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Cumulants from short-range correlations and baryon number conservation at next-to-leading order
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We calculate the baryon number cumulants within acceptance with short-range correlations and global baryon
number conservation in terms of cumulants in the whole system without baryon conservation. We extract leading
and next-to-leading order terms of the large baryon number limit approximation. These approximations are
checked to be very close to the exact results.
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I. INTRODUCTION

The phase diagram of the strongly interacting matter is not
yet well explored. In particular, the search for the first-order
phase transition between the hadronic matter and quark-gluon
plasma, and the corresponding critical endpoint, which are
predicted by the effective models, remains a big challenge in
high-energy physics [1–4]. It is known that the fluctuations of
conserved charges, e.g., baryon number, electric charge, and
strangeness are sensitive to the relevant critical phenomena.
Therefore, many theoretical projects, as well as experiments
in relativistic heavy-ion collisions, have been established to
study them [1,5–24].

Cumulants are commonly used to quantify these fluctu-
ations because they naturally appear in statistical mechan-
ics [10,25–32]. On the other hand, the factorial cumulants
might be easier to interpret since they represent integrated
multiparticle correlation functions [4,33–41]. However, both
the cumulants and factorial cumulants are affected also by
fluctuations unrelated to the phase transition, for instance, the
impact parameter fluctuations and the conservation laws, e.g.,
the baryon number conservation [26,30,39,41–50].

In our previous paper [51], we derived analytically the
baryon number factorial cumulant generating function in a fi-
nite acceptance, assuming short-range correlations and global
baryon number conservation. We followed the subensemble
acceptance method [52], recently applied to the van der Waals
model [53]. Among other results, we calculated the factorial
cumulants and cumulants within the limit of small short-range
correlation strengths, αk , and large baryon number, B. We also
reproduced the relations between cumulants in a subsystem
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with all correlations and cumulants in the whole system with-
out baryon conservation, initially obtained in Ref. [52].

The charge conservation effects become significant already
at the acceptance of about 10% [45]. Therefore, it is impor-
tant to understand the modifications due to baryon number
conservation very well. However, the previous result [51,52]
represents the approximation obtained in the thermodynamic
limit; in particular, it means a large baryon number B for
low-energy collisions. In heavy-ion collisions, B can be quite
small, e.g., for small systems, such as Ar+Sc or Be+Be colli-
sions at CERN SPS by the NA61/SHINE Collaboration [54],
or even in peripheral collisions at the LHC or RHIC. Conse-
quently, it is desired to obtain a more precise analytic result.
In this paper, we extend this study and propose a method of
obtaining the first correction to the cumulants in the large
baryon number limit. We compare our approximate analytic
results with the brute-force computations to verify the impor-
tance of the extracted correction. We find that this correction
improves the results, especially for small baryon numbers.
In our method, it is also possible to calculate even higher
order corrections. Finally, we note that the strengths of the
short-range correlations cannot assume arbitrary values.

In the next section, we show our method of extracting the
baryon number cumulants assuming short-range correlations
and global baryon number conservation. Then, we present the
leading-order and next-to-leading order terms of cumulants in
the subsystem with all correlations expanded in the large-B
limit with respect to cumulants in the whole system without
baryon conservation. This is our main result. In the fourth sec-
tion, we show how our approximate analytic formulas work by
comparison with the exact results. The alternative approach
and the discussion on the limitations of αk’s originating from
the probability theory can be found in the appendices.

II. METHOD

A. Previous study

In our previous paper [51], we considered a system of
fixed volume and some number of particles of one kind,
say, baryons. We divided it into two subsystems (inside and
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FIG. 1. The system is divided into two subsystems with n1 parti-
cles in the first subsystem (inside the acceptance) and n2 particles in
the second one (outside the acceptance).

outside the acceptance, see Fig. 1) which can exchange par-
ticles. Let P1(n1) and P2(n2) be the probabilities that there
are n1 particles in the first subsystem and n2 particles in the
second one, respectively. The probability that there are n1

particles in the first subsystem and n2 particles in the second
one is P(n1, n2) = P1(n1)P2(n2) if there are no correlations
between the two subsystems or (approximately) if there are
only short-range correlations. Assuming the global baryon
number conservation, this probability becomes

PB(n1, n2) = A P1(n1)P2(n2)δn1+n2,B, (1)

where A is the normalization constant and B is the total baryon
number. In this case, the probability that there are n1 particles
in the first subsystem (within acceptance) reads

PB(n1) =
∞∑

n2=0

PB(n1, n2). (2)

Then, we calculated the factorial cumulant generating
function for the first subsystem with baryon number conser-
vation:

G(1,B)(z) = ln

[
A

B!

× dB

dxB
exp

( ∞∑
k=1

(xz−1)kĈ(1)
k +(x−1)kĈ(2)

k

k!

)∣∣∣∣∣
x=0

]
,

(3)

where

Ĉ(1)
k = 〈n1〉αk = f 〈N〉αk,

Ĉ(2)
k = 〈n2〉αk = (1 − f )〈N〉αk (4)

are the short-range factorial cumulants in the first and the
second subsystems, respectively (see Refs. [4,51]), for the
multiplicity distribution without global baryon conservation.
Here 〈N〉 = 〈n1〉 + 〈n2〉 is the mean total number of parti-
cles in the system, f = 〈n1〉/〈N〉 is a fraction of particles
in the first subsystem, and αk describes the strength of k-
particle short-range correlations (α1 = 1). We assumed that
the total average number of particles 〈N〉 = 〈n1〉 + 〈n2〉 = B.
Introducing the global baryon number conservation further
requires that the total number of particles N = n1 + n2 equals
B in every event.

