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We have investigated the charge-dependent anisotropic flow in high-energy heavy-ion collisions, using rela-
tivistic resistive magneto-hydrodynamics (RRMHD). We consider the optical Glauber model as an initial model
of the quark-gluon plasma (QGP) and the solution of the Maxwell equations with source term of the charged
particles in two colliding nuclei as initial electromagnetic fields. The RRMHD simulation is performed with
these initial conditions in Au-Au and Cu-Au collisions at

√
sNN = 200 GeV. We have calculated the charge-odd

contribution to the directed flow �v1 and elliptic flow �v2 in both collisions based on electric charge distributions
as a consequence of RRMHD. Our results show that the �v1 and �v2 are approximately proportional to the
electrical conductivity (σ ) of the medium. In the σ = 0.023 fm−1 case, our result of �v1 is close to STAR data
in Au-Au collisions, while it is slightly overestimated in forward and backward rapidity regions. Furthermore, in
Cu-Au collisions, �v1 has a nonzero value at η = 0. We conclude that the charge-dependent anisotropic flow is
a good probe to extract the electrical conductivity of the QGP medium in high-energy heavy-ion experiments.

DOI: 10.1103/PhysRevC.107.034912

I. INTRODUCTION

In high-energy heavy-ion collisions, the production of ul-
traintense electromagnetic fields by two colliding nuclei is one
of the hottest topics [1–3]. For example, in

√
sNN = 200 GeV

Au-Au collisions at the BNL Relativistic Heavy Ion Collider
(RHIC), the highest intensity of the magnetic field in our uni-
verse may be reached, e.g., |eB| ≈ 1015 T [4–8]. The intensity
of the magnetic field in the transverse plane increases ap-
proximately linearly with the center of mass collision energy
[1–3]. The corresponding electric field in the transverse plane
is also enhanced by a Lorentz factor of colliding nuclei. Such
intense electromagnetic fields can affect the hadron distribu-
tion detected in high-energy heavy-ion collision experiments
at RHIC and the CERN Large Hadron Collider (LHC). As the
electromagnetic response of the quark-gluon plasma (QGP),
electromagnetic fields affect the electric charge of quarks.
As a consequence of it, the charge dependence is found in
directed flows of hadrons at RHIC and the LHC [9–11]. Fur-
thermore, the presence of strong electromagnetic fields leads
to novel quantum phenomena such as chiral magnetic effect
(CME) [12] and chiral magnetic wave (CMW) [13]. There are
several efforts to detect these phenomena in the isobar exper-
iments such as Zr-Zr and Ru-Ru collisions at

√
sNN = 200
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GeV [14]. Also, the effect of the background magnetic field
on the quantum chromodynamics (QCD) phase diagram is
investigated [15].

For the description of time evolution of the initial elec-
tromagnetic fields in dynamics of high-energy heavy-ion
collisions, construction of the relativistic resistive magneto-
hydrodynamics (RRMHD) is indispensable [16,17]. The
RRMHD framework describes the dynamics of the plasma
with finite electrical conductivity coupled with electromag-
netic fields. In the RRMHD framework, Ohm’s law is
considered to close the system of differential equations. One
of the possibilities for building a model based on RRMHD
is to employ an ideal limit of Ohm’s law which assumes the
infinite electrical conductivity of the medium, as well-known
relativistic ideal MHD. In the analysis based on relativistic
ideal MHD [18,19], the effect of the magnetic field has only a
very small impact on the collective flow of charged hadrons.
In our previous study [16], in analysis based on RRMHD with
finite electrical conductivity, we showed the sizable effect of
the dissipation associated with Ohm’s law on the directed flow
of hadrons in asymmetric collision systems such as Cu-Au
collisions. We have found that the conduction current induced
by Ohm’s law plays an important role in the dynamics of
high-energy heavy-ion collisions.

The electrical conductivity of the QCD matter is estimated
to be, σ = (5.8 ± 2.9)/h̄c fm−1 in three flavor QGP at tem-
perature T = 250 MeV, by the lattice QCD calculation which
is the first principle simulation of QCD [20–23]. It indicates
a possibility of the long-time electromagnetic response of the
QGP medium. For example, at RHIC, the time scale of the
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dissipation associated with Ohm’s law, τσ ≈ 1/σ ≈ 102 fm
is sufficiently larger than the time scale of the dynamics of
high-energy heavy-ion collisions, τ f ≈ 10 fm. Namely, we
should take into account the finite electrical conductivity in
RRMHD. Also, the incomplete electromagnetic response of
QCD matter is discussed by introducing the relaxation time
of the electric current in Refs. [24–26]. It suggests that the
electric current is suppressed by the long-time electromag-
netic response associated with the relaxation process of the
electric current.

