

longq2
long . (19)

In the case of a static, spherically symmetric system one
may obtain

C(q, k) = 1 + λinve−R2
invq2

inv . (20)

The parameters Rout, Rside, Rlong, and Rinv represent the men-
tioned widths of Gaussian approximation of the fireball and
are often referred to as the Hanbury Brown and Twiss radii
(HBT radii). Equations (19) and (20) are commonly used
to fit experimental data or, in our case, the generated data
of a Monte Carlo event generator, given by Eq. (18). The
correlation strength of pairs of particles can be tuned with
two independent parameters λinv and λosl. In our analysis, they
are stay constant as functions of the average transverse pair
momentum.

V. FITTING PROCEDURE

The parameters H , ε, and δ are adjusted to achieve the best
agreement between the model and the experimental data. The
agreement is quantified by calculating the mean relative error

Q =
√√√√ 1

N

N∑
i=1

(Yi,model − Yi,expt )2

Y 2
i,expt

, (21)

where the sum runs over all the bins of histograms
of experimental and model data, which were taken for
comparison, while Yi,expt and Yi,model are experimental and
model results in these bins, respectively. In this work, we

take for comparison transverse mass distributions of pro-
tons, π+, and π− in five center-of-mass rapidity intervals:
[−0.45,−0.35], [−0.25,−0.15], [−0.05, 0.05], [0.15, 0, 25],
and [0.35, 0.45], giving in total N = 253 bins.

We have found that values of Q (and the model transverse
mass distributions themselves) are practically independent of
ε. Therefore, we keep ε = 0 and perform a simple grid search
in a H − δ plane to find the values of these parameters which
minimize Q. For each point of the grid, we adjust R to keep
V in Eq. (13) unchanged, which makes the particle yields the
same. In the next step we keep H and δ fixed and compare the
HBT radii between the model and the experiment for different
values of ε.

The results of the grid scan are shown in the lower sec-
tion of Table II for the considered two sets of thermodynamic
parameters. They are also compared with the spherically
symmetric case with H = 0.008 GeV and δ = 0 taken from
Ref. [29]. The mean relative error is lowest in Case A, Q =
0.238, slightly larger for Case B, Q = 0.256, and the highest
for the spherical version, Q = 0.285.

One may notice that the values of Q obtained in the cases
A and B are very close to Q reported previously in Ref. [29]
and argue that the generalization of the model from spherical
to spheroidal symmetry would not bring significant improve-
ment. However, in our previous work a different set of data
points was used to calculate Q: rapidity distributions and
transverse mass spectra at midrapidity for p, π+, and π−. In
the present work, we use the transverse mass spectra in five
rapidity ranges. In this way, for the spherical case we obtain
Q = 0.285, a significantly higher value than those found for
the spheroidal fireball.
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FIG. 3. Rapidity distributions of protons measured in Au-Au collisions at
√

sNN = 2.4 GeV, compared with the model calculations done
for the three different strategies of obtaining thermodynamic parameters: Case A (left), B (middle), and spherical geometry (right). Colored
lines show different contributions as explained in the legend. Open circles represent experimental data reflected about ycm = 0.

VI. RESULTS AND DISCUSSION

A. Inclusive spectra of protons and pions

Figures 2–7 show the comparison of the model transverse-
mass (at midrapidity) and rapidity distributions with those
measured by HADES in Au-Au collisions at

√
sNN =

2.4 GeV. The left, middle, and right panels show the results
for Case A, Case B, and the spherical model, respectively. The
obtained results are presented for protons in Figs. 2 and 3,

positive pions in Figs. 4 and 5, and negative pions in Figs. 6
and 7.

Lines with different colors show different contributions
to the total spectra (shown in gray). The most important
contribution (shown in red) is from “primordial” particles—
they are directly generated on the freeze-out hypersurface.
Other contributions are from feed-down, i.e., from unstable
particles generated on the freeze-out hypersurface and sub-
sequently decaying into protons or pions. At temperatures

FIG. 4. Same as Fig. 2 but for positively charged pions.

034917-6



SPHEROIDAL EXPANSION AND FREEZE-OUT GEOMETRY … PHYSICAL REVIEW C 107, 034917 (2023)

FIG. 5. Same as Fig. 3 but for positively charged pions.

reach in HIC energies considered here, the only decay which
significantly contributes to total particle multiplicities is that
from the �(1232) resonances. In Case B, also N∗(1440)
and N∗(1520) play a role at large transverse masses of
pions.

If the freeze-out temperature is relatively low, as in
Case A, the dominating contribution to pions comes from
primordial particles. Their distribution in the representa-
tion dN/(m2

T dmT ) is slightly convex in the region where

mT − m0 > 200 MeV due to the collective radial expansion.
Without such expansion, they would have the form of the
Bose-Einstein distributions, which in this transverse-mass
region are practically equal to the Boltzmann distributions
represented by the exponential functions. Anyway, the curva-
ture of the model spectra is slightly smaller than that observed
in the data.