Using the factorial cumulant generating function (3), one
can obtain the factorial cumulants in the first subsystem
(within acceptance) with baryon number conservation:

Ĉ(1,B)
k = dk

dzk
G(1,B)(z)

∣∣∣∣
z=1

. (5)

We obtained [51] the analytic as well as approximate for-
mulas for the factorial cumulants in the simple case of only
two-particle short-range correlations. Then, we also derived
the approximate factorial cumulants and cumulants in the
limit of B → ∞ assuming multiparticle short-range corre-
lations. These results reproduced the findings of Ref. [52]
obtained originally using a different approach.

B. Next-to-leading order correction

We extend the previous study and obtain the next-to-
leading order terms of the expansion of the cumulants in
the limit of B → ∞. We derive the relevant expressions in
two different ways. One method, presented in Appendix A,
is based on analyzing the first few terms of the expansions,
deducing the following terms, and then summing the infinite
series. Here we present another method that is simpler.

In order to make the computations, we approximate Eq. (3)
with Eq. (4) by

G(1,B)(z) ≈ ln

[
A

B!

dB

dxB

[
exp

(
(xz − 1) f B + (x − 1) f̄ B

)
×

M∑
m=0

V m

m!

]∣∣∣∣∣
x=0

]
, (6)

where f̄ = 1 − f and

V =
K∑

k=2

(
(xz − 1)k

k!
f Bαk + (x − 1)k

k!
f̄ Bαk

)
, (7)

with M and K being the upper limits. Note that in Eq. (7) we
allow for up to K-particle short-range correlations.

To calculate the Bth derivative with respect to x in Eq. (6),
we use the general Leibnitz formula as described in Ref. [51].
In this way, we evaluate the factorial cumulant generating
function (6) and then the factorial cumulants (5). Having the
factorial cumulants, we calculate the cumulants according to

κn =
n∑

k=1

S(n, k)Ĉk, (8)

where S(n, k) is the Stirling number of the second kind [55].1

For instance, the second cumulant reads

κ
(1,B)
2 = 〈n1〉 + Ĉ(1,B)

2 , (9)

where Ĉ(1,B)
1 = κ

(1,B)
1 = 〈n1〉 = f B.

The global (both subsystems combined) short-range facto-
rial cumulants, without the baryon number conservation, are

1See also Appendix A of Ref. [4] for explicit formulas for the first
six cumulants.
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defined as [compare with Eqs. (4)]

Ĉ(G)
n = Bαn. (10)

The global cumulants without the baryon number conserva-
tion, κ (G)

n , are obtained by Eq. (8).
As shown in Ref. [51], the cumulants, κ (1,B)

n , can be ex-
pressed as a power series in terms of B where the highest order
term is linear in B. Namely,

κ (1,B)
n ≈ κ (1,B,LO)

n︸ ︷︷ ︸
un,1B1

+ κ (1,B,NLO)
n︸ ︷︷ ︸

un,0B0

+ κ (1,B,NNLO)
n︸ ︷︷ ︸

un,−1B−1

+ · · ·︸︷︷︸
O(B−2 )

, (11)

where κ (1,B,LO)
n , κ (1,B,NLO)

n , and κ (1,B,NNLO)
n denote the leading-

order, next-to-leading-order, and next-to-next-to-leading-
order terms of the power series in B, respectively.

Let us focus on the second cumulant. Using the method
presented in Appendix A, we deduced that in order to extract
LO and NLO terms, it is convenient to multiply κ

(1,B)
2 by

(κ (G)
2 )2 = [B(1 + α2)]2. We define

κ̃
(1,B)
2 = κ

(1,B)
2

(
κ

(G)
2

)2 = κ
(1,B)
2 [B(1 + α2)]2. (12)

Then, we expand κ̃
(1,B)
2 into the power series in αk up to the

order of M, obtaining κ̃
(1,B,ser)
2 :

κ̃
(1,B)
2 ≈ κ̃

(1,B,ser)
2 = u2,1(1 + α2)2B3 + u2,0(1 + α2)2B2

+ · · ·︸︷︷︸
O(B)

. (13)

The coefficients of the expansion are calculated as follows:

u2,1 = 1

(1 + α2)2
lim

B→∞
κ̃

(1,B,ser)
2

B3
,

u2,0 = 1

(1 + α2)2
lim

B→∞
κ̃

(1,B,ser)
2 − u2,1(1 + α2)2B3

B2
. (14)

Clearly, it is possible to extract even higher terms in an
analogous way. Using Eqs. (8) and (10), we express these

coefficients in terms of the global short-range cumulants
(without the baryon conservation), κ (G)

n .
The same technique is applied to obtain the leading- and

next-to-leading-order terms of κ
(1,B)
3 . Namely, we multiply

κ
(1,B)
3 by (κ (G)

2 )2.
It turns out that κ

(1,B)
4 needs to be multiplied by (κ (G)

2 )4.
Namely,

κ̃
(1,B)
4 = κ

(1,B)
4

(
κ

(G)
2

)4 = κ
(1,B)
4 [B(1 + α2)]4. (15)

In this case, equations corresponding to Eqs. (13) and (14)
read

κ̃
(1,B)
4 ≈ κ̃

(1,B,ser)
4 = u4,1(1 + α2)4B5 + u4,0(1+α2)4B4+ · · ·︸︷︷︸

O(B3 )

,

(16)

and

u4,1 = 1

(1 + α2)4
lim

B→∞
κ̃

(1,B,ser)
4

B5
,

u4,0 = 1

(1 + α2)4
lim

B→∞
κ̃

(1,B,ser)
4 − u4,1(1 + α2)4B5

B4
. (17)

The results are computed using MATHEMATICA soft-
ware [56].