In this paper, we investigate the effect of electromagnetic
fields on the charge-dependent anisotropic flow based on
RRMHD. We apply the newly developed RRMHD simulation
code to high-energy heavy-ion collisions [16,17]. We employ
the optical Glauber model [27] as an initial condition of the
QGP medium. The solution of Maxwell equations with the
source term of the charged particles inside of the two colliding
nuclei is taken to be the initial electromagnetic fields [2].
We shall discuss the electrical conductivity dependence of the
charge-dependent anisotropic flow.

This paper is organized as follows. In Sec. II, we show the
RRMHD model for high-energy heavy-ion collisions. Numer-
ical results are shown in Sec. III and a summary is given at
the end in Sec. IV. Unless otherwise specified, we use natural
units h̄ = c = ε0 = μ0 = 1, where ε0 and μ0 are the electric
permittivity and the magnetic permeability in a vacuum, re-
spectively. Throughout the paper, the components of the four
tensors are indicated with greek indices, whereas three vectors
are denoted as boldface symbols.

II. RELATIVISTIC RESISTIVE
MAGNETO-HYDRODYNAMIC MODEL

A. Relativistic resistive magnetohydrodynamic equation

The RRMHD equation consists of the conservation laws
for the charged current Nμ and for the total energy-momentum
tensor of the plasma T μν in the dynamics of the whole system.
They are written by

∇μNμ = 0, (1)

∇μT μν = 0, (2)

where ∇μ is the covariant derivative. The electromagnetic
fields satisfy Maxwell equations,

∇μFμν = −Jν, (3)

∇μ
�Fμν = 0, (4)

where Fμν is a Faraday tensor and �Fμν = 1
2εμνρσ Fρσ is its

dual tensor, with εμνρσ = (−g)−1/2[μνρσ ], g = det(gμν ) and
[μνρσ ] is a completely antisymmetric tensor. Here, gμν is a
metric tensor and we take the metric gμν = diag(−1, 1, 1, τ 2)
in the Minkowski space-time.

To close the system of Eqs. (1)–(4), we employ the simplest
form of Ohm’s law in Ref. [28]. In the covariant form, Ohm’s
law is written by

Jμ = σFμνuν + quμ, (5)

where σ is electrical conductivity of the fluid after thermal-
ization, uμ is the four-velocity of the fluid, and q = −Jμuμ is

the electric charge density of the fluid in the comoving frame.
Maxwell equations lead to the charge conservation law

∂μJμ = 0. (6)

We numerically solve the system of RRMHD Eqs. (1)–
(4) in the Milne coordinates (τ, xT, ηs). We have introduced
variables; τ = √

t2 − z2 is a longitudinal proper time, xT =
(x, y) represents transverse coordinates, and ηs = 1

2 ln( t+z
t−z ) is

a space rapidity. As an equation of state (EoS), we employ
the ideal gas EoS, p = e/3, for simplicity. We note that we
neglect the effect of the electric charge density in the EoS
since the electric charge density is much smaller than the
energy density of the fluid. In the previous study [16,17], we
constructed RRMHD model for high-energy heavy-ion colli-
sions. Our RRMHD model is adopted for the estimation of the
charge-dependent anisotropic flow in high-energy heavy-ion
collisions.

B. Initial model

1. Medium

We consider the optical Glauber model [27] as an initial
condition of the QGP medium. In the optical Glauber model,
the energy density takes the form

e(x⊥, ηs) = e0M(x⊥) ftilt (ηs), (7)

where e0 = 55 GeV/fm3[19] is the energy density at
(x⊥, ηs) = (0 fm, 0) and ftilt (ηs) is a longitudinal profile func-
tion with the tilted sources [29]. For a tilted initial energy
density distribution [29], we have introduced the function
M(x⊥; b) as

M(x⊥, ηs; b) = (1 − αH)WN (x⊥, ηs; b) + αHncoll(x⊥; b)

(1 − αH)WN (0, 0; 0) + αHncoll(0; 0)
,

(8)

where αH = 0.05 [19] is a collision hardness parameter and
ncoll is the number of binary nucleon collisions. We have
defined the wounded nucleon’s weight function WN as

WN (x⊥, ηs; b) = 2
(
nA

part (x⊥; b) f−(ηs) + nB
part (x⊥; b) f+(ηs)