The situation is different in Case B. At low transverse mass,
the yield is dominated by the �(1232) contribution which is

FIG. 6. Same as Fig. 2 but for negatively charged pions.
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FIG. 7. Same as Fig. 3 but for negatively charged pions.

relatively steep. At large transverse mass, the main contribu-
tions come from primordial pions and N∗ resonances. Their
slope is smaller, in particular, for N∗. Combined contributions
quite well reproduce the spectra, especially for π+. On the
other hand, the experimental spectrum of π− bends up much
stronger than the model curve, while moving from high to low
values of mT − m0.

This effect could be attributed to the electromagnetic in-
teraction with the positively charged fireball. In fact, in all
three cases, one can see such a trend at low transverse mass.
The ratios of experimental data to the model bend up for π−
and bend down, somewhat less strongly, for π+. Final-state
electromagnetic interactions have not yet been implemented
in our Monte Carlo simulations.

Finally, we emphasize that both models A and B describe
data, particularly rapidity distributions, better than the model
with spherical geometry.

B. Two-pion interferometry

In the last sections we have showed that for the two con-
sidered sets of thermodynamic parameters, the optimal values
of H and δ give a similar level of agreement between the
HADES experimental data and the model. Moreover, the in-
clusive hadron spectra discussed before are not sensitive to
the position-space eccentricity of the fireball shape in the
longitudinal direction.

On the other hand, the size of the fireball is negatively
correlated with temperature. A higher temperature leads to
a higher particle density due to the Boltzmann factor, and
one has to compensate for that with a smaller fireball size
to obtain the particle multiplicities as observed in the exper-
iment. This can be observed in Table II. Consequently, the
measurements of the HBT radii, which are correlated with

the size of the fireball, may allow for discriminating between
the two sets of thermodynamic parameters. In addition, it can
be expected that the HBT radii and the relations between
them can depend on the parameter ε which quantifies the
spatial eccentricity.

The above remarks motivated our additional study of the
two-pion interferometry within the spheroidal model. The re-
sults of our calculations are shown in Figs. 8 and 9, where we
compare the model results with the HADES HBT data [51].

In contrast to the spectra, in the case of the correlation
functions we obtain only qualitative agreement with the data.
In Case A, the three model radii, Rside, Rout, and Rlong, strongly
decrease with the mean transverse momentum of the pion
pair, kT , an effect that can be attributed to the presence of the
large transverse flow. The model slopes are similar to those
observed in the data, however, the values of the three model
radii are larger or similar to the experimental values. In Case B
the situation is opposite, the HBT radii and slopes are smaller.
This behavior reflects the smaller size of the system (due to a
higher temperature) and smaller transverse flow.

As expected, our results indicate dependence of the results
on the anisotropy parameter ε. However, none of the consid-
ered values of ε gives a good quantitative description of the
data. The comparison of Rlong with the data suggests large
negative values of ε, while the comparison of Rside and Rout

suggests the values close to zero.
We note that the fit results presented in Figs. 4 and 5

include cut on the λ parameter of the correlation function
to exclude cases where no positive fit result was obtained,
λinv/osl ∈ (0.5, 2). We close our HBT analysis with the con-
clusion that the HBT modeling for our model requires further
improvements. Theoretical analyses of the HBT radii in
heavy-ion collisions studied at RHIC energies have showed
that a successful description of the data can be achieved
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FIG. 8. Emission source radii (lines) in the out, side, and long directions, as alongside invariant radius, for the Case A. Experimental results
(points) of the HBT radii obtained form π+, π−, and π 0 correlation functions.

only if many improvements in the theoretical description of
hadron emission are made [52]. They include, in particu-
lar, the use of realistic wave functions, viscous corrections
to the distribution functions and inclusion of the hadron
emission times. One way of improvement of our results
is to make similar advances in our framework. The other
way for achieving a better theoretical description of the
data is to make global fits that include both one- and two-
particle observables, i.e., to include the HBT results in the
fitting procedure.

VII. SUMMARY AND CONCLUSIONS

In this work, we have studied the rapidity and transverse-
mass spectra of protons and pions produced in Au-Au
collisions at

√
sNN = 2.4 GeV within a thermal model with

single freeze-out. We have generalized the original, spheri-
cally symmetric Siemens-Rasmussen approach by allowing
for elongation or contraction of the fireball in the longitudinal
direction, separately in the position and the momentum space.
The momentum-space elongation allowed for reproducing the
width of the experimentally measured rapidity distributions

and significantly improved the agreement between the model
and experimental data, as compared with spherical-model
predictions. We have also found that the inclusive hadron
spectra are not sensitive to the position-space shape of the
fireball. With the model parameters fixed by the spectra we
have calculated the HBT radii, which turned out to be only in
qualitative agreement with the data.

Altogether, our results bring evidence for substantial ther-
malization of the matter produced in the few-GeV energy
range and its spheroidal expansion. This result is quite appeal-
ing and seems to be natural as in the considered energy range
we expect stopping of colliding nucleons. This stopping, how-
ever, cannot be complete and we expect a residual imbalance
in favor of longitudinal momentum. This picture is supported
by our calculations.

Our findings pave the way for future developments of our
approach that may include more realistic description of corre-
lations and determination of the yields of light nuclei. A very
natural extension would be to include also the asymmetry of
particle emission in the transverse plane, i.e., to generalize the
spheroidal symmetry to the ellipsoidal one. This could allow
for studies of the elliptic flow of particles.
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FIG. 9. Same as Fig. 8 but for the Case B.
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