III. RESULTS

As discussed above, the cumulants in the subsystem with
the baryon number conservation and short-range correlations,
κ (1,B)

n , can be approximated by

κ (1,B)
n ≈ κ (1,B,LO)

n + κ (1,B,NLO)
n + · · · , (18)

where the leading-order (LO) term is linear in the baryon
number, B, the next-to-leading-order (NLO) term is indepen-
dent of B, and the next terms depend at most on B−1. κ (1,B,LO)

n
and κ (1,B,NLO)

n expressed in terms of the cumulants in the
whole system without baryon conservation, κ (G)

m , are given by

κ
(1,B)
1 = f B = f κ (G)

1 , (19)

κ
(1,B,LO)
2 = f̄ f κ (G)

2 , (20)

κ
(1,B,NLO)
2 = 1

2
f̄ f

(
κ

(G)
3

)2 − κ
(G)
2 κ

(G)
4(

κ
(G)
2

)2 , (21)

κ
(1,B,LO)
3 = f̄ f (1 − 2 f )κ (G)

3 , (22)

κ
(1,B,NLO)
3 = 1

2
f f̄ (1 − 2 f )

κ
(G)
3 κ

(G)
4 − κ

(G)
2 κ

(G)
5(

κ
(G)
2

)2 , (23)

κ
(1,B,LO)
4 = f f̄

[
κ

(G)
4 − 3 f f̄

(
κ

(G)
4 +

(
κ

(G)
3

)2

κ
(G)
2

)]
, (24)

κ
(1,B,NLO)
4 = 1

2
f f̄

{
κ

(G)
3 κ

(G)
5 − κ

(G)
2 κ

(G)
6(

κ
(G)
2

)2 + 3 f f̄

[
2
(
κ

(G)
3

)4− 5κ
(G)
2

(
κ

(G)
3

)2
κ

(G)
4 + (

κ
(G)
2

)2
κ

(G)
3 κ

(G)
5(

κ
(G)
2

)4 +
(
κ

(G)
4

)2 + κ
(G)
2 κ

(G)
6(

κ
(G)
2

)2

]}
. (25)
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FIG. 2. Upper plots: The second (left), third (middle), and fourth (right) cumulant in the first subsystem (within acceptance) with the
short-range correlations and baryon number conservation as a function of B. αk = 0.1( 1

2 )k−2, k = 2, 3, ..., 6, α1 = 1, f = 0.25. “LO” denotes
the results obtained from the leading-order terms [Eqs. (20), (22), and (24)]. “LO+NLO” denotes the results obtained using the leading-order
and next-to-leading-order terms [Eqs. (20), (22), (24) plus Eqs. (21), (23), and (25)]. The “exact” points denote the direct calculation from
Eqs. (3)–(5). The exact results are presented for B = 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90. Lower plots: The relative error
for each B. The “formula” can be a result of LO or LO+NLO. As seen, the use of the next-to-leading-order term improves the results
significantly.

The leading-order terms, κ (1,B,LO)
n , were already obtained

in Ref. [51] and originally in Ref. [52]. The final results for
κ

(1,B,NLO)
2 and κ

(1,B,NLO)
3 are obtained already for M = 3 and

K = 5 [see Eqs. (6) and (7)]. We have checked (up to M = 7
and K = 7) that when increasing M or K the results remain
unchanged.2 The final results for κ

(1,B,NLO)
4 are obtained for

M = 5 and K = 6. We have verified them up to M = 6 and
K = 7 as well as up to M = 7 and K = 6. When further
increasing M or K the computations become challenging.

We note that in the absence of the short-range correlations
(global baryon number conservation being the only source of
correlations), the global cumulants follow the Poisson distri-
bution, κ (G)

m = 〈N〉 = B. In this case, all the presented NLO
terms vanish and LO terms become the binomial distribution
cumulants. This is in agreement with the results of Ref. [57]
(without antibaryons).

2Note that increasing M gives the next terms of αk power se-
ries expansion whereas increasing K allows for higher multiparticle
correlations, e.g., K = 6 allows for up to six-particle short-range
correlations.

IV. EXAMPLES

We calculate the cumulants for the selected values of the
k-particle short-range correlation strengths, αk’s, the fraction
of particle number in the first subsystem, f , and the baryon
number, B. We do this in three different ways. First, we
calculate the cumulants by a straightforward differentiation
using Eqs. (3)–(5) (exact results).3 Second, we calculate them
using only the leading-order terms [Eqs. (20), (22), and (24)].
Finally, we calculate them by applying both the leading- and
next-to-leading-order terms.

The k-particle short-range correlations are typically small
and the higher order ones are expected to be smaller than the
lower order ones. Thus, as an example, we study the case of
αk = 0.1( 1

2 )k−2, k = 2, 3, ..., 6, α1 = 1, f = 0.25.4 In Fig. 2,

3In this method, we calculate up to B = 90. Calculation of higher
derivatives in Eq. (3) becomes challenging.

4As seen from Eqs. (19)–(25), the six-particle correlation is the
highest order appearing in the LO and NLO terms of the first four
cumulants.
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we show the cumulants as a function of the baryon number,
B, calculated in three ways and we also present the relative
errors with respect to the exact ones. We see that including
the NLO term gives a significantly better approximation of the
exact results. We have also studied other values of parameters
and the observations are consistent. We note that for f = 0.5,
κ

(1,B)
3 vanishes for all values of B [58,59].

It is worth mentioning that αk cannot be arbitrary. We
discuss this issue in Appendix B.

V. COMMENTS AND SUMMARY

In this paper, we have extended the results of Ref. [51].
We have presented the method of obtaining successive terms
of the large-B limit expansion of the baryon number cumu-
lants in the subsystem with the short-range correlations and
global baryon number conservation. We have expressed them
by the cumulants in the whole system without baryon num-
ber conservation. The newly obtained next-to-leading-order
terms have improved the approximation as seen in Sec. IV.
These terms might be important for small colliding nuclei

such as Ar+Sc or Be+Be collisions at CERN SPS by the
NA61/SHINE Collaboration or even peripheral collisions of
large nuclei. Moreover, our technique of calculating the cu-
mulants can be extended to even smaller B by computing even
higher order corrections. We believe that this progress will be
helpful in the efforts to explore the QCD phase diagram with
baryon number fluctuations measurements.