)
,

(9)
where

f−(ηs) =
⎧⎨
⎩

1 (ηs < −ηm)
−ηs+ηm

2ηm
(−ηm � ηs � ηm),

0 (ηs > ηm)
(10)

and

f+(ηs) =
⎧⎨
⎩

0 (ηs < −ηm)
ηs+ηm

2ηm
(−ηm � ηs � ηm),

1 (ηs > ηm)
(11)

where ηm = 3.36 [29] is a parameter. We define the tilted
longitudinal profile function ftilt (ηs) as

ftilt (ηs) = exp

(
−(|ηs| − ηflat/2)2

2w2
η

θ (|ηs| − ηflat/2)

)
, (12)

where wη = 4.0 [19] is a width of the gauss function in
ftilt (ηs) and ηflat = 5.9 [19] is a width of the plateau for the
rapidity distribution. The parameters of the initial condition of
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FIG. 1. The electric charge distributions on the freeze-out hy-
persurface as a function of x at ηs = 0.0 and y = 0.0 fm in Au-Au
collisions. The black solid and blue dashed lines represent the charge
density in the cases of σ = 0.0058 and 0.023 fm−1.

the QGP medium have been determined from the comparison
with the STAR data of the directed flow in Au-Au collisions
[9,16]. The values of these parameters are consistent with
those of Refs. [19,29]. The energy density profiles in Au-
Au and Cu-Au collisions are shown in Figs. 1 and 2 of our
previous study [16].

2. Electromagnetic field

We take the solution of the Maxwell equations as the initial
condition of electromagnetic fields [2]. We consider the sys-
tem in which the electric charge q̄ is moving along parallel to
the beam axis (ẑ) with velocity v̄ in the laboratory frame by
an observer located at r = zẑ + x⊥ in the Minkowski coordi-
nates. In such a system, the Maxwell equations are written by

∇ · B = 0, ∇ × E = −∂B
∂t

, (13)

∇ · D = q̄δ(z − v̄t )δ(b), (14)

∇ × H = ∂D
∂t

+ σ̄E + q̄vẑδ(z − v̄t )δ(b), (15)

where B is the magnetic field, E is the electric field, H = μB,
and D = εE. We take a constant permittivity ε = 1, a

constant permeability μ = 1, and a constant finite electrical
conductivity of the initial matter before thermalization
σ̄ = 0.023 fm−1 [20,21]. If we set parameters γ̄ , σ̄ , and b to
be satisfied with the condition, γ̄ σ̄b � 1, the solutions of the
Maxwell equations are written by

Er = Bφ = q̄(h̄c)3/2

2π

bσ̄ /(h̄c)

4x2±
exp

(
−b2σ̄ /(h̄c)

4x±

)
,

Ez = − q̄(h̄c)3/2

4π

x± − b2σ̄ /(4h̄c)

γ̄ 2x3±
exp

(
−b2σ̄ /(h̄c)

4x±

)
,

(16)

where we have introduced the Lorentz factor of colliding
nuclei γ̄ = 1/

√
1 − v̄2 and x± = t ± v̄/z. To clarify the

dimension of electromagnetic fields, GeV1/2/fm3/2, we
explicitly write h̄ and c. We assume the electric charge
distribution inside two colliding nuclei as being uniform
and spherical for simplicity. The total electromagnetic fields
are derived by integration over the inside of two colliding
nuclei at each point of our computational grid. The initial
electromagnetic fields in Au-Au and Cu-Au collisions are
discussed in Figs. 3 and 4 of our previous study [16].

III. NUMERICAL RESULTS

We perform the RRMHD simulation [16,17] with these
initial conditions in Au-Au and Cu-Au collisions. We focus
on the RHIC energy to compare our results with STAR data.
We demonstrate the charge-odd contribution to the directed
flow �v1 and the elliptic flow �v2 from RRMHD expansion
with the value of electrical conductivity by the lattice QCD
calculation σ = 0.023 fm−1 [20–23]. Additionally, we take
about 4 times higher and lower values of electrical conduc-
tivity σ = 0.1 and 0.0058 fm−1 than σ = 0.023 fm−1 to study
the dependence of electrical conductivity.

We start the RRMHD simulation at the proper time τ0 =
0.4 fm which is determined from the comparison with the
STAR data of the directed flow in Au-Au collisions [16]. Since
the directed flow has no electrical conductivity dependence
[16], the τ0 has the same value in the cases of the σ =
0.0058, 0.023, and 0.1 fm−1. The value of τ0 is consistent
with that of Ref. [29]. We terminate the RRMHD simulation

FIG. 2. The electric charge distributions on the freeze-out hypersurface as a function of x at y = 0.0 fm in the cases of (a) ηs = −1.0 and
(b) ηs = 1.0 in Au-Au collisions. The black solid and blue dashed lines represent σ = 0.0058 and 0.023 fm−1 cases.
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FIG. 3. The electric charge distributions on the freeze-out hy-
persurface as a function of x at ηs = 0.0 and y = 0.0 fm in Cu-Au
collisions. The black solid and blue dashed lines represent the charge
distributions in the cases of σ = 0.0058 and 0.023 fm−1.

when the energy density of all fluid elements becomes below
the freeze-out energy density e(ηs, xT) = 0.15 GeV/fm3.