In this calculation, we have neglected antibaryons, which
makes our results applicable to lower collision energies. We
have presented baryon number cumulants, whereas typically
in the experiments the proton (net-proton) number cumu-
lants are measured because it is more challenging to detect
neutrons.

An interesting but rather challenging extension of this
method would be to take into account also antibaryons, as well
as other long-range correlations.
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APPENDIX A: THE SERIES EXPANSION APPROACH

Here we present another way of obtaining the leading- and next-to-leading-order terms of the B power series expansion of the
cumulants.

We obtain the factorial cumulants, Ĉ(1,B)
n , in the same way as in Sec. II B. Then, we expand them into the αk power series up

to the order of M. As shown in Ref. [51], Ĉ(1,B)
n can be written as a power series in terms of B,

Ĉ(1,B)
n ≈ Ĉ(1,B,ser)

n = Ĉ(1,B,LO)
n︸ ︷︷ ︸
vn,1B1

+ Ĉ(1,B,NLO)
n︸ ︷︷ ︸

vn,0B0

+ Ĉ(1,B,NNLO)
n︸ ︷︷ ︸
vn,−1B−1

+ · · ·︸︷︷︸
O(B−2 )

, (A1)

where Ĉ(1,B,LO)
n , Ĉ(1,B,NLO)

n , and Ĉ(1,B,NNLO)
n denote the leading-, next-to-leading-, and next-to-next-to-leading-order terms. The

coefficients, vn,1 and vn,0, are calculated as follows:

vn,1 = lim
B→∞

Ĉ(1,B,ser)
n

B
, vn,0 = lim

B→∞
(
Ĉ(1,B,ser)

n − vn,1B
)
. (A2)

The subsequent coefficients can be obtained in a similar way. Note that the leading-order terms, Ĉ(1,B,LO)
n , were presented in

Ref. [51].
We calculate the LO and NLO terms of cumulants from factorial cumulants using Eq. (8). For instance,

κ
(1,B)
3 = 〈n1〉 + 3Ĉ(1,B)

2 + Ĉ(1,B)
3

≈ f B + 3
(
Ĉ(1,B,LO)

2 + Ĉ(1,B,NLO)
2

) + (
Ĉ(1,B,LO)

3 + Ĉ(1,B,NLO)
3

)
= (

f B + 3Ĉ(1,B,LO)
2 + Ĉ(1,B,LO)

3

)︸ ︷︷ ︸
κ

(1,B,LO)
3

+ (
3Ĉ(1,B,NLO)

2 + Ĉ(1,B,NLO)
3

)︸ ︷︷ ︸
κ

(1,B,NLO)
3

, (A3)

where Ĉ(1,B)
1 = κ

(1,B)
1 = 〈n1〉 = f B.

Next, we express κ (1,B,LO)
n and κ (1,B,NLO)

n by the global (in the whole system) factorial cumulants, Ĉ(G)
n , with short-range

correlations but without baryon number conservation, defined in Eq. (10), and then by the global cumulants without the baryon
number conservation, κ (G)

n .
For the Poisson distribution, all the cumulants κ (G)

n = 〈N〉 = B. Therefore,

κ̄ (G)
n = κ (G)

n

B
− 1 (A4)

describes the deviation from the Poisson distribution. We expect it to be small (for example, κ̄
(G)
2 = α2) and thus we express

κ (1,B,LO)
n and κ (1,B,NLO)

n in terms of κ̄ (G)
m .
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We note that when using Eqs. (6) and (7), the final results for κ
(1,B)
1 , κ

(1,B,LO)
2 , and κ

(1,B,LO)
3 are obtained already for M = 1

and K = 3, and an increase of M and K does not modify the results. In other cases, we obtain more terms when increasing M.
However, we can deduce empirically the series in κ̄

(G)
2 using the first few terms and confirm them by increasing M and K in

Eqs. (6) and (7). We have performed the computations up to M = 8, K = 6, and also up to M = 4, K = 8. By summing the
series up to infinity, we derive the finite analytic formulas for LO and NLO terms of the cumulants, and we obtain the same
results as given by Eqs. (19)–(25).

1. κ
(1,B)
2 and κ

(1,B)
3

The leading-order terms of κ
(1,B)
2 and κ

(1,B)
3 read [51,52]

κ
(1,B,LO)
2 = f̄ f κ (G)

2 , κ
(1,B,LO)
3 = f̄ f (1 − 2 f )κ (G)

3 . (A5)

The NLO term of κ
(1,B)
2 is given by the power series in κ̄

(G)
2 . This is understandable since in the process of computation we

expand the factorial cumulants into power series about αk = 0 up to order M (see Sec. II B). The approximated NLO term of the
second cumulant (with M = 8) is given by

κ
(1,B,NLO)
2 ≈ 1

2 f f̄
[ − κ̄

(G)
2 + 2

(
κ̄

(G)
2

)2 − 3
(
κ̄

(G)
2

)3 + 4
(
κ̄

(G)
2

)4 − 5
(
κ̄

(G)
2

)5 + 6
(
κ̄

(G)
2

)6 − 7
(
κ̄

(G)
2

)7 + 8
(
κ̄

(G)
2

)8

+ 2κ̄
(G)
3

(
1 − 2κ̄

(G)
2 + 3

(
κ̄

(G)
2

)2 − 4
(
κ̄

(G)
2

)3 + 5
(
κ̄

(G)
2

)4 − 6
(
κ̄

(G)
2

)5 + 7
(
κ̄

(G)
2

)6 − 8
(
κ̄

(G)
2

)7)
+ (κ̄ (G)

3 )2
(
1 − 2κ̄

(G)
2 + 3

(
κ̄

(G)
2

)2 − 4
(
κ̄

(G)
2

)3 + 5
(
κ̄

(G)
2

)4 − 6
(
κ̄

(G)
2

)5 + 7
(
κ̄

(G)
2

)6)
+ κ̄

(G)
4

( − 1 + κ̄
(G)
2 − (

κ̄
(G)
2

)2 + (
κ̄

(G)
2

)3 − (
κ̄

(G)
2

)4 + (
κ̄

(G)
2

)5 − (
κ̄

(G)
2

)6 + (
κ̄

(G)
2

)7)]
. (A6)

Here we recognize the series

κ
(1,B,NLO)
2 ≈ 1

2
f f̄

[
N=8∑
n=1

n
(−κ̄

(G)
2

)n + 2κ̄
(G)
3

N=8∑
n=1

n
(−κ̄

(G)
2

)n−1 + (κ̄ (G)
3 )2

N=7∑
n=1

n
(−κ̄

(G)
2

)n−1 − κ̄
(G)
4

N=8∑
n=1

(−κ̄
(G)
2

)n−1

]
. (A7)

Then, we assume that the next terms follow this pattern and we sum up with N → ∞. We obtain

κ
(1,B,NLO)
2 = 1

2
f̄ f

[
− κ̄

(G)
2(

1 + κ̄
(G)
2

)2 + 2κ̄
(G)
3(

1 + κ̄
(G)
2

)2 +
(
κ̄

(G)
3

)2(
1 + κ̄

(G)
2

)2 − κ̄
(G)
4

1 + κ̄
(G)
2

]

= −1

2
f̄ f

κ̄
(G)
2 − 2κ̄

(G)
3 + κ̄

(G)
4

(
1 + κ̄

(G)
2

) − (κ̄ (G)
3 )2(

1 + κ̄
(G)
2

)2 . (A8)

We substitute back Eq. (A4) and we obtain Eq. (21).
The case of the NLO term of κ

(1,B)
3 is similar. The approximated result (with M = 8) reads

κ
(1,B,NLO)
3 ≈ 1

2
f f̄ (1 − 2 f )

[
N=8∑
n=1

n
(−κ̄

(G)
2

)n + κ̄
(G)
3

N=8∑
n=1

n
(−κ̄

(G)
2

)n−1 + κ̄
(G)
4

N=8∑
n=1

n
(−κ̄

(G)
2

)n−1

+ κ̄
(G)
3 κ̄

(G)
4

N=7∑
n=1

n
(−κ̄

(G)
2

)n−1 − κ̄
(G)
5

N=8∑
n=1

(−κ̄
(G)
2

)n−1

]
. (A9)

By letting N → ∞, we have

κ
(1,B,NLO)
3 = 1

2
f f̄ (1 − 2 f )

[
− κ̄

(G)
2(

1 + κ̄
(G)
2

)2 + κ̄
(G)
3(

1 + κ̄
(G)
2

)2 + κ̄
(G)
4(

1 + κ̄
(G)
2

)2 + κ̄
(G)
3 κ̄

(G)
4(

1 + κ̄
(G)
2

)2 − κ̄
(G)
5

1 + κ̄
(G)
2

]

= −1

2
f f̄ (1 − 2 f )

κ̄
(G)
2 − κ̄

(G)
3 − κ̄

(G)
4 + κ̄

(G)
5

(
1 + κ̄

(G)
2

) − κ̄
(G)
3 κ̄

(G)
4(

1 + κ̄
(G)
2

)2 . (A10)

Using Eq. (A4), we obtain Eq. (23).
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2. κ
(1,B)
4

a. Leading-order term

In the case of κ
(1,B)
4 , the series appear already in the LO term. The approximated result (with M = 8) is

κ
(1,B,LO)
4 ≈ f f̄ B

[
1 − 6 f f̄ + (1− 3 f f̄ )κ̄ (G)

4 − 3 f f̄

(
N=8∑
n=1

(−κ̄
(G)
2

)n+ 2κ̄
(G)
3

N=8∑
n=1

(−κ̄
(G)
2

)n−1+ (
κ̄

(G)
3

)2
N=7∑
n=1

(−κ̄
(G)
2

)n−1

)]
. (A11)

After applying N → ∞,

κ
(1,B,LO)
4 = f f̄ B

[
1 − 6 f f̄ + (1 − 3 f f̄ )κ̄ (G)

4 − 3 f f̄

(
− κ̄

(G)
2

1 + κ̄
(G)
2

+ 2κ̄
(G)
3

1 + κ̄
(G)
2

+
(
κ̄

(G)
3

)2

1 + κ̄
(G)
2

)]

= f f̄ B

[
1 − 6 f f̄ + (1 − 3 f f̄ )κ̄ (G)

4 − 3 f f̄

(
κ̄

(G)
3

)2 + 2κ̄
(G)
3 − κ̄

(G)
2

1 + κ̄
(G)
2

]
. (A12)

Then, using Eq. (A4), we obtain Eq. (24) which is exactly in agreement with the results of Refs. [51,52]. This confirms that
our method of series expansion works.

b. Next-to-leading-order term

Now we focus on the first correction (next-to-leading-order) term of κ
(1,B)
4 . Here, we obtained a much more complicated series

(we also show an approximated result with M = 8):

κ
(1,B,NLO)
4

− 1
2 f f̄

≈ (
κ̄

(G)
2 − 2

(
κ̄

(G)
2

)2 + 3
(
κ̄

(G)
2

)3 − 4
(
κ̄

(G)
2

)4 + 5
(
κ̄

(G)
2

)5 − 6
(
κ̄

(G)
2

)6 + 7
(
κ̄

(G)
2

)7 − 8
(
κ̄

(G)
2

)8)
(A13a)

+ f f̄
(−6κ̄

(G)
2 + 9

(
κ̄

(G)
2

)2− 3
(
κ̄

(G)
2

)3 − 18
(
κ̄

(G)
2

)4+ 60
(
κ̄

(G)
2

)5− 129
(
κ̄

(G)
2

)6+ 231
(
κ̄

(G)
2

)7− 372
(
κ̄

(G)
2

)8)
(A13b)