We note the parameters (e0, αH , ωη, ηflat, and ηm) of the
initial condition for Cu-Au collisions [16]. To compare purely
the magneto-hydrodynamic response in Cu-Au collisions with
that in Au-Au collisions, we employ the same values of the
parameters in Cu-Au collisions as those in Au-Au collisions.
We should adjust these parameters more precisely for the
comparison with the STAR data. In this paper, we focus only
on the qualitative behavior of �v1 and �v2. The quantitative
analysis of Cu-Au collisions is left for future work.

A. Charge distributions on the freeze-out hypersurface

Figure 1 shows the electric charge distribution on the
freeze-out hypersurface at (y, ηs) = (0 fm, 0) in Au-Au col-
lisions. The freeze-out hypersurface contains the information
of velocity and location of the fluid elements of whole time
steps at freeze-out process where the hydrodynamic picture
is switched to the particle picture. Since the fluid elements at
small |x| have larger energy density than that at large |x|, they
freeze-out at a later time than that at large |x|. Then, the elec-
tric charge density at small |x| represents the electric charge
density at a later time than that at large |x|. The centers of
the colliding Au nuclei are located at (x, y) = (±5 fm, 0 fm)

in the transverse plane. The Au nucleus located at x = 5 fm
(x = −5 fm) moves to the forward (backward) space rapid-
ity. We will show the charge-dependent anisotropic flow in
the cases of σ = 0.0058, 0.023, and 0.1 fm−1 in Sec. III C.
However, here, we compare the electric charge distribution
in σ = 0.023 fm−1 case with only that in σ = 0.0058 fm−1

case since the electric charge distribution in σ = 0.1 fm−1

case is qualitatively same as that in σ = 0.0058 fm−1 and
σ = 0.023 fm−1 cases. The black and blue dashed lines rep-
resent the results in the cases of σ = 0.0058 and 0.023 fm−1,
respectively. In Fig. 1, the negative charges are induced inside
the freeze-out hypersurface, since the electric field is facing
outside the freeze-out hypersurface. Also, the negative charge
distribution has two local minimums at x ≈ 4 fm and −4 fm
in both of electrical conductivity cases. The location of the
local minimums of the negative electric charge distribution is
correlated with the shorter axis of the initial almond shape
of the energy density of fluid in Fig. 1(a) of our previous
study [16]. Consequently, the momentum of the negatively
charged hadrons on the freeze-out hypersurface is correlated
with the elliptic momentum anisotropy of the fluid induced
by the almond-shaped pressure gradient on the freeze-out
hypersurface. On the other hand, the production of positively
charged hadrons is suppressed due to the negative chemical
potential of electric charge on the freeze-out hypersurface.
Then, this structure of the electric charge distribution may
enhance the elliptic flow of negatively charged hadrons and
reduce that of positively charged hadrons.

Figures 2(a) and 2(b) display the electric charge distribu-
tion on the freeze-out hypersurface at (y, ηs) = (0 fm,−1)
and (0 fm,+1) in Au-Au collisions, respectively. As shown
in Fig. 4(b) of Ref. [16], in ηs < 0, the electric field produced
by the nucleus located at the negative x side is dominant.
As a result, in Fig. 2(a), the negative charge density at the
negative x side is larger than that at the positive x side.
The electric charge density has the largest local minimum at
x = −4.0 fm. On the other hand, as shown in Fig. 4(b) of
Ref. [16], in ηs > 0, the electric field produced by the nucleus
located at the positive x side has a strong influence on electric
charge distributions. The electrical conductivity dependence
is clearly observed in all space rapidity regions. Because the
absolute value of electric current is proportional to electrical
conductivity, the electric charge density with higher electri-
cal conductivity becomes larger. The induced electric charge

FIG. 4. The electric charge distributions on the freeze-out hypersurface as a function of x at y = 0.0 fm in the cases of (a) ηs = −1.0 and
(b) ηs = 1.0 in Cu-Au collisions. The black solid and blue dashed lines represent σ = 0.0058 and 0.023 fm−1 cases.
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FIG. 5. The x component of the space-averaged velocity on the freeze-out hypersurface as a function of ηs in (a) Au-Au and (b) Cu-Au
collisions. The black solid and blue dashed lines represent velocity profiles in the cases of σ = 0.0058 and 0.023 fm−1.

density is approximately proportional to the electrical con-
ductivity. It is consistent with Ohm’s law. Figure 3 represents
the electric charge distribution on the freeze-out hypersurface
at (y, ηs) = (0 fm, 0) in Cu-Au collisions. The centers of Cu
and Au nucleus in the transverse plane are located at (x, y) =
(+5 fm, 0 fm) and (−5 fm, 0), respectively. We define that the
Cu (Au)-going side is forward (backward) rapidity. Because
of the asymmetry of the electric field in Cu-Au collisions,
the electric charge distribution has an asymmetric structure
at ηs = 0. As shown in Fig. 6(b) of Ref. [16], in the trans-
verse plane, the non-zero electric field facing the center of Cu
nucleus in the freeze-out hypersurface induces the negative
electric charge in the negative x region. Thus, the negative
charge density at the negative x region has a larger value
than that at the positive x region. This is different from that
in Au-Au collisions in Fig. 1. It induces a nonzero value of
the charge-odd contribution to the directed flow at ηs = 0.
Figures 4(a) and 4(b) display the electric charge distribution
on the freeze-out hypersurface at (y, ηs) = (0 fm,−1) and
(0 fm,+1) in Cu-Au collisions, respectively. In Cu-Au col-
lisions, the electric charge density at ηs = −1 (ηs = +1) has
only one local minimum in the negative (positive) x region.
However, as shown in Fig. 4(a), in ηs < 0, the slope of the
electric charge profile is steeper than that of Au-Au collisions.
This reason is that as shown in Fig. 6(b) of Ref. [16], in
ηs < 0, the electric field in the positive x side rapidly de-
creases with increasing x. Besides, as shown in Fig. 4(b), in
ηs > 0, one can see the plateau in x ∈ [−2, 1.5]. The asym-
metric profile of the electric field in Fig. 6(b) of Ref. [16] is
reflected to this structure. The total absolute value of electric
charge density at ηs = 1.0 in Fig. 4(a) is larger than that at
ηs = −1.0 in Fig. 4(b). Since in Fig. 2(b) of Ref. [16], the
medium inside the freeze-out hypersurface is close to the
center of the Cu nucleus, the initial electric field produced by
the Cu nucleus is dominated in ηs > 0. It affects the electric
density distributions. The electrical conductivity dependence
of electric charge distribution is the same as that in Au-Au
collisions.

B. The space-averaged velocity profile on the freeze-out surface

The electric charge density moves with the fluid velocity
on the freeze-out hypersurface, which becomes the source of

the charge-dependent anisotropic flow. We show the veloc-
ity profile on the freeze-out hypersurface. Figures 5(a) and
5(b) represent the profile of the space-averaged velocity on
the freeze-out hypersurface in Au-Au and Cu-Au collisions,
respectively. Here, we define the space-averaged velocity on
the freeze-out hypersurface as

〈vx〉� f =
∫
� f

dydxγ e(x, y, ηs)vx(x, y, ηs)∫
� f

dydxγ e(x, y, ηs)
, (17)

where � f is the freeze-out hypersurface. The initial tilted
sources are reflected to the x component of the space-averaged
velocity profiles in both of Au-Au and Cu-Au collisions. In
both cases, the electrical conductivity dependence is not ob-
served. In low electrical conductivity case, the velocity profile
on the freeze-out hypersurface is mainly determined by the
pressure gradient of the QGP fluid. The contribution of elec-
tromagnetic fields to the QGP fluid is evaluated by the plasma
β, which is the ratio of the pressure to the energy density
of electromagnetic fields, β = p/pem, where pem = E2+B2

2 is
the energy density of electromagnetic fields. In this calcula-
tions, since we take e0 = 55 GeV/fm3 and the magnetic field
strength |B2| ≈ 0.01 GeV/fm3, the plasma β is evaluated to
β ≈ 103. Hence, the contribution of electromagnetic fields
becomes small. Furthermore, in Au-Au collisions, the x com-
ponent of the space-averaged velocity has a negative value in
ηs > 0 and a positive value in ηs < 0. On the other hand, in
ηs < 0, the negative charges are mainly produced in x < 0 fm
region which is the opposite direction of the x component of
the space-averaged velocity. The magnitude of the directed
flow of negatively charged hadrons has a smaller value than
that of positively charged hadrons because of this structure
between the electric charge distribution and the x component
of the space-averaged velocity profile.