+ κ̄
(G)
3

(−1 + 2κ̄
(G)
2 − 3

(
κ̄

(G)
2

)2 + 4
(
κ̄

(G)
2

)3 − 5
(
κ̄

(G)
2

)4 + 6
(
κ̄

(G)
2

)5 − 7
(
κ̄

(G)
2

)6 + 8
(
κ̄

(G)
2

)7)
(A13c)

+ f f̄ κ̄ (G)
3

(
3+ 12κ̄

(G)
2 − 69

(
κ̄

(G)
2

)2+ 192
(
κ̄

(G)
2

)3− 405
(
κ̄

(G)
2

)4+ 732
(
κ̄

(G)
2

)5− 1197
(
κ̄

(G)
2

)6+ 1824
(
κ̄

(G)
2

)7)
(A13d)

+ f f̄
(
κ̄

(G)
3

)2(−21 + 99κ̄
(G)
2 − 270

(
κ̄

(G)
2

)2 + 570
(
κ̄

(G)
2

)3 − 1035
(
κ̄

(G)
2

)4 + 1701
(
κ̄

(G)
2

)5 − 2604
(
κ̄

(G)
2

)6)
(A13e)

+ f f̄
(
κ̄

(G)
3

)3(−24 + 96κ̄
(G)
2 − 240

(
κ̄

(G)
2

)2 + 480
(
κ̄

(G)
2

)3 − 840
(
κ̄

(G)
2

)4 + 1344
(
κ̄

(G)
2

)5)
(A13f)

+ f f̄
(
κ̄

(G)
3

)4(−6 + 24κ̄
(G)
2 − 60

(
κ̄

(G)
2

)2 + 120
(
κ̄

(G)
2

)3 − 210
(
κ̄

(G)
2

)4)
(A13g)

+ f f̄ κ̄ (G)
4

(
9− 33κ̄

(G)
2 + 72

(
κ̄

(G)
2

)2− 126
(
κ̄

(G)
2

)3+ 195
(
κ̄

(G)
2

)4 − 279
(
κ̄

(G)
2

)5 + 378
(
κ̄

(G)
2

)6 − 492
(
κ̄

(G)
2

)7)
(A13h)

+ f f̄ κ̄ (G)
3 κ̄

(G)
4

(
30 − 90κ̄

(G)
2 + 180

(
κ̄

(G)
2

)2 − 300
(
κ̄

(G)
2

)3 + 450
(
κ̄

(G)
2

)4 − 630
(
κ̄

(G)
2

)5 + 840
(
κ̄

(G)
2

)6)
(A13i)

+ f f̄
(
κ̄

(G)
3

)2
κ̄

(G)
4

(
15 − 45κ̄

(G)
2 + 90

(
κ̄

(G)
2

)2 − 150
(
κ̄

(G)
2

)3 + 225
(
κ̄

(G)
2

)4 − 315
(
κ̄

(G)
2

)5)
(A13j)

+ f f̄ (κ̄ (G)
4 )2(−3 + 6κ̄

(G)
2 − 9

(
κ̄

(G)
2

)2 + 12
(
κ̄

(G)
2

)3 − 15
(
κ̄

(G)
2

)4 + 18
(
κ̄

(G)
2

)5 − 21
(
κ̄

(G)
2

)6)
(A13k)

+ (1 + 3 f f̄ )κ̄ (G)
5

(−1 + 2κ̄
(G)
2 − 3

(
κ̄

(G)
2

)2 + 4
(
κ̄

(G)
2

)3 − 5
(
κ̄

(G)
2

)4 + 6
(
κ̄

(G)
2

)5 − 7
(
κ̄

(G)
2

)6 + 8
(
κ̄

(G)
2

)7)
(A13l)

+ (1 + 3 f f̄ )κ̄ (G)
3 κ̄

(G)
5

(−1 + 2κ̄
(G)
2 − 3

(
κ̄

(G)
2

)2 + 4
(
κ̄

(G)
2

)3 − 5
(
κ̄

(G)
2

)4 + 6
(
κ̄

(G)
2

)5 − 7
(
κ̄

(G)
2

)6)
(A13m)

+ (1 − 3 f f̄ )κ̄ (G)
6

(
1 − κ̄

(G)
2 + (

κ̄
(G)
2

)2 − (
κ̄

(G)
2

)3 + (
κ̄

(G)
2

)4 − (
κ̄

(G)
2

)5 + (
κ̄

(G)
2

)6 − (
κ̄

(G)
2

)7)
, (A13n)

where for readability we divide κ
(1,B,NLO)
4 by (− 1

2 f f̄ ).
Now we address the series one by one, assuming, as before that the remaining terms of the series (up to infinity) follow the

same patterns. For reference, we number the series in Eq. (A13) by the line letters.
Series a, c, k, l, m, n. Some of the series are easy to calculate:

a : −
∞∑

n=1

n
(−κ̄

(G)
2

)n = κ̄
(G)
2(

1 + κ̄
(G)
2

)2 , (A14)

c : −
∞∑

n=1

n
(−κ̄

(G)
2

)n−1 = − 1(
1 + κ̄

(G)
2

)2 , (A15)

n :
∞∑

n=0

(−κ̄
(G)
2

)n = 1

1 + κ̄
(G)
2

. (A16)

l and m are the same as c. k is just 3 times c.
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The other series are less obvious.
Series i and j. We begin with i and denote the coefficient by an.

i : 30
(
1 − 3κ̄

(G)
2 + 6

(
κ̄

(G)
2

)2 − 10
(
κ̄

(G)
2

)3 + 15
(
κ̄

(G)
2

)4 − 21
(
κ̄

(G)
2

)5 + 28
(
κ̄

(G)
2

)6 + · · · ) = 30
∞∑

n=1

an
(−κ̄

(G)
2

)n−1
. (A17)