In Au-Au collisions, the x component of the space-
averaged velocity is symmetric about ηs = 0. In Cu-Au
collisions, the x component of the space-averaged velocity
has a positive value at ηs = 0 and vanishes near ηs ≈ 0.5.
Since the initial asymmetric profile of the QGP medium on
transverse plane provides the stronger pressure gradients with
respect to the direction of the Cu side, the velocity is finite
even at ηs = 0.
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FIG. 6. The charge-odd contribution to the elliptic flow �v2 as a
function of η in Au-Au collisions. The black solid, blue dashed, and
red long dashed-dotted lines represent the charge-odd contribution to
the elliptic flow in the cases of σ = 0.0058, 0.023, and 0.1 fm−1.

C. Charge-dependent anisotropic flow

We investigate the effect of electromagnetic fields on the
charge-dependent anisotropic flow. The azimuthal anisotropic
flow is calculated by

vn(η) =
∫

d pTdφ cos(nφ) dN
d pTdφ∫

d pTdφ dN
d pTdφ

, (18)

where pT =
√

p2
x + p2

y, φ, and η = 1
2 ln ( |p|+pz

|p|−pz
) are transverse

momentum, an azimuthal angle with respect to the transverse
plane, and the pseudorapidity of the hadrons, respectively.
To extract the purely magneto-hydrodynamic response, we
ignore the final state interactions. The hadron distribution is
computed by using the information of the QGP fluid on the
freeze-out hypersurface in the Cooper-Frye prescription [30].
Since the electric charge density is very small,

√
h̄cq/p ≈

10−4, we assume that the chemical potential of electric charge
density is given by the linear relation to electric charge den-
sity, μq = q/ghT 2, where gh is the degree of freedom of
hadrons and T is the temperature of the medium.

1. Charge-dependent elliptic flow

Here, we consider the charge-odd contribution to the ellip-
tic flow for π ,

�v2(η) = vπ+
2 (η) − vπ−

2 (η), (19)

focusing on the difference between the elliptic flow of π+ and
that of π−. Figure 6 represents the charge-odd contribution to
the elliptic flow for π as a function of η. The black solid, blue
dashed, red long-dashed dotted lines stand for the cases of
σ = 0.0058, 0.023, and 0.1 fm−1. The electrical conductivity
dependence is clearly observed. The results in all electrical
conductivity cases have negative values. It implies that the
elliptic flow of π− is enhanced by the conduction current

FIG. 7. The charge-odd contribution to the elliptic flow �v2 as
a function of η in Cu-Au collisions. The black solid, blue dashed,
and red long dashed-dotted lines represent the charge-odd con-
tribution to the elliptic flow in the cases of σ = 0.0058, 0.023,
and 0.1 fm−1.

associated with Ohm’s law. The behavior is also suggested by
the electric charge distributions on the freeze-out hypersurface
in Fig. 1. The value of the charge-odd contribution to the
elliptic flow at η = 0 is consistent with the previous study in
Ref. [31]. However, the rapidity dependence of the charge-odd
contribution to the elliptic flow has the different tendency. Our
results show that the |�v2(η)| decreases with increasing |η|
but the result in Ref. [31] show that the |�v2(η)| increases
with |η|. This is because the magnetic field increases with |ηs|
in Ref. [31]. In our initial condition, electromagnetic fields
decrease with increasing |ηs| shown in Fig. 4(b) of Ref. [16].
Furthermore, as shown in Figs. 2(a) and 2(b), the total electric
charge density is relatively small at ηs = ±1 compared with
that at ηs = 0 in Fig. 1. Hence, the value of the charge-
odd contribution to the elliptic flow at the finite ηs becomes
small.

Figure 7 shows the charge-odd contribution to the elliptic
flow for π as a function of η in Cu-Au collisions. Clear
electrical conductivity dependence is observed. As discussed
in Figs. 3 and 4, the elliptic flow of the negatively charged
hadrons is enhanced. On the other hand, the production of
positively charged hadrons reduces due to the negative chem-
ical potential of electric charge density. The elliptic flow of
the positively charged hadrons decreases. The charge-odd
contribution to the elliptic flow of π has a negative value.
In the forward rapidity region, the absolute value of the el-
liptic flow slightly increases in the cases of σ = 0.023 and
0.1 fm−1. This reason is that, in ηs > 0, the distribution of
electric charge density has a plateau structure due to the
electric field produced by the Cu nucleus in Fig. 4(b). This
plateau makes the emission of negatively charged hadrons in
direction of an x-axis negative direction increase. Then, the
elliptic momentum anisotropy of negatively charged hadrons
becomes larger than that in ηs < 0 and at ηs = 0. In both
collisions, the charge-odd contribution to the elliptic flow is
approximately proportional to the electrical conductivity. The
charge-odd contribution to the elliptic flow is sensitive to
electrical conductivity.
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FIG. 8. The charge-odd contribution to the directed flow �v1 is
shown as a function of η in Au-Au collisions. The black solid, blue
dashed, and red long dashed-dotted lines represent the charge-odd
contribution to the directed flow in the cases of σ = 0.0058, 0.023,
and 0.1 fm−1. The open circles with error bars represent the experi-
mental data of the STAR collaboration [32].

2. Charge-dependent directed flow

Next we show the charge-odd contribution to the directed
flow for π ,

�v1(η) = vπ+
1 (η) − vπ−

1 (η). (20)

Figure 8 displays the charge-odd contribution to the directed
flow of π in Au-Au collisions. The black solid, blue dashed,
and red long-dashed dotted lines stand for the cases of σ =
0.0058, 0.023, and 0.1 fm−1. The tendency of the charge-odd
contribution to the directed flow is similar to the charge-even
contribution to the directed flow for π shown in Fig. 10(a) of
Ref. [16],

v1(η) = vπ+
1 (η) + vπ−

1 (η). (21)

This behavior is explained by the electric charge distribution
on the freeze-out hypersurface as discussed in Sec. III A. In
Fig. 1, at ηs = 0, the electric charge density is symmetric
about x = 0 fm. For this reason, �v1 is zero at η = 0. In
the forward rapidity region, as shown in Fig. 2(b), the π−
is emitted mainly in the positive x region, though the 〈vx〉� f

has a negative value in the forward rapidity region. Hence,
the contribution of the absolute value of the directed flow of
the π− is slightly smaller than that of the π+. As a result,
the charge-odd contribution to the directed flow has a negative
value in the forward rapidity region. On the other hand, in the
backward rapidity region, the π− is produced mainly in the
negative x region. The x component of space-averaged veloc-
ity has a positive value in the backward rapidity region. Then,
the directed flow of the π− has a slightly smaller value than
that of the π+. The charge-odd contribution to the directed
flow becomes positive in the backward rapidity region.

The electrical conductivity dependence is clearly observed
in the forward and backward rapidity regions. The charge-odd
contribution to the directed flow is approximately proportional
to electrical conductivity. This dependence is consistent with
the previous study in Ref. [31]. Furthermore, we compare our

FIG. 9. The charge-odd contribution to the directed flow �v1 as
a function of η in Cu-Au collisions. The black solid, blue dashed, and
red long dashed-dotted lines represent the charge-odd contribution to
the directed flow in the cases of σ = 0.0058, 0.023, and 0.1 fm−1.

results with the STAR data [32]. The result in the case of σ =
0.023 fm−1, which corresponds to σ = (5.8 ± 2.9)/h̄c fm−1

of the three-flavor QGP at T = 250 MeV in the lattice QCD
calculations [20–23], is slightly larger than that of the STAR
data. In the lower conductive medium with σ = 0.0058 fm−1,
our result is consistent with the STAR data within the error
bar. It implies the possibility of the incomplete electromag-
netic response of the QGP medium [24–26], though there is
still ambiguity to the conclusive value of electrical conduc-
tivity in lattice QCD calculation. In our model, the relaxation
time of the electric current is ignored. If the relaxation pro-
cess of the electric current is included, the effective electrical
conductivity becomes small, because of the suppression of
electric current by the long-time electromagnetic response
associated with the relaxation process. To discuss quantita-
tively this effect, we need to extend Ohm’s law, including
the relaxation time of the electric current. In more precise
measurements of charge-odd contribution to the directed flow,
it can be detected in high-energy heavy-ion collisions.

Figure 9 shows the charge-odd contribution to the directed
flow of π in Cu-Au collisions. The electrical conductivity
dependence is clearly observed. The charge-odd contribution
to the directed flow of π is approximately proportional to
electrical conductivity at η = 0 in Cu-Au collisions. It is
consistent with the straightforward estimate of the charge-odd
contribution of directed flow in Cu-Au collisions [33]. The
electric charge density at ηs = 0 shown in Fig. 3 is reflected
to this electrical conductivity dependence. The charge-odd
contribution to the directed flow has the nonzero value at
η = 0 in finite electrical conductivity case. There are two
reasons. The first one is that the 〈vx〉� f has the finite value
at ηs = 0 in Fig. 5(b) due to the stronger pressure gradient
along with the impact parameter on the side of the Cu nucleus
in the initial energy density profile of the QGP medium. The
second one is that the asymmetric structure of the electric
charge distribution in Fig. 3 due to the initial electric fields
at ηs = 0 is reflected to the �v1 at η = 0. In all electrical con-
ductivity cases, �v1 is crossing zero point near η = 0.5. This
reason is that the velocity on the freeze-out hypersurface is

034912-7



NAKAMURA, MIYOSHI, NONAKA, AND TAKAHASHI PHYSICAL REVIEW C 107, 034912 (2023)

vanishing near ηs = 0.5 in Fig. 5(b). Hence, there is no electri-
cal conductivity dependence since the velocity profile has no
deviation in each electrical conductivity. Furthermore, in Cu-
Au collisions, the charge-odd contribution to the directed flow
may be easily detected since it has the nonzero value at η = 0
in finite electrical conductivity case. Our result indicates that
the precise measurement of the charge-odd contribution to
the directed flow is appropriate for the determination of the
value of the electrical conductivity of the QGP. This measure-
ment sheds light on the electromagnetic response of the QGP
medium.