Note that an = ∑n
i=1 i = n(n+1)

2 and each an is a sum of the arithmetic sequence.
Therefore,

i : 30
∞∑

n=1

n(n + 1)

2

(−κ̄
(G)
2

)n−1 = 30(
1 + κ̄

(G)
2

)3 . (A18)

Similarly in j:

j : 15
∞∑

n=1

n(n + 1)

2

(−κ̄
(G)
2

)n−1 = 15(
1 + κ̄

(G)
2

)3 . (A19)

Series h. For h, the situation is similar:

h : 3
(
3 − 11κ̄

(G)
2 + 24

(
κ̄

(G)
2

)2− 42
(
κ̄

(G)
2

)3 + 65
(
κ̄

(G)
2

)4 − 93
(
κ̄

(G)
2

)5 + 126
(
κ̄

(G)
2

)6 − 164
(
κ̄

(G)
2

)7 + · · · ) = 3
∞∑

n=1

an
(−κ̄

(G)
2

)n−1
,

(A20)
where we deduce how to obtain the subsequent terms by observing that

a1 = 3,
a2 = 3 + (3 + 5 × 1) = 11,
a3 = 3 + (3 + 5 × 1) + (3 + 5 × 2) = 24,

...
an = 3 + (3 + 5 × 1) + (3 + 5 × 2) + · · · + (3 + 5(n − 1)).
an is a sum of n terms which we call bm: an = ∑n

m=1 bm, where bm = 3 + 5(m − 1). Thus,

an =
n∑

m=1

bm =
n∑

m=1

[3 + 5(m − 1)] = (5n + 1)n

2
, (A21)

h : 3
∞∑

n=1

n(5n + 1)

2

(−κ̄
(G)
2

)n−1 = −3
(
2κ̄

(G)
2 − 3

)(
1 + κ̄

(G)
2

)3 . (A22)

Series f and g. The series in line f has one more level of complexity:

f : −24
(
1 − 4κ̄

(G)
2 + 10

(
κ̄

(G)
2

)2 − 20
(
κ̄

(G)
2

)3 + 35
(
κ̄

(G)
2

)4 − 56
(
κ̄

(G)
2

)5 + · · · ) = −24
∞∑

n=1

an
(−κ̄

(G)
2

)n−1
, (A23)

where
a1 = 1,
a2 = 1 + (1 + 2) = 4,
a3 = 1 + (1 + 2) + (1 + 2 + 3) = 10,
a4 = 1 + (1 + 2) + (1 + 2 + 3) + (1 + 2 + 3 + 4) = 20,

...
an = 1 + (1 + 2) + · · · + (1 + 2 + · · · + n).

Again, an = ∑n
m=1 bm, where bm = 1 + 2 + · · · + m = m(m+1)

2 . Then,

an =
n∑

m=1

bm =
n∑

m=1

m(m + 1)

2
= n(n + 1)(n + 2)

6
. (A24)
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Eventually,

f : −24
∞∑

n=1

n(n + 1)(n + 2)

6

(−κ̄
(G)
2

)n−1 = − 24(
1 + κ̄

(G)
2

)4 . (A25)

The same series appears in g:

g : −6
∞∑

n=1

n(n + 1)(n + 2)

6

(−κ̄
(G)
2

)n−1 = − 6(
1 + κ̄

(G)
2

)4 . (A26)

Series e. e is similar:

e : −3
(
7− 33κ̄

(G)
2 + 90

(
κ̄

(G)
2

)2− 190
(
κ̄

(G)
2

)3+ 345
(
κ̄

(G)
2

)4− 567
(
κ̄

(G)
2

)5+ 868
(
κ̄

(G)
2

)6 + · · · ) = −3
∞∑

n=1

an
(−κ̄

(G)
2

)n−1
, (A27)

where
a1 = 7,
a2 = 7 + [7 + (7 + 12)] = 33,
a3 = 7 + [7 + (7 + 12)] + [7 + (7 + 12) + (7 + 2 × 12)] = 90,
a4 = 7 + [7 + (7 + 12)] + [7 + (7 + 12) + (7 + 2 × 12)] + [7 + (7 + 12) + (7 + 2 × 12) + (7 + 3 × 12)] = 190,
an = 7 + [7 + (7 + 12)] + · · · + [7 + (7 + 12) + (7 + 2 × 12) + · · · + (7 + (n − 1) × 12)].

We denote it as an = ∑n
m=1 bm, where bm = ∑m

k=1[7 + (k − 1)12] = (6m + 1)m. Thus,

an =
n∑

m=1

bm =
n∑

m=1

(6m + 1)m = n(n + 1)(4n + 3)

2
, (A28)

e : −3
∞∑

n=1

n(n + 1)(4n + 3)

2

(−κ̄
(G)
2

)n−1 = 3
(
5κ̄

(G)
2 − 7

)(
1 + κ̄

(G)
2

)4 . (A29)

Series d. Now we focus on d:

d : −1(−3) + 2(6κ̄
(G)
2 ) − 3

[
23

(
κ̄

(G)
2

)2] + 4
[
48

(
κ̄

(G)
2

)3] − 5
[
81

(
κ̄

(G)
2

)4] + 6
[
122

(
κ̄

(G)
2

)5]
− 7

[
171

(
κ̄

(G)
2

)6] + 8
[
228

(
κ̄

(G)
2

)7] + · · · = −
∞∑

n=1

nan
(−κ̄

(G)
2

)n−1
, (A30)

where
a1 = −3,
a2 = −3 + 9 = 6,
a3 = −3 + 9 + (9 + 8) = 23,
a4 = −3 + 9 + (9 + 8) + (9 + 2 × 8) = 48,
a5 = −3 + 9 + (9 + 8) + (9 + 2 × 8) + (9 + 3 × 8) = 81,

...
an = −3 + 9 + (9 + 8) + (9 + 2 × 8) + · · · + [9 + (n − 2) × 8].