IV. SUMMARY

We have investigated the charge-dependent anisotropic
flow, utilizing our RRMHD model for high-energy heavy-
ion collisions [16,17]. In order to compare our results of
the charge-odd contribution to the directed flow with STAR
data, we focused on RHIC energy. We considered the opti-
cal Glauber model [27] as an initial condition of the QGP
medium. In order to study the directed flow, the tilted source
was adopted in the longitudinal profile of the energy density
[29]. The solution of the Maxwell equations was taken to be an
initial condition of electromagnetic fields [2]. We considered
the system in which the electric charge q̄ is moving along
parallel to the beam axis (ẑ) with velocity v̄ in the laboratory
frame by an observer located at r = zẑ + x⊥ in the Minkowski
coordinates. We note that γ̄ , σ̄ , and b are fixed as the same
value among three parameters of σ . In the LHC energy, we
can address the more central collisions since γ̄ σ̄b � 1 is
satisfied even in smaller impact smaller parameter. The pa-
rameters of the initial condition of the QGP medium have been
determined from the comparison with the STAR data of the
directed flow in Au-Au collisions [9,16].

The RRMHD simulation was performed with this ini-
tial condition in both of Au-Au and Cu-Au collisions. The
electrical conductivity was taken to be constant values, σ =
0.0058, 0.023, and 0.1 fm−1. We found that the electric charge
distribution is sensitive to the RRMHD evolution and the
initial conditions of the QGP medium and electromagnetic
fields for the different collision systems. The clear electrical
conductivity dependence is observed in the electric charge
distribution. The electric charge distribution is approximately
proportional to electrical conductivity.

We have calculated the charge-odd contribution to the
anisotropic flows in Au-Au and Cu-Au collisions. The charge-
odd contribution to the directed flow and elliptic flow is
sensitive to the electrical conductivity and the initial pro-
file of electromagnetic fields for different collision systems.
We confirmed that the elliptic flow of the π− is enhanced

by the conduction current associated with Ohm’s law. As a
result, the charge-odd contribution to the elliptic flow has
a negative value in both of Au-Au and Cu-Au collisions.
Besides, it is approximately proportional to electrical con-
ductivity. In the charge-odd contribution to the directed flow,
the electrical conductivity dependence is also clearly ob-
served in both collisions. We compared our results with the
STAR data in Au-Au collisions [10]. The result in the case
of σ = 0.023 fm−1 is slightly larger than that of the STAR
data. This value of the electrical conductivity corresponds
to σ = (5.8 ± 2.9)/h̄c fm−1 of the three-flavor QGP at T =
250 MeV in the lattice QCD calculations [20–23]. On the
other hand, in the higher resistive case of σ = 0.0058 fm−1,
our result is consistent with the STAR data within the error
bar. It implies that the incomplete electromagnetic response
of the QGP medium [24–26] appears in STAR data [10]. In
more precise measurements, the incomplete electromagnetic
response can be detected in high-energy heavy-ion collisions.
We note that, in order to more precise quantitative analysis, we
need to take into account the viscous effect and the final state
interaction of hadrons after freeze-out process. In our calcula-
tion, we employ the ultrarelativistic ideal EoS. The EoS based
on lattice QCD simulations should be used to determine the
value of the electrical conductivity [34–36]. We leave them
for future works. In Cu-Au collisions, we observed that the
charge-odd contribution to the directed flow is approximately
proportional to electrical conductivity at η = 0. It is consistent
with the straightforward estimate of the charge-odd contribu-
tion of directed flow in Cu-Au collisions [33]. We comment
on the parameters of the initial condition in Cu-Au collisions
[16]. To compare purely the magneto-hydrodynamic response
in Cu-Au collisions with that in Au-Au collisions, we em-
ploy the same value of the parameters in Cu-Au collisions
as that in Au-Au collisions. We should adjust these parame-
ters more precisely for the comparison with the STAR data.
Even though, our results show the strong impact of RRMHD
in charge-odd contribution to elliptic and directed flows in
both collision systems. Then, we conclude that the charge-
dependent anisotropic flow is a good probe to extract the
electrical conductivity of QGP medium.
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