We denote it as an = −3 + ∑n−1
m=1 bm, where bm = 9 + (m − 1)8. So,

an = −3 +
n−1∑
m=1

bm = −3 +
n−1∑
m=1

[9 + (m − 1)8] = 4n2 − 3n − 4, (A31)

d : −
∞∑

n=1

n(4n2 − 3n − 4)
(−κ̄

(G)
2

)n−1 = −3(
(
κ̄

(G)
2

)2 − 8κ̄
(G)
2 − 1)(

1 + κ̄
(G)
2

)4 . (A32)

Series b. The last one is b:

b : 1
(−6κ̄

(G)
2

) − 2

(
−9

2

(
κ̄

(G)
2

)2
)

+ 3
(−1

(
κ̄

(G)
2

)3) − 4

(
9

2

(
κ̄

(G)
2

)4
)

+ 5
(
12

(
κ̄

(G)
2

)5) − 6

(
43

2

(
κ̄

(G)
2

)6
)

+ 7
(
33

(
κ̄

(G)
2

)7)
− 8

(
93

2

(
κ̄

(G)
2

)8
)

+ · · · = −
∞∑

n=1

nan
(−κ̄

(G)
2

)n
, (A33)
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where
a1 = −6,
a2 = −6 + 3

2 = − 9
2 ,

a3 = −6 + 3
2 + ( 3

2 + 2) = −1,

a4 = −6 + 3
2 + ( 3

2 + 2) + ( 3
2 + 2 × 2) = 9

2 ,

a5 = −6 + 3
2 + ( 3

2 + 2) + ( 3
2 + 2 × 2) + ( 3

2 + 3 × 2) = 12,
...

an = −6 + 3
2 + ( 3

2 + 2) + ( 3
2 + 2 × 2) + · · · + ( 3

2 + (n − 2) × 2).

We denote it as: an = −6 + ∑n−1
m=1 bm, where bm = 3

2 + (m − 1)2. So,

an = −6 +
n−1∑
m=1

bm = −6 +
n−1∑
m=1

[
3

2
+ (m − 1)2

]
= 2n2 − 3n − 11

2
, (A34)

b : −
∞∑

n=1

n(2n2 − 3n − 11)

2

(−κ̄
(G)
2

)n = −3κ̄
(G)
2

((
κ̄

(G)
2

)2 + 5κ̄
(G)
2 + 2

)(
1 + κ̄

(G)
2

)4 . (A35)

Final formula for κ
(1,B,NLO)
4 . We plug in all these results into Eq. (A13). Using Eq. (A4), we obtain Eq. (25).

APPENDIX B: LIMITS ON αk

In this Appendix, we discuss the limits on the values of the
short-range correlation coefficients, αk .

1. Probability distribution

First, we focus on the discrete probability distribution
itself. We straightforwardly differentiate the probability gen-
erating function, H (z) = ∑∞

n=0 P(n)zn. We use the facts that

H (z) = eG(z) and G(z) = ∑∞
k=1

(z−1)k

k! Ĉk , where G(z) is the
factorial cumulant generating function. Therefore, the multi-
plicity probability distribution is given by

P(m) = 1

m!

dm

dzm

[
exp

( ∞∑
k=1

(z − 1)k

k!
Ĉk

)]∣∣∣∣∣
z=0

. (B1)

In our case, Ĉk is given by Eq. (10). Clearly, P(m) must satisfy
the condition 0 � P(m) � 1 for all m. This is the crucial test
for the validity of the set of values of αk’s.5

2. Central moments

The kth central moment is defined as μk = 〈(x − 〈x〉)k〉.6
Obviously, the even central moments have to be greater than
or equal to 0.

First of all, the variance, μ2 = κ2 = σ 2 = 〈(n − 〈n〉)2〉 �
0. Using the definition of the factorial cumulants and assum-
ing the short-range correlations (10), we obtain

Ĉ2 = d2G(z)

dz2

∣∣∣∣
z=1

= −〈n〉2 + 〈n(n − 1)〉 = α2〈n〉. (B2)

Therefore,

〈n〉(α2 + 1) = 〈n2〉 − 〈n〉2 = σ 2 � 0. (B3)

5In practice, we assume that αk �= 0 for finite k, e.g., k � 6.
6It is straightforward to check that μ2 = κ2, μ3 = κ3, μ4 = κ4 +

3κ2
2 , μ5 = κ5 + 10κ3κ2, and μ6 = κ6 + 15κ4κ2 + 10κ2

3 + 15κ3
2 .

This puts the lower limit on α2:

α2 � −1. (B4)

A similar discussion applies to the fourth and sixth central
moments resulting in more complicated relations between
αk’s and 〈n〉.

3. Kurtosis-skewness inequality

There exists an inequality between kurtosis, K , and
skewness, S [60]:7

K � S2 + 1, (B5)

or in terms of the central moments,

μ4

μ2
2

� μ2
3

μ3
2

+ 1, (B6)

or in terms of cumulants,

κ4

κ2
2

+ 2 � κ2
3

κ3
2

. (B7)

This condition also gives nontrivial relations between αk’s.

7This inequality can be justified quite easily. Here we follow
Ref. [61]. Suppose x is a random variable from the distribution
with mean 〈x〉 and standard deviation σ . Let y = x−〈x〉

σ
. Clearly,

〈y〉 = 0, σ 2
y = 〈y2〉 = 1. We use the Cauchy-Schwartz inequality for

probability theory, 〈ab〉2 � 〈a2〉〈b2〉, where a and b are the random
variables. Let a = y, b = y2 − 1. This brings us to 〈y4〉 � 〈y3〉2 + 1 ,
being equivalent to (B6).